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Vehicle Tracking on Satellite Video Based on
Historical Model

Shili Chen , Taoyang Wang , Hongshuo Wang, Yunming Wang , Jianzhi Hong, Tiancheng Dong, and Zhen Li

Abstract—Vehicle tracking on satellite videos poses a challenge
for the existing object tracking algorithms due to the few features,
object occlusion, and similar objects appearance. To improve the
performance of the object tracking algorithm, a historical-model-
based tracker intended for satellite videos is proposed in this study.
It updates the tracker by using the historical model of each frame
in the video, which contains plenty of object information and
background information, so as to improve tracking ability on few-
feature objects. Furthermore, a historical model evaluation scheme
is designed to obtain reliable historical models, which ensures that
the tracker is sensitive to the object in the current frame, thus
avoiding the impact caused by changes in object appearance and
background. Besides, to solve the drift issue of the tracker caused
by object occlusion and the appearance of similar objects, an an-
tidrift tracker correction scheme is proposed as well. According to
the comparative experiments conducted on satellite videos dataset
SatSOT, our tracker produces an excellent performance. Moreover,
sensitivity analysis, varying criteria comparative experiments, and
ablation experiments are conducted to demonstrate that the pro-
posed schemes are effective in improving the precision and success
rate of the tracker.

Index Terms—Correlation filter (CF), high-confidence tracking,
motion estimation, object tracking, satellite video.

I. INTRODUCTION

OBJECT tracking represents an important subject of re-
search on computer vision, the primary aim of which

is to track the moving objects in the video and obtain the
potential position of the object in each frame of the video through
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the computer. Due to the diversity of moving objects and the
video equipment, it is necessary to adapt the object tracking
algorithm to different data sources. For example, the ordinary
video [1]–[3], the unmanned aerial vehicle (UAV) video [4], [5],
the thermal infrared video [6], the synthetic aperture radar video
[7], [8], and the satellite video [9]–[21], which is an emerging
type of space-based video data in recent years. The satellite video
has demonstrated such advantages as wide shooting range, high
resolution, and the capability of continuously monitoring the
target objects on land.

The object tracking on satellite videos has a wide range
of applications in national defense, environmental protection,
disaster prevention, and traffic monitoring [12], [22]. Our study
focuses on the vehicle tracking, which is vital for traffic and
military spying. Besides, due to the wide shooting range of
satellite videos, the long-distance tracking is achievable, which
is conducive to analyzing the driving motives and trajectories.

There are some issues when the vehicles are tracked on
satellite videos. The first one is a small number of features and
textures due to the small size of the object. Then, the vehicle is
often occluded by trees, bridges, and other obstacles. Besides,
similar objects often appear around the tracked object. Thus, it
is a challenge to apply the existing object tracking algorithms to
satellite videos.

According to the principle followed by the algorithm, the
existing object tracking algorithms can be divided into two cat-
egories: generative models [23]–[26] and discriminative models
[27]–[33]. Generative models focus on the characteristics of the
object itself and track the object by conducting iterative search
for the similar object frame by frame. Some classical tracking
algorithms, such as MeanShift [23], CAMShift [24], particle
filter [25], and optical flow [26] are classed as generative mod-
els. Differently, discriminative models focus on the difference
between the object and the background. It takes background
information into consideration, e.g., MOSSE [27], CSK [28],
KCF [29], and STC [30]. With the widespread application of
deep learning, the object tracking algorithms combined with
deep learning have been gradually developed. Some algorithms
extract deep convolutional features, e.g., C-COT [34] and ECO
[35], both of which use the VGGNet [44], whereas others use
end-to-end object tracking methods, e.g., CFNet [45], SiamFC
[46], and MDNet [47]. Given the lack of background infor-
mation, the generative algorithm only models the object itself,
which is unreliable for the few-feature objects on satellite videos.
By contrast, the discriminative algorithm introduces background
information, which makes it advantageous over the generative
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Fig. 1. Flow diagram of the proposed tracker HMTS.

algorithm. In particular, the correlation filter (CF), which is
one of the discriminative algorithms, is widely used in object
tracking on satellite videos due to its high speed and high
precision. Although the algorithm based on deep learning is
equally effective, it is disadvantaged by heavy computational
workload and slow speed. In some cases, the few and weak
features of objects make it inappropriate for neural networks to
learn. In general, CF-based algorithms are superior to generative
algorithms in accuracy and are superior to deep-learning-based
algorithms in speed, which makes them have greater advantages
on the satellite videos with larger image sizes and fewer features.
For this reason, the CF is applied in this study.

For most of the current CF algorithms, the focus is on ridge
regression. By learning the features of the region of interest
(ROI), they can classify the object and background to locate the
object. When the filter is updated, most algorithms use a single
ROI in the current frame and ignore the historical information
of the previous frames, which leads to the waste of information.
Nevertheless, historical information contains a great deal of the
object information and background information required for

modeling the object. Especially, background information could
be inputted into CF as negative samples, which could improve
the tracking performance for the few-features object. For this
reason, a historical-model-based tracker for satellite (HMTS)
videos is proposed in this study, as illustrated in the flow diagram
(see Fig. 1). Historical models (HMs) are applied to update the
tracker. However, not all HMs are suitable due to changes in
object appearance and background during the tracking process.
Hence, a scheme is used to find the HMs that are best suited to
the current frame. In addition, since the vehicle is often occluded
by obstacles or there are similar objects appearing around the
vehicle, a strategy is adopted to detect vehicle state and prevent
the drift of the tracker. The peak and kurtosis (PK) of the
response map of the CF [50] are employed to monitor the vehicle
state. Additionally, Kalman filter (KF) is adopted to correct the
tracking result to avoid drift. To sum up, the contributions of this
study are as follows:

1) In this article, we designed a novel HMTS videos to im-
prove the tracking performance on small-size objects, thus
addressing the trace failure caused by a lack of features.



