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Matching Vector Filtering Methods For Sea Ice
Motion Detection Using SAR Imagery

Feature Tracking
Chaoyue Li, Gang Li , Zhuoqi Chen , Xue Wang , and Xiao Cheng

Abstract—Applying feature tracking techniques to synthetic
aperture radar (SAR) imagery generates high-resolution sea ice
motion fields. However, the bad matching vectors still exist after
the Nearest Neighbor Distance Ratio test and contaminate the
derived motion fields, which need to be identified and filtered out.
In this article, we propose two algorithms to eliminate such wrong
matching vectors. The first employs the matching results derived
by the maximum cross-correlation (MCC) method as the reference
motion fields to evaluate such wrong matches. The second method
employs the local spatial consistency presumption of sea ice motion
fields. A Voronoi diagram is applied to slice the overlapping area
of two SAR images into many fractions, and each fraction extends
its size 50% outward to calculate the regional mean sea ice flow
vector and standard deviation. Any vector within the fraction that
exceeds 3 times the regional standard deviation will be recognized
as an outlier and filtered out. Two methods are tested to two cases
with strong rotation or irregular sea ice motion fields derived from
Sentinel-1 imagery. The overall accuracy of our two methods is
93.9% and 98.7%, and they sacrifice 6.12% /1.22% of the correct
vectors to filter out 100.0% / 94.12% of the wrong vectors for the
MCC referenced filter and Voronoi fragmented filter, respectively.

Index Terms—Feature tracking, image matching, sea ice motion,
synthetic aperture radar (SAR).

I. INTRODUCTION

S EA ice is an essential part of the Arctic cryosphere, which is
of great significance to the study of global climate change

and Arctic shipping [1]. Sea ice is driven by the force of the
weather system and ocean current, and has a direct impact on
regional hydrology and climate [2]. With the rapid development
of satellite remote sensing technology, a large number of satellite
observation data are applied to sea ice motion monitoring.
Microwave radiometers and microwave scatterometers are
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widely used in sea ice motion monitoring because of their wide
spatial coverage and daily revisiting, but their spatial resolutions
are usually low, most of them are coarser than 10 km [3], [4].
Similar to the scatterometer, synthetic aperture radar (SAR) is
not affected by cloud or polar night, can also be applied to
monitor sea ice motion but to derive finer resolution motion
fields than radiometer and scatterometer [5].

There are two kinds of algorithms for sea ice motion mon-
itoring based on SAR imagery. The first is based on template
matching method including maximum cross-correlation (MCC),
normalized cross-correlation [6], and phase correlation [7].
Template matching slices a reference window of one acquisition
on a searching window of another acquisition, regarding the
location of best matching as the offset of two acquisitions [8].
Such coregistration can also be calculated in the frequency
domain [7]. Another method is feature tracking, which detects
the feature points on the primary and secondary imagery. The
feature points of two imageries are matched after being described
by high-dimensional descriptors, then the sea ice motion vectors
are calculated based on the offset value of matched points.
Different feature point operators generate different results of
sea ice motion field in terms of accuracy and vector density
[9]. It finds that accelerated KAZE (A-KAZE) performs best
on sea ice motion deriving than other features in terms of both
calculation efficiency and coverage by testing scale invariant
feature transform, oriented features from accelerated segment
test (FAST) and rotated brief, and A-KAZE to Sentinel-1
imagery [10].

In the feature tracking processes, the best candidate matched
from the secondary image for each feature point from the
primary image is found by identifying its nearest neighbor
feature point, which is defined as the feature with the minimum
Hamming distance [11]. Usually, brute force or fast library for
approximate nearest neighbors (FLANN) matchers are used
for matching. Inevitably, speckle and thermal noise on SAR
images generate wrong matches [12], then yield bad sea ice
motion vectors. There are usually two methods to solve such
problem: the random sample consensus (RANSAC) algorithm
and the Nearest Neighbor Distance Ratio (NNDR) algorithm.
RANSAC algorithm can effectively filter out the wrong matches
from a large number of matches by calculating the homography
function between matching points, usually applied in object
tracking [13]. NNDR test compares the distance of the nearest
neighbor to the second-closest neighbor. This method works
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TABLE I
DETAIL INFORMATION OF SAR IMAGES

well because the good matched feature points have the closest
correct neighbor feature points, which should be significantly
closer than the second closest feature point. When the distance
ratio of the second closest match and the closest match is greater
than 0.8, the match is recognized as a wrong match, this method
eliminates 90% of wrong matches while discarding less than
10% of the correct matches [12].

