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A Combined Approach for Monitoring Monthly
Surface Water/Ice Dynamics of Lesser Slave

Lake Via Earth Observation Data
Hatef Dastour , Ebrahim Ghaderpour , and Quazi K. Hassan

Abstract—Surface water/ice dynamic monitoring is crucial for
many purposes, such as water resource management, agriculture,
climate change, drought, and flood forecasting. New advances in
remote sensing satellite data have made it possible to monitor the
surface water/ice dynamics both spatially and temporally. How-
ever, there are many challenges when using these data, such as
the availability of valid imagery, cloud contamination issues for
Landsat-8, and sensitivity of Sentinel-1 C-band to wind speed,
topography, and others. A combined methodology using Landsat-8
and Sentinel-1 synthetic aperture radar (SAR) data was proposed
to create monthly change maps at 30-m spatial resolution for the
Lesser Slave Lake in Alberta, Canada, for the period 2017–2020.
The potentials of multispectral indices for Landsat-8, such as the
normalized difference vegetation index (NDVI), normalized differ-
ence water index (NDWI), and modified NDWI (MNDWI) as well as
the Sentinel-1 SAR backscattering coefficients (VV-VH) and nor-
malized difference polarized index (NDPI) for separating water/ice
from the land were investigated. The results obtained from satellite
data with historical discharge and water level measurements for
the lake were compared. Furthermore, the results show that the
MNDWI and VH are the most effective indices for creating the
change maps. The overall accuracies achieved for MNDWI and VH
are 92.10% and 68.86% for cold months and 99.88% and 98.49%
for warm months, respectively.

Index Terms—Landsat-8, lesser slave lake, monthly dynamic
changes, sentinel-1, surface water areas, threshold-based classifi-
cation.

I. INTRODUCTION

MONITORING surface lake dynamics is pivotal for lake
resource management, drought, flood forecasting, and

environmental construction [1]–[3]. Climate change and human
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activities are two primary factors that may significantly impact
lake acreage and cause inter and intraannual surface water dis-
tribution variation, influencing climate, agriculture, and human
well-being [4]. Recently, remote sensing satellite data have made
it possible to monitor the surface water at regional to global
scales. However, it is still challenging to provide products with
desired temporal and spatial accuracy for many applications,
such as hydrology and agriculture [5].

Various types of imagery obtained by satellites with optical
sensors have been used to monitor the surface lake includ-
ing moderate resolution imaging spectroradiometer (MODIS)
(250 and 500-m resolution), Landsat (30-m resolution), and
Sentinel-2 (10-m resolution) imagery [6]–[9]. Two of the most
common multispectral indices used for monitoring the sur-
face lake dynamics are the normalized difference water in-
dex (NDWI) [10] and modification of normalized difference
water index (MNDWI) [11]. The positive values of NDWI
and MNDWI are typically used to classify water bodies [12].
The normalized difference vegetation index (NDVI) is another
spectral index widely used for land cover and water surface
monitoring [13], [14]. However, the main limitation of these
indices is their sensitivity to cloud contamination. This limits
the reliable use of data to only cloud-free conditions, heavily
restricted in certain regions, e.g., in the tropics and high-latitude
regions [15].

Synthetic aperture radar (SAR) has been widely used for
monitoring surface water due to its insensitivity to sunlight
and clouds. Radar sensors use longer wavelengths at the cen-
timeter to meter scale, which gives the ability to see through
clouds. SAR observations acquired from several sensors, such as
RADARSAT [16] and Envisat ASAR [17] have been utilized for
detecting floods and water surface monitoring. The C-band SAR
data has also been utilized for operational wetland monitoring
at high latitudes [18]. Creating a change map via these data was,
however, limited due to a lack of observations and difficulty to
access the data freely [12].