After the NNDR test, a postprocessing algorithm is necessary
to filter out the remaining wrong matches. Demchev et al. [10]
proposed that bad sea ice motion vectors could be checked by
considering the discrepancy with other adjacent vectors within
a certain distance. Aiming at identifying and removing the
bad matches after performing the NNDR algorithm with high
accuracy and efficiency, this study proposes and compares two
novel postprocessing methods.

II. DATA DESCRIPTION

C-band Sentinel-1 A/B SAR constellation operates in a near-
polar and solar synchronous orbit with a repetition period of 12
days and 6 days for single or dual satellites, respectively. Since
the orbital spacing narrows with the increase of latitude, the
revisiting cycle in the Arctic is much less than 6 days, offering
an opportunity to perform rapid sea ice motion monitoring. The
extra wide (EW) mode images adopt by this research have a
moderate spatial resolution (40 × 40 m, medium resolution
product) and large swath width (410 km), including HH and
HV polarization channels.

Two pairs of Sentinel-1 images observed in the Arctic ocean
obtained in November 2019 and April 2020 are tested, and the
acquisition interval for each pair is about 2 days. Table I tabulates
the detailed information of these images, and Fig. 1 presents their
spatial coverage.

API module “snappy” provided by the sentinel application
platform (SNAP) in Python is applied for image preprocess-
ing, including importing precise orbit and calibration. We used
ellipsoid correction to reproject SAR images into the polar
stereographic (EPSG:3413) grid with 100 × 100 m resolution.

III. METHODOLOGY

A. Sea Ice Vector Extraction Based on Feature Tracking

The main working flow of sea ice motion vector extraction
based on feature tracking is described as follows. The first step
is to preprocess two SAR images and generate A-KAZE feature
points, then use the brute force matcher to match the feature
points. Second, we calculate the motion speed and motion

Fig. 1. Spatial location information of images.

Fig. 2. Working flow of vector extraction method.

direction of matching points to get all matching drift vectors.
The third step is to filter out the wrong matching vectors. The
working flow is shown in Fig. 2.

Before filtering wrong drift vectors, we filter out vectors
starting or ending on land using a coastal mask. RANSAC and
NNDR algorithms are two optional methods to remove wrong
drift vectors. The threshold of RANSARC reprojection is set
as 8.0. For the NNDR algorithm, the distance ratio between
the second-best match to the best match is set to 0.8, which
could filter out 90% wrong vectors at the cost of 10% correct
vectors [12]. After the NNDR algorithm, we test the two post-
processing algorithms proposed in this study for further filtering,



LI et al.: MATCHING VECTOR FILTERING METHODS FOR SEA ICE MOTION DETECTION USING SAR IMAGERY FEATURE TRACKING 6199

Fig. 3. Schematic of filtering algorithm based on Voronoi diagram.

and compare them with the RANSAC algorithm and Demchev’s
algorithm [10].

B. Demchev’s Filter

Demchev et al.’s [10] filtering algorithm requires that all drift
vectors are checked by its correlation with the vectors in the
adjacent region. Drift vectors, which meet the following criteria,
can be considered as the correct vectors.

1) There are at least eight neighboring drift vectors.
2) The length of the vector does not exceed 1σ of the

weighted median vector.
3) The vector’s direction is consistent with its four neighbor-

hoods.

C. MCC Referenced Filter

The MCC matching method is employed to generate a refer-
ence sea ice motion field. The spatial resolution of the Sentinel-1
EW image is processed as 320 × 320 m through 8× 8 mul-
tilook. The template size is 9 × 9 and the step size is 5 ×
5. Matchings with correlation coefficient above 0.92 is taken
as correct matches. For each sea ice drift vector obtained by
feature tracking, the nearest template matching vector derived
with MCC is taken as the reference. When the velocity difference
between feature tracking derived by feature tracking and the
MCC reference vector is greater than 0.1m/s (∼8.6km/d) or the
difference of flow directions is greater than 10°, the feature-
tracking-derived vector is recognized as a wrong vector and be
eliminated.

D. Voronoi Fragmented Filter

Sea ice motion should be homogenous in a small area [14];
here, we propose another method to filter the wrong vector. The
first step is to scale the boundary lines of the overlapping area
of two SAR images and take points at an equal distance on all
boundaries, as shown in Fig. 3(a). We determine the number of
points each time according to the following:

n(x) =
n1

f
· (f + 1− x) (1)

where n(x) represents the number of points taken on a layer
(outermost layer x = 1), and f represents the total number
of layers. Second, all the points are used as discrete points to
construct the Voronoi diagram, as shown in Fig. 3(b). By this
method, multiple polygons with similar size and shape within the
overlap of two images are formed. Third, each polygon expands
outward by 50% [see red dash polygon in Fig. 3(c)] by distance

Fig. 4. Results of matching of different filters for image pair 1. (a) RANSAC.
(b) NNDR. (c) Demchev’s filter. (d) MCC vectors. (e) MCC referenced filter.
(f) Voronoi fragmented filter.

to evaluate the regional average speed and direction of sea ice
motion and their standard deviations. The average speed and
its standard deviation are calculated by taking the drift vector as
scale. The average direction is calculated by the vector sum of all
flow vectors within the dash red polygon. Direction deviations
are calculated by applying the law of cosines to the average
vector and each vector. Each vector inside the unexpanded
polygon [see cyan polygon in Fig. 3(b) and (c)] is then checked.
For each vector, when the speed or flow direction difference
between the vector and its regional average exceeds 3 times of
the regional standard deviation, the vector is considered as a bad
match and be eliminated.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Sea Ice Motion Fields

The results of different vector filtering methods are shown in
Figs. 4 and 5, corresponding to image pairs 1 and 2, respectively.
Figs. 4(a) and 5(a) show the results of the RANSAC algorithm.
Although the wrong vectors are filtered, a considerable number
of correct vectors are also removed, resulting in large vacancies
in the overlap areas. Figs. 4(b) and 5(b) show the results filtered
resulted by the NNDR algorithm, obviously several error vectors
survived. Figs. 4(c) and 5(c) show the results filtered resulted by
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Fig. 5. Results of matching of different filters for image pair 2. (a) RANSAC.
(b) NNDR. (c) Demchev’s filter. (d) MCC vectors. (e) MCC referenced filter.
(f) Voronoi fragmented filter.

TABLE II
RESULTS OF DIFFERENT FILTER METHOD

Demchev’s filter. Figs. 4(d) and 5(d) show reference sea ice
motion fields derived by the MCC method. Figs. 4(e) and 5(e)
show the survived vectors after MCC referenced filter. Figs. 4(f)
and 5(f) show the filtered results based on Voronoi fragmentation
filter. Considering the visual effect, the vector data in the figures
are diluted to 1/10 for all subplots except (a) and (d).

Table II tabulates the results of each method, in which deal
time only records the filtering step (including forming MCC
referenced motion fields); RANSAC algorithm shows high ef-
ficiency, whereas the MCC referenced filter has the lowest
efficiency, as it consumed a long time in template matching,

with 1015 and 802 s in two pairs, respectively, accounting for
72%–77% of the total running time (see Table II). All vectors
need to be checked with all template matching results to query
the nearest reference vector before checking difference of speed
and angle. For Demchev’s filter, all vectors must be compared
with all other vectors to obtain the number and distance of sur-
rounding vectors, which consumes long time. If the total number
of drift vectors increases, the efficiency of this filtering algorithm
will be further reduced. The Voronoi fragment filter only needs
to traverse all vectors once to confirm which Voronoi diagram
they belong to, and generating Voronoi polygons dominates its
running time, which means even if the number of drift vectors
increases, the overall time consumption of this filter will not
increase significantly.

The vector number is the count of survived sea ice drift vectors
after filtering, and the coverage ratio represents the ratio of the
vectors covering area with the total overlap area of two SAR
images. To calculate covering area, each vector is dilated to a
circle with radius of 5 km from its star point, and then, calculate
the total covered area. Overlapped area of circles is counted only
once.

Three postprocess filters preserve enough matching vectors
to show similar covering ratios as the results given by NNDR
test, while most of the wrong bad matches are filtered out.
Three filters preserve significantly more area than RANSAC
algorithms. The number of vectors saved by Demchev’s filter
about 30% less than two proposed filters. Although the vectors
preserved by Demchev’s filter can cover the most of the overlap
area, the coverage ratio is lower, which means less details of the
derived sea ice motion fields. Two filters proposed in this article
saved more correct vectors and larger coverage ratios by only
sacrificing a few vectors or a small covering area, especially for
image pair 2, where sharp changes of the sea ice motion fields
are found.