Upon the successful launch of Sentinel-1 satellites, the SAR
observations have become freely available for educational and
research purposes over large parts of the globe. The Sentinel-
1 data has already shown a vigorous potential for detecting
and monitoring open water bodies at high spatial and tempo-
ral resolutions (e.g., 10 m and 6-day over the boreal region)
[12], [19]. The SAR backscattering coefficients used for water
surface monitoring may have been altered due to the effect of
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Fig. 1. Lesser Slave Lake in Alberta, Canada. The top panel is generated from
https://www.simplemappr.net/. The elevation data (30 m) is provided by the U.S.
Geological Survery. The basin boundaries and river shapefiles are provided by
the Government of Canada at https://open.Canada.ca/data.

the wind causing roughness on the surface of the water, making
it very challenging for separating water from nonwater features
reliably [19].

In this contribution, a combined threshold-based method is
proposed to generate monthly change maps for water surface
extend via satellite data. The Sentinel-1 SAR imagery is used
for monitoring the water surface extent of the Lesser Slave
Lake in Alberta, Canada [20]. The lake is located at a high
latitude (about 55◦), where usable optical satellite imagery, such
as Landsat-8 is very limited due to atmospheric conditions.
The lake is in the central part of the Athabasca River Basin
(ARB). The impact of climate change on streamflow in ARB is
extensively studied via robust wavelet techniques by Ghaderpour
et al. [21]. Herein, monthly images within the 2017–2020 period,
separating water from nonwater pixels at 30-m resolution, are
produced to visualize the dynamics of the water surface extend.
The results are further assessed via ground-based measurements,
including the discharge and water level. Since the Sentinel-1
SAR data became available just recently and the main focus
here is employing the use of such data, this research was limited
to the period of 2017–2020.

The rest of this article is organized as follows. The study
region and datasets are described in Section II. The proposed
methods including the statistical methods for model validation
are presented in Section III. Section IV demonstrates the results
and validation as well as challenges and comparisons with other
techniques, and Section V concludes this article.

II. MATERIALS

A. Study Region

The Lesser Slave Lake is part of ARB, the second largest
lake entirely within Alberta boundaries and located in central
Alberta (Fig. 1). The lake is about 100-km long and 15 km at

Fig. 2. Historical hydrological measurements. The top panel shows the dis-
charge values measured at the hydrometric stations S1, S2, S3, and S5 displayed
by red stars in Fig. 1. The bottom panel shows the water level in meters above
the sea level for the Lesser Slave Lake measured at S4 displayed by the red star
in Fig. 1.

its widest point covering approximately 1160 km2. The lake
averages about 11 m in-depth and are 21 m at its deepest. The
tributaries of the Lesser Slave Lake include the Assineau River,
Driftpile River, Swan River, and South Heart River, the largest
river flowing into the lake. The Lesser Slave Lake drains into
the Athabasca River in an easterly direction for 72 km by way
of the Lesser Slave River.

The Lesser Slave Lake is a popular place for birdwatching
or birding. The Lesser Slave Basins provide a water supply for
industrial, municipal, domestic, and agricultural users, and have
provincially significant fishery and ecological values, particu-
larly for the aboriginal peoples [20]. The large catchment area
of the lake can cause significant fluctuations in water levels due
to extreme runoff events.

B. Datasets and Preprocessing

The datasets analyzed herein include ground-based data, such
as water flow, water level, and climate as well as remote sensing
satellite data, such as Landsat-8 and Sentinel-1.

1) Water Flow and Water Level Data: The monthly water
flow (discharge) and water level time series are provided freely
by the Water Survey of Canada at https://wateroffice.ec.gc.ca.
The time series were acquired from the hydrometric stations
shown by red stars in Fig. 1 with their names mentioned in Table I
along with their coordinates and drainage areas. This dataset was
used for the assessment of the monitoring results. Fig. 2 exhibits
the available monthly time series within the 2017–2020 period.
Note that no water flow data were available for the years 2017
and 2020. At the time of conducting this research, the water level
data for the lake was not available for 2020.

2) Climate Data: The temperature and precipitation time se-
ries are freely provided by the Alberta Agriculture and Forestry

https://www.simplemappr.net/
https://open.Canada.ca/data
https://wateroffice.ec.gc.ca
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TABLE I
HYDROMETRIC STATIONS SHOWN BY RED STARS IN FIG. 1 ALONG WITH THEIR GEOGRAPHIC COORDINATES AND DRAINAGE AREAS

at https://agriculture.alberta.ca/acis/. The time series is obtained
at the township level (about 10-km resolution) and computed by
a mathematical data interpolation procedure that weights up to
the eight nearest station observations. The wind speed is also
provided free of cost by the Alberta Agriculture and Forestry
at https://acis.alberta.ca/weather-data-viewer.jsp. The weather
stations are displayed by red squares in Fig. 1. The derived
product is not an official version of the materials reproduced, nor
as having been made in affiliation with or with the endorsement
of the Government of Alberta. The wind speed and temperature
time series are used herein to assess the reliability of Sentinel-1
images.

3) Landsat-8 Data: Landsat-8 satellite, launched on an
Atlas-V rocket from Vandenberg Air Force Base in California
on February 11, 2013, is one of the most recently launched
Landsat satellite which carries the operational land imager (OLI)
and the thermal infrared sensor (TIRS) instruments. Landsat-8
orbits the Earth in a sun-synchronous, near-polar orbit, at an
altitude of 705 km with a 16-day repeat cycle [22]. Landsat 8
L1TP (Precision Terrain) surface reflectance products at 30-m
spatial resolution are freely available in the U.S. Geological
Survey (USGS). The images are atmospherically corrected via
auxiliary data regained from the moderate resolution imaging
spectroradiometer (MODIS), such as water vapor, ozone, and
aerosol optical thickness, as well as a digital elevation, derived
model. Due to several factors, such as sensor health and the
capability of data reception and acquisition, the amount of
Landsat data are not constant temporally and spatially among
Landsat sensors [22]. There were 64 Landsat-8 L1TP surface
reflectance products (collection 1) available to download from
USGS within the 2017–2020 period covering the study re-
gion. Only bands 3 (Green), 5 (NIR-Infrared), 6 (SWIR-1),
and the Pixel Quality Assessment (PQA) for each Landsat
image were used herein. According to the product guide for
Landsat-8 [23], the PQA pixel values for clear scenes are 322,
386, 834, 898, 1346, while they are 324, 388, 836, 900, 1348
for water, and 336, 368, 400, 432, 848, 880, 912, 944, 1352
for snow/ice. Moreover, according to the product guide for
Landsat-8, the PQA pixel values 368, 432, 880, and 944 are
mutual between cloud and snow/ice. This means that we cannot
differentiate cloud and snow/ice if those PQA pixel values are
observed. For this reason mainly, when it comes to training data,
we ignored pixels whose PQA pixel value is 368, 432, 880,
and 944.

By applying various analyses on the Landsat-8 dataset and vi-
sually inspecting the images, almost no image was found whose
PQA pixel values showed both clear and snow/ice. For this
reason, the analyses were divided into two groups. Therefore,
we identified that images from months November, December,

TABLE II
COLD MONTHS AND WARM MONTHS GROUPS

TABLE III
TRAINING LANDSAT-8 IMAGERY SELECTED FOR WARM MONTHS (A) AND

COLD MONTHS (B)

January, February, March, and April mainly contained pixels
whose PQA values showed clear and snow/ice. This group was
labeled as Cold Months. Moreover, we also uncovered that
images from months May, June, July, August, September, and
October only contained pixels whose PQA values showed clear
and water. This group was labeled as (open) Warm Months.
Table II highlights the months considered for each of these two
groups.

For each of the groups above, the cold months and the
(open) warm months, a set of Landsat-8 images was selected

https://agriculture.alberta.ca/acis/
https://acis.alberta.ca/weather-data-viewer.jsp
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Fig. 3. Workflow of threshold selection.