Fig. 6 selected two zones each of the image pairs 1 and 2
to present the detail results of different filtering methods. Each
selected area covers about 25 km2. Subplots in Fig. 6(a), (e),
(i), and (m) show the results after NNDR test. Wrong matches
are manually identified and marked with black circles. Subplots
in Fig. 6(b), (f), (j), and (n) show the drift vector filtered by
Demchev’s filter. Subplots in Fig. 6(c), (g), (k), and (o) show
MCC referenced filter. Subplots in Fig. 6(d), (h), (l), and (p)
show the drift vectors filtered by Voronoi fragmented method.
All three methods effectively filter out the wrong vectors.

B. Accuracy Analysis

The total number of all vectors after NNDR test in pair 1 is 11
254, including 11 177 correct vectors and 77 wrong vectors. The
total number of all vectors after NNDR test in pair 2 is 10 378,
including 10 340 correct vectors and 38 wrong vectors. Tables
III and IV tabulate the detailed classification accuracy of two
proposed method and Demchev’s.

Table III compares of the ability of retaining vectors for
different methods. For image pair 1, Demchev’s filter saved 7676
correct vectors, accounting for 7676/11 177 = 68.68% of all
correct vectors. MCC referenced filter retains 10 675 correct
vectors, accounting for 10 675/11 177 = 95.51% of all correct
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Fig. 6. Results of different filters in several selected areas of image pairs 1
and 2. (a)–(h) are the area of image pair 1 and (i)–(p) are the area of images
pair 2. (a), (e), (i), and (m) are the results after NNDR test. (b), (f), (j), and (n)
are the results of Demchev’s filter. (c), (g), (k), and (o) are the results of MCC
referenced filter. MCC vector is displayed in blue and bold. (d), (h), (l), and (p)
shows the results of Voronoi fragmented filter.

TABLE III
NUMBERS OF SURVIVED VECTORS

TABLE IV
NUMBERS OF FILTERED VECTORS

vectors, without any wrong vectors. The Voronoi fragment filter
retains 11 174 correct vectors, accounting for 11 039/11 177 =
98.76% of the total correct vectors, and 20 wrong vectors. All
three filters will filter out correct vectors. The results in pair 2
are similar.

Table IV tabulates the detailed information of filtered vectors.
Both Demchev’s filter and MCC referenced filter in mage pair 1
filters out all of wrong vectors. But they also filter out 3501/11

177= 31.32% and 502/11177= 4.49% of all the correct vectors.
The wrong vectors filtered by Voronoi fragment filter are less,
accounting for 72/77 = 93.51% of all error vectors, but only
138/11 177 = 1.23% of the correct vectors are filtered. The
results are similar in image pair 2.

The overall accuracies of Demchev’s filter for two
image pairs are (7676 + 77)/11 254 = 68.89% and (7186 +
38)/10 378 = 69.61%, respectively. For MCC referenced filter,
the overall accuracies are (10 675 + 77)/ 11 254 = 95.54% and
(9538 + 38)/ 10 378 = 92.27%. For Voronoi fragment filter,
the overall accuracies is (11 039 + 72)/11 254 = 98.73% and
(10 214 + 36)/10 378 = 98.77%.

It finds that MCC referenced filter has stronger ability to filter
error vectors than Voronoi fragmented filter, but the latter can
retain more correct vectors. MCC referenced method compares
feature-tracking-derived vector to its nearest MCC-derived vec-
tor, and discard the former if speed or flow direction difference
exceed the threshold. This means a bad MCC-derived vector can
contaminate all its feature tracking neighbor vectors. Such strat-
egy may also wrongly kill the correct vectors if spatial distance
between feature-tracking-derived vector is too far to its nearest
MCC-derived vector, as MCC-derived vectors [see Figs. 4(d)
and 5(d)] are obviously much sparser than the A-KAZE-derived
vectors [see Fig. 4(d) and (b)].

For Voronoi fragmented filter, most survived wrong vectors
locate in the edge of the overlapped area of two SAR images,
where area of each polygon are smaller than other polygons, re-
sulting the average speed and direction may not be as accurate as
other polygons. Another possible reason is vectors are supposed
to be sparse at the edge of the overlapping area because feature
vectors may flow in or out of this area and cannot be matched
from two images.