TABLE IV
TRAINING SENTINEL-1 IMAGERY WHOSE ACQUISITION DATES ARE THE

CLOSET TO THE ACQUISITION DATES OF THE SELECTED LANDSAT-8 IMAGERY

ALONG WITH THE CLIMATE INFORMATION FOR THE COLD MONTHS (A) AND

THE WARM MONTHS (B)

through various analyses using the PQA pixel values and visual
inspections. Table III highlights the selected Landsat-8 images
for the cold months and the warm months. In this table, Clear
%, Water %, and Snow/Ice %, respectively, show the percent-
age of clear, water, and snow/ice pixels. Moreover, Unusable
% shows, the percentage of pixels whose PQA values were

not among clear, water, and snow/ice values. For the reasons
mentioned above, we regarded pixels with the PQA pixel value
of 368, 432, 880, and 944 also as unusable pixels. In addi-
tion, other images had very poor scene visibility and were
almost fully contaminated, so those images were not considered
herein.

4) Sentinel-1 Data: The Sentinel-1 constellation includes
two radar satellites, namely, Sentinel-1A and B, launched by
the European Space Agency (ESA) in April of 2014 and
2016, respectively. Sentinel-1 satellites are in near-polar, sun-
synchronous orbits that provide continuous all-weather, day-
and-night imagery at C-band (center frequency 5.405 GHz) in
both singular and dual polarization. The repeat cycle of a single
Sentinel-1 satellite is twelve days, while a six-day exact repeat
cycle at the equator can also be achieved with the two satellites.
The revisit rate is greater at higher latitudes due to the orbit track
spacing variation with respect to latitude. The Sentinel-1 C-band
synthetic aperture radar ground range detected (SAR-GRD) used
herein was provided by the Copernicus coordinated and man-
aged by the European Commission in partnership with the Euro-
pean Space Agency (ESA). Herein, the Level-1 GRD images at
10-m pixel spacing were used which belonged to the interfero-
metric wide (IW) mode with single copolarization (VV: vertical
transmit/vertical receive) and dual-band cross-polarization (VH:
vertical transmit/horizontal receive). The images were processed
using the Sentinel-1 Toolbox to generate a calibrated, ortho-
corrected product. More precisely, each scene covering the study
region was pre-processed by the Sentinel-1 Toolbox following
three steps: 1) Thermal noise removal, (2) Radiometric calibra-
tion, and (3) Terrain correction using Shuttle Radar Topography
Mission (SRTM) and then converted into decibels (dB) via the
log scaling 10 log 10(x).

In this study, 98 ascending and 217 descending SAR im-
agery within the 2017–2020 period were downloaded from the
Google Earth Engine (GEE) with the implemented preprocess-
ing steps mentioned above and at 30-m spatial resolution to
match the resolution of Landsat-8 imagery, where each image
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Fig. 4. The normally distributed probability density curves of NDWI, MNDWI, NDVI, VV, VH, and NDPI. (a) For separating clear and Snow/Ice during the
cold months. (b) For separating clear and water during the warm months.

had backscattering coefficient bands at VV and VH polarization.
The Sentinel-1 images were then spatially aligned (pixelwise)
with the Landsat-8 images via a median approach. Therefore,
the shape of each Landsat-8 or Sentinel-1 image clipped to the
study region was 1102× 2997.

Table IV highlights the selected Sentinel-1 images for the
cold months (a) and the warm months (b), respectively. These
images were selected in a way that their acquisition dates were
the closest to the corresponding Landsat-8 images. All images,
except image #1 from Table III (a) were from descending
satellite.

III. METHODOLOGY

In this section, the multispectral and SAR indices for Landsat-
8 and Sentinel-1 SAR data are presented, respectively. Then,

a combined threshold-based methodology is described, and
finally, some common statistical methods for validation are
explained.

A. Multispectral Indices

The three multispectral indices NDWI, MNDWI, and NDVI
are defined as

NDWI =
ρGreen − ρNIR

ρGreen + ρNIR
(1)

MNDWI =
ρGreen − ρSWIR

ρGreen + ρSWIR
(2)

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(3)
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where ρGreen (0.56μm), ρNIR (0.86μm), and ρSWIR (1.61μm)
are the reflections in the green, near-infrared, and short-wave in-
frared spectra, respectively [10], [11]. Some studies have shown
that MNDWI can enhance the open water features better than
the NDWI, i.e., it can more accurately discriminate water from
nonwater features, especially for regions with many built-up
land areas in the background [11].

B. SAR Indices

We used the VV and VH polarization in dB, and we investi-
gated the potential of the normalized difference polarized index
(NDPI) defined as [24], [25]

NDPI =
VV −VH

VV +VH
. (4)

C. Threshold-Based Classification

For an independent sample {x1, x2, . . . , xn}, the kernel den-
sity estimation can be defined as follows:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(5)

where K is the kernel which is a nonnegative function, and
h is a positive defines smoothness of the density plot (the
bandwidth) [26], [27]. Here, kernel density estimation (KDE)
with bandwidth h = 0.1 and the Gaussian kernel density [28]
was employed to estimate the probability density function (PDF)
for NDWI, MNDWI, NDVI, VV, VH, and NDPI.

These PDFs were used to define thresholds for separating clear
and water pixels during the warm months, and snow/ice and clear
during the cold months. For instance, for separating clear and
water pixels during the warm months, first, a shortlist from suit-
able Landsat-8 images through analysis and visual inspection is
selected (Table II), and then a shortlist from suitable sentinel-1
images through analysis and visual inspection (Table III) was
chosen as well. Using these two sets, a dataset whose rows
are from VV and VH polarizations (from sentinel-1 images)
and corresponding PQA pixel value (from Landsat-8 images).
Then, the largest subset with equal distribution of clear and water
Values is selected. For calculation of the thresholds, let f̂ c

h and
f̂w
h represent kernel density estimations for rows the largest

subset whose PQA value shows clear and water, respectively.
Then, if possible, solving f̂ c

h(x) = f̂w
h (x) for x provides the

thresholds for separating clear and water pixels during the warm
months.

Fig. 3 summarizes the workflow of threshold selection. More-
over, Fig. 4 shows the normally distributed probability density
curve of NDWI, MNDWI, NDVI, VV, VH, and NDPI for
separating clear and snow/ice pixels during the cold months,
and separating clear and water pixels during the warm months.
In this figure, each dashed grey line represents the solution of
the following equation:

f̂ c
h(x) = f̂w

h (x) (or f̂ c
h(x) = f̂s

h(x)) (6)

with f̂s
h representing the KDE for snow/ice values. Observe

that, in the case of NDPI, there is too much overlap between

TABLE V
THRESHOLDS FOR VARIOUS MULTISPECTRAL INDICES (A) AND VV AND VH

POLARIZATIONS (B)

the PDF of water (or snow/ice) and clear. Thus, the threshold
classification through NDPI was neglected.

In addition, Table V highlights thresholds for various mul-
tispectral indices and VV and VH polarizations for the cold
and the warm months. Then, we used these thresholds for
threshold-based classification methods to separate clear and
snow/ice pixels during the cold months, and clear and water
pixels during the warm months.

D. Accuracy Evaluation

To compare our threshold-based classification methods, a
number of accuracy metrics were used including precision,
recall, f1-score, and overall accuracy score [29], [30]. These
metrics are defined as

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2× Precision × Recall
Precision + Recall

(9)

Overall Accuracy =
TP + TN

TP + FN + FP + TN
(10)

where TP , FN , FP , and TN represent true positives, false
negatives, false positives, and true negatives, respectively.

Table VI demonstrates the results of the metrics above for our
threshold classification methods using NDWI, MNDWI, NDVI,
VV, and VH for the cold months and warm months. In these
tables, the weighted average for each metric was calculated
through the number of instances of each class, and κ represents
Cohen’s Kappa. For binary classifications, the Cohen’s Kappa
formula is [29]

κ =
2× (TP × TN − FN × FP )

D
(11)
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TABLE VI
PRECISION, RECALL, F1-SCORE AND COHEN’S KAPPA SCORE (κ) FOR THRESHOLD-BASED CLASSIFICATIONS FOR THE COLD MONTHS (A) AND THE WARM

MONTHS (B)

Note that NDPI was excluded due to its poor performance in separating water or snow/ice from clear (See Fig. 4).

where D = (TP + FP )× (FP + TN) + (TP + FN)×
(FN + TN).