Our comparison finds that Demchev’s filter tends to wrongly
remove correct vectors, especially at the border of the overlap
area. This could be due to not enough neighboring drift vectors
can be found, similar as our proposed Voronoi fragmented filter.
Our proposed method has a less strict setting, which could be
the reason why it retains more correct matchings. Besides, the
Voronoi fragmented only needs to assign each matching vector
to its polygon, and Demchev’s filter should traverse all vectors
for each vector to find its several closest neighbors. This leads
to the differences of calculation efficiency.

Since feature tracking with A-KAZE descriptor to Sentinel-1
SAR images usually generates vectors dense enough to describe
sea ice motion fields, it recommends combining two proposed
methods to ensure the accuracy of the derived motion fields
if calculation efficiency is not a consideration and MCC refer-
ence fields are dense enough. MCC referenced filter requires
extracting template matching vectors from the original SAR
images. However, the original geocoded SAR image is not
always available, such as usually the released sea ice motion
fields only contain motion vectors, then our proposed Voronoi
fragmented filter still works. Two images that selected in this
research are extreme cases that with strong rotation or irregular
sea ice motion fields, while most cases are not as extreme as these
two pairs. Empirically, two filters proposed in this research also
works well on the usual cases.
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V. CONCLUSION

In this research, two algorithms are proposed to filter the
wrong matching vectors for deriving sea ice motion field based
on feature tracking to SAR imagery. The first employs the
matching results derived by the MCC method as the reference
motion fields to find wrong matches. The second method em-
ploys the Voronoi diagram to slice the overlapping area into
many fractions. By regarding the local consistency of sea ice
motion, any vector within the fraction that exceeds 3 times of the
regional standard deviation will be recognized as an outlier and
be filtered out. Testing on two extreme cases with strong rotation
or irregular sea ice motion fields, and accuracy analysis based
on manually identifying bad matches, it finds two proposed
methods that can both effectively identify bad matches and
preserve most correct matches for describing the sea ice motion
fields. Overall accuracy of the Voronoi fragmented method is
slightly higher than MCC referenced method but the latter filters
out more bad matches, also consumes longer processing time.
Sea ice motion fields derived by both of our proposed methods
cover a larger area than Demchev’s method, which could be due
to their very strict criteria.

REFERENCES

[1] J. C. Stroeve et al., “The arctic’s rapidly shrinking sea ice cover: A
research synthesis,” Climatic Change, vol. 110, pp. 1005–1027, Feb. 2012,
doi: 10.1007/s10584-011-0101-1.

[2] P. R. Holland and R. Kwok, “Wind-driven trends in antarctic sea-ice drift,”
Nat. Geosci., vol. 5, pp. 872–875, Dec. 2012, doi: 10.1038/Ngeo1627.

[3] P. Heil et al., “A comparison of east antarctic sea-ice motion derived using
drifting buoys and remote sensing,” Ann. Glaciol., vol. 33, pp. 139–144,
2001, doi: 10.3189/172756401781818374.

[4] M. Tschudi, W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik,
“Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors,
Version 4,” NASA National Snow and Ice Data Center Distributed Ac-
tive Archive Center, 2019. [Online]. Available: https://doi.org/10.5067/
INAWUWO7QH7B

[5] S. Muckenhuber et al., “Open-source feature-tracking algorithm for sea
ice drift retrieval from sentinel-1 SAR imagery,” Cryosphere, vol. 10,
pp. 913–925, 2016, doi: 10.5194/tc-10-913-2016.

[6] M. Thomas et al., “High resolution (400 m) motion characterization of
sea ice using ERS-1 SAR imagery,” Cold Regions Sci. Technol., vol. 52,
pp. 207–223, Apr. 2008, doi: 10.1016/j.coldregions.2007.06.006.

[7] M. Thomas, C. Kambhamettu, and C. A. Geiger, “Motion tracking of
discontinuous sea ice,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12,
pp. 5064–5079, Dec. 2011, doi: 10.1109/Tgrs.2011.2158005.

[8] R. F. Wang et al., “Combined pattern matching and feature tracking for
bohai sea ice drift detection using gaofen-4 imagery,” Int. J. Remote Sens.,
vol. 41, pp. 7486–7508, Oct. 2020.

[9] A. Satnik et al., “A comparison of Key-point descriptors for the stereo
matching algorithm,” in Proc. 26th Int. Conf. Radioelektronika, 2016,
pp. 292–295.

[10] D. Demchev, V. Volkov, E. Kazakov, P. F. Alcantarilla, S. Sandven, and
V. Khmeleva, “Sea ice drift tracking from sequential SAR images using
Accelerated-KAZE features,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 9, pp. 5174–5184, Sep. 2017, doi: 10.1109/Tgrs.2017.2703084.