From Table VI (a), we observe that MNDWI and VH po-
larization, for threshold classification utilizing Landsat-8 and
Sentinel-1 images, respectively, have the best-weighted average
and overall accuracy scores among all. Similarly, from Table VI
(b), it can be observed that NDWI and VH polarization have the
best-weighted average and overall accuracy scores across all.

Moreover, as we demonstrated in Table VI, the accuracy of our
classifications for separating water and clear pixels during the
warm months utilizing the VH polarization was slightly higher
than that of the VV polarization. Therefore, this confirmed that
the VH polarization was more sensitive to the presence of surface
water than the VV polarization. These results were consistent
with the the conclusion found by Binh Pham-Duc et al. [12] and
Liwei Xing et al. [19].

In addition, Table VII(a) shows confusion matrices from
the threshold-based classification method for separating clear
and snow/ice during the cold months. Likewise, Table VII(b)
demonstrates confusion matrices from the threshold-based clas-
sification method for separating clear and water during the warm
months.

E. Effect of Wind Speed on VV and VH Polarizations

Thresholds for VV and VH polarizations, obtained utilizing
PDF and Sentinel-1 images, for the cold months and the warm
months were provided in Table V. These thresholds were applied
for threshold-based classification methods to separate clear and
snow/ice pixels during the cold months, and clear and water
pixels during the warm months.

For the study region, it was discovered that the wind speed was
not a significant factor in identifying these thresholds although
wind can cause roughness on the surface of the water [12], [19].
To see this, Sentinel-1 (Descending) images were separated by
average wind speed within the study region. Then, thresholds for
VV and VH polarizations for the cold and warm months were
identified. These thresholds are available in Table VIII.

In Fig. 5, a linear relationship between average wind speed
and threshold for VV/VH polarizations during the cold months
[Fig. 5(a)] and the warm months [Fig. 5(b)] is demonstrated.
Pearson correlation [31] between average wind speed and thresh-
old for VV and VH polarizations is shown with r. As illustrated
in the figure, all approximated slopes are small values and the
Pearson correlation r between every two variables (wind speed
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TABLE VII
CONFUSION MATRICES FOR NDWI, MNDWI, NDVI, VV, AND VH FOR THE COLD MONTHS (A), AND THE WARM MONTHS (B)

Note That NDPI Was Excluded Due to Its Poor Performance in Separating Water or Snow/Ice From Clear (See Fig. 4).

average and thresholds for VV/VH polarization) were insignifi-
cant. As there was no notable linear relationship between wind
speed average and thresholds for VV/VH polarizations (for our
study region), we identified that wind speed was not a significant
factor in our study.

F. Change Map Methodology

Threshold classification was utilized for generating spa-
tiotemporal distribution maps of clear, water, and snow/ice
for each month from 2017 to 2020. In doing so, first, if it
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TABLE VIII
LINEAR RELATIONSHIP BETWEEN WIND SPEED AVG. AND THRESHOLD FOR VV AND VH POLARIZATIONS DURING THE COLD MONTHS (A) AND THE WARM

MONTHS (B)

Fig. 5. Relationship Between Wind Speed and Threshold for VV and VH Polarizations during the (a) cold months and the (b) warm months.
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Fig. 6. Workflow of generating spatiotemporal distribution of clear, water, and snow/Ice.

was possible, a Landsat-8 image for each month was selected
through analysis and visual inspection. Then, for each month, a
Sentinel-1 image whose acquisition date was the closest to the
previously selected Landsat-8 image from the same month was
chosen. Thus, a Landsat-8 image and/or Sentinel-1 image for
each month was found (except for January 2017 as there was no
usable image for this month) from 2017 to 2021.

As illustrated in Tables VI and VII, the threshold-based
classifications for separating clear and snow/ice pixels utilizing
VV and VH polarizations were not as reliable as the classi-
fications through the multispectral indices. Consequently, an
image fusion algorithm was developed for separating clear and
snow/ice pixels during the cold months. The algorithm first
applied the threshold classification method utilizing MNDWI
on the shortlisted Landsat-8 images. For the remaining pixels,
the algorithm applied the threshold classification method using
VH polarization on the shortlisted Sentinel-1 images. However,
during the warm months, for separating clear and water pixels,
the algorithm only used the shortlisted Sentinel-1 images for a
threshold classification through the VH polarization coefficient.
A summary of the workflow is available in Fig. 6.

IV. RESULTS AND DISCUSSION

As described earlier, the Landsat-8 and Sentinel-1 images
listed in Tables III and IV were used for determining the
thresholds for separating clear and snow/ice pixels during the
cold months and clear and water pixels during the warm months.
The following subsections demonstrate the change map and
validation results.

A. Interannual Water Area Dynamics

Fig. 7 illustrates the spatiotemporal distribution of clear,
water, and snow/ice at Lesser Slave Lake based on MNDWI and

VH polarization from 2017 to 2021. As is evident, during the
cold months, most of the lake surface and the region under study
mostly was covered by snow/ice. In addition, Table IX sum-
marizes the output of our fusion algorithm for the years 2017,
2018, 2019, and 2020. In this table, Landsat-8 % and Sentinel-
1 %, respectively, show the percentage of each image used
for generating the final spatiotemporal distributions through
fusion.

The threshold-based classification method was employed to
split water and clear pixels within the lake boundaries during the
warm months. The changes in monthly accumulated precipita-
tion and surface water area of the Lesser Slave Lake from 2017
to 2021 during the warm months are summarized in Table X. The
monthly accumulated precipitation was the largest in July 2017
and 2019 and in June 2018 and 2020. Likewise, the water surface
area was the largest in June 2018 and 2020; however, it was the
largest in May 2017 and 2019. Noting that the precipitation is not
generally in direct relation to water surface extend, this anomaly
could have been caused as the result of human activities, such as
industrial activities and agricultural crop rotations. Fig. 8 shows
the spatiotemporal distribution of surface water at Lesser Slave
Lake from 2017 to 2021 during the warm months. As can be
seen, the water area of the lake remained almost steady during
the warm months of these four years (2017–2020).

Further insights are provided in Fig. 9. This figure shows
monthly accumulated precipitation for the lake during the warm
months from 2017 to 2021. Observe that the precipitation,
overall, was highest during June and July. Furthermore, the
surface water area of the Lesser Slave Lake for the same period
is also available in Fig. 9. The surface water area was higher
in 2020 than those in 2017–2019. In addition, the monthly
discharge rate for S5 during the warm months of 2018 and 2019
is also displayed in Fig. 9. As already indicated in Section I, the
datasets for only these two years were available. The discharge
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Fig. 7. Spatiotemporal distribution of Clear, Water, and Snow/Ice at Lesser Slave Lake based on MNDWI and VH polarization for 2017 (a) and 2018 (b).
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Fig. 7. (Continued) Spatiotemporal distribution of Clear, Water, and Snow/Ice at Lesser Slave Lake based on MNDWI and VH polarization for 2019 (c) and
2020 (d).
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TABLE IX
CLEAR, WATER, AND SNOW/ICE SURFACE DISTRIBUTION AT LESSER SLAVE LAKE IN 2017, 2018, 2019, AND 2020

TABLE X
CHANGES IN THE AVERAGE MONTHLY ACCUMULATED PRECIPITATION (M) AND THE SURFACE WATER AREA OF THE LESSER SLAVE LAKE DURING THE WARM

MONTHS FROM 2017 TO 2021

data did not show a significant correlation with our estimated
surface water area which can be explained by the complex
structure of the lake, human activity, and climate change. The
average monthly water level (from station S4) for the lake
during the warm months from 2017 to 2020 is also shown in
Fig. 9. The monthly averaged water level was only available
at S4 located in the southwest region of the lake. However,
the water level value measured at the outlet is not a reliable
indicator of the water surface extent. We could not investigate
the long-term surface water/ice dynamics (i.e., decadal) due
to the lack of valid Landsat-8 imagery in certain months and
the availability of frequent Sentinel-1 data only for the period
of 2017–2020.