[11] P. F. Alcantarilla et al., “Fast explicit diffusion for accelerated features in
nonlinear scale spaces,” in Proc. Brit. Mach. Vis. Conf., 2013, pp. 1–11,
doi: 10.5244/C.27.13.

[12] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, pp. 91–110, Nov. 2004,
doi: 10.1023/B:Visi.0000029664.99615.94.

[13] A. F. Martin and C. B. Robert, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated car-
tography,” Commun. ACM, vol. 24, pp. 381–395, 1981.

[14] J. Karvonen, M. Simila, and J. Lehtiranta, “SAR-based estimation of the
baltic sea ice motion,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2007, pp. 2605–2608, doi: 10.1109/Igarss.2007.4423378.

Chaoyue Li received the B.S. degree in geomatics
engineering from WuHan University, Wuhan, China,
in 2020. He is currently working toward the Grad-
uation degree in resource and environment with the
School of Geospatial Engineering and Science, Sun
Yat-sen University, Guangdong, China.

His research focuses on remote sensing applica-
tions in Arctic sea ice drift.

Gang Li received the M.Phil. degree in geodesy and
engineering from the Institute of Seismology, China
Earthquake Administration, Wuhan, China, in 2012,
and the Ph.D. degree in earth system geoinformation
science from the Chinese University of Hong Kong,
Hong Kong, in 2017.

Since 2020, he has been with the School of Geospa-
tial Engineering and Science, Sun Yat-sen University,
Guangdong, China. His research interests include
high-mountains Asia, Greenland, and Arctic Ocean,
and SAR remote sensing application in different

fields, especially for the cryosphere dynamic.

Zhuoqi Chen received the B.S. degree in geography
from Beijing Normal University, Beijing, China, in
2003, and the Ph.D. degree in cartography and geo-
graphical information system from the Institute of Ge-
ographic Sciences and Natural Resources Research,
Chinese Academy of Sciences, Beijing, China, in
2009.

He is currently an Associate Professor with the
School of Geospatial Engineering and Science, Sun
Yat-sen University, Guangdong, China. His research
focuses on remote sensing applications in ecological

model and hydrometeorology.

Xue Wang received the B.S. degree in geographical
information science and the M.S. degree in pho-
togrammetry and remote sensing from Peking Univer-
sity, Beijing, China, in 2012 and 2015, respectively,
and the Ph.D. degree in geography and resource man-
agemen from The Chinese University of Hong Kong,
Hong Kong, in 2019.

She is currently an Assistant Professor with the
School of Geospatial Engineering and Science, Sun
Yat-sen University, Guangdong, China. She is also a
Key Member of the Polar Oceans and Climate Change

Innovation Team, Southern Marine Science and Engineering Guangdong Lab-
oratory, Zhuhai, China. Her research interests include polar remote sensing and
sea ice drift retrieval.

Xiao Cheng received the M.S. degree in geodesy
and measurement engineering from the University of
Wuhan, Wuhan, China, in 2001, and the Ph.D. degree
in cartography and geographic information systems
from the Chinese Academy of Sciences, Beijing,
China, in 2004.

He is currently the Dean of the School of Geospatial
Engineering and Science, Sun Yat-sen University,
Guangdong, China, where he is also a Professor of
polar remote sensing and climate change. He had gone
to Antarctic three times in 1999, 2005, and 2007, and

gone to Arctic two times in 2013 and 2014 for science expedition. His research
interests include the observation of climate change impacts on polar regions,
including ice sheets and ice shelf, sea ice, and land cover mapping using remote
sensing methods related to these.

https://dx.doi.org/10.1007/s10584-011-0101-1
https://dx.doi.org/10.1038/Ngeo1627
https://dx.doi.org/10.3189/172756401781818374
https://doi.org/10.5067/INAWUWO7QH7B
https://doi.org/10.5067/INAWUWO7QH7B
https://dx.doi.org/10.5194/tc-10-913-2016
https://dx.doi.org/10.1016/j.coldregions.2007.06.006
https://dx.doi.org/10.1109/Tgrs.2011.2158005
https://dx.doi.org/10.1109/Tgrs.2017.2703084
https://dx.doi.org/10.5244/C.27.13
https://dx.doi.org/10.1023/B:Visi.0000029664.99615.94
https://dx.doi.org/10.1109/Igarss.2007.4423378


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