B. Investigating Other Approaches

A great amount of effort has been made to implement vari-
ous deep learning and machine learning methods for obtaining
accurate pixel water surface proportion information through
remote sensing. Isikdogan et al. in [32] proposed a model, named
Deep-WaterMap, that learned the attributes of water bodies from
data drawn from across the globe. Their model could be used for
separating water from land, snow, ice, clouds, and shadows using
only Landsat-8 datasets. Moreover, Pham-Duc et al. developed
a neural network classification model utilizing Landsat-8 and

Sentinel-1 dataset [12]. Their model could be implemented for
separating water and nonwater pixels.

A summary of some other methods, investigated for sepa-
rating clear and snow/ice during pixels in the cold months and
separating clear and water pixels during the warm months, is
provided in this section. Various binary classifications were
executed including various Scikit-learn APIs [33], [34], such
as support vector machines (SVMs), decision trees (DTs), and
ensemble methods that combine several base models to pro-
duce one optimal predictive model. Several deep learning mod-
els were exercised including Tensorflow APIs [35], Pytorch
APIs [36], and CatBoost APIs [37]. However, these methods
only improved the accuracy metrics from threshold classifica-
tions insignificantly (our classifications accuracy metrics are
available in Tables VI and VII). Therefore, a simple yet effective
method was presented herein: the threshold-based classification.

One of the main challenges that we faced during the threshold-
based classifications, through machine learning and deep learn-
ing methods, is that the lake and the land in the region of
interest were heavily covered by snow during cold months. It
was nearly impossible to separate clear and snow/ice pixels
efficiently through classifications mainly by utilizing VV and
VH polarizations. To improve the accuracy of such models, dur-
ing the cold months, we may require Landsat-8 and Sentinel-1
images from the same day to include other climate parameters
such as wind speed, precipitation, and temperature.



DASTOUR et al.: COMBINED APPROACH FOR MONITORING MONTHLY SURFACE WATER/ICE DYNAMICS 6415

Fig. 8. Spatiotemporal distribution of surface water at Lesser Slave Lake from 2017 to 2021 during the warm months.

V. CONCLUSION

In this article, the surface water area of Lesser Slave Lake
was estimated for May, June, July, August, September, and
October (referred as the warm months) from 2017 to 2021.
As demonstrated, for the rest of the months of each year (the
cold months), the surface of the lake and most of the region
under study were covered by snow/ice. A fusion method that
utilizes threshold classifications for separating clear and water

pixels during the warm months and separating clear and snow/ice
during the cold months was used.

Landsat-8 and Sentinel-1 images were resampled at 30-m
spatial resolution for training the threshold-based classification
method. We identified that MNDWI for Landsat-8 and VH
for Sentinel-1 had the best weighted-average score and overall
accuracy score among other indices during the cold months with,
respectively, 92.10% and 68.86% overall accuracies. Similarly,
we found that NDWI and VH had excellent overall accuracies of
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Fig. 9. Changes in the monthly precipitation (mm), monthly surface water area of the Lesser Slave Lake (km 2), monthly averaged discharge (m3/ s) measured
at station S5, and monthly averaged water level (m above the mean sea level) measured at station S4 from 2017 to 2021 during the warm months.

99.88% and 98.49% during the warm months, respectively. The
water level measured at the S4 outlet, illustrated in Fig. 1, neither
showed the surface dynamics of the lake nor was a reliable
indicator of the water volume of the lake. Therefore, the use
of remote sensing imagery is highly recommended for studying
water resources and the influence of climate change and human
activity on them.

Limitations of this study include the lack of valid Landsat-
8 imagery in certain months and the availability of frequent
Sentinel-1 data only for the period of 2017–2020. Therefore,
the long-term surface water/ice dynamics (i.e., decadal) were not
investigated here. Furthermore, there did not exist any Landsat-
8 imagery that was partly covered by ice and partly covered
by water for training the model to delineate double thresholds
for the described multispectral and SAR indices. Therefore, we
relied on the weather data and defined cold and warm months
with the assumption of either water or snow/ice in these months.
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