7786 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

It improves the acquisition of object information by uti-
lizing historical information, ensures the reliability of
tracking, and reduces historical information waste.

2) We proposed an HM evaluation scheme to avoid the impact
caused by changes in object appearance and background.
The scheme relies on cross-correlation functions to mea-
sure the similarity between the response map and the
ideal regression targets. HMs are scored by this scheme to
identify the best-suited ones for the current frame.

3) We constructed a tracker correction scheme to prevent the
tracker drift caused by object occlusion and similar objects
appearance. The scheme uses KF to estimate the motion of
the object and PK for the response map evaluation. Based
on PK, the trajectory of the tracker is corrected by the
prediction function of KF.

The rest of this article is organized as follows. In Section II,
the relevant work is summarized. Section III presents the design
of the proposed tracker HMTS. In Section IV, the experiments
are detailed, including configurations, experimental design, ex-
perimental analysis, and experimental results. Finally, Section V
concludes this article.

II. RELATED LITERATURE

A. CF-Based Object Tracking

The emergence of CF marks a key milestone in the develop-
ment of object tracking algorithm. By introducing the Fourier
transform method to convert the originally complex matrix op-
erations into calculations in the frequency domain, it accelerates
the calculation process. At the same time, CF increases the use
of background information, which improves the accuracy of
tracking. In the earliest CF algorithm MOSSE [27], the least
squares method is used to distinguish between the background
and the object. Then, kernel CF is used by CSK [28] and KCF
[29] to introduce circulant matrix, which increases the number of
samples, thus improving the accuracy of training. Following the
KCF, scholars have successively improved the KCF framework
to develop many algorithms based on CF. There are three main
approaches to improving the CF. The first one is to apply a
suitable feature extraction algorithm [34]–[37]. In [36], color
names (CNs) are used, whereas in [34], deep convolutional
features are used. The second one is to adapt to the object scale
change by introducing a scale-adaptive mechanism [38], [39].
The mechanism is effective in increasing the success rate of
the tracker. The last one is to improve the structure of the filter
[40]–[43], e.g., BACF [41] adds the spatial regularization term,
and AutoTrack [43] adds the temporal regularization term.

B. Object Tracking on Satellite Video

The existing object tracking algorithms have been widely used
for the tracking of objects on satellite videos. The traditional
generative model is applied in [9] and [10]. Besides, CF algo-
rithm is used in [11]–[17]. Moreover, deep learning is adopted
in [18]–[21]. At present, traditional generative model is rarely
adopted for satellite videos, which is attributed mainly to its
low accuracy and slow speed. By contrast, the discriminative

model has been more commonly used. A major solution is to
improve CF, which can be achieved from three perspectives.
The first one is to change the feature extraction algorithm,
the second one is to use motion model, and the last one is
to introduce tracker state monitoring scheme. To change the
feature extraction algorithm, Shao et al. [12] combined LK
optical flow method and histogram of oriented gradient (HOG)
feature extraction algorithm to extract features, whereas Wu
et al. [15] combined Hu CF and median filter to extract features.
Due to the rotation invariance of Hu invariant moment, this
algorithm performs well in tracking rotation objects. In [17],
Gabor filter is employed to extract features, which leads to an
excellent performance for the objects with textures. In terms of
motion models, KF is frequently used to predict the position of
the moving object [14]–[16], which improves the robustness of
the algorithm. As for the tracker state monitoring scheme, Wang
et al. [17] proposed the tracking status monitoring indicators
(TCMIs) based on the Bayesian framework. If the object is
occluded, TCMI can be relied on to guide the tracker, with
updating terminated to prevent model drift. In addition, Xuan
et al. [16] used the peak value of response map to monitor tracker
states and guide the updating of the tracker.

C. Benchmark Dataset Based on Satellite Video

In addition to the improvement of algorithm, the benchmark
dataset based on satellite video has also been proposed to make
the verification of algorithms more reliable. Yin et al. [48]
constructed a large-scale satellite video dataset with a wide range
of annotations. At the same time, a benchmark was proposed to
evaluate algorithms for their performance, e.g., the multiobject
tracking algorithm and the single-object tracking algorithm on
satellite videos. Zhao et al. [49] put forward another densely
annotated satellite video dataset, which is purposed to evaluate
the single-object tracking algorithm.

III. PROPOSED METHOD

In this section, it will be explained how to apply the HM,
cross-correlation function, PK, and KF for CF-based object
tracking. First, a tracker HMTS based on history model is
proposed to track the object. Then, an HM evaluation scheme is
introduced to validate each HM, so as to choose the HMs that are
sensitive to the object in the current frame. Finally, a scheme is
introduced to correct the tracker by using KF and PK.

A. Overall Architecture

In our tracker, kernel CF (KCF) [29] is taken as the baseline.
Suppose there is a vectorized feature map X , X ∈ RD. KCF
solves the following ridge regression problem:

min
w

D∑
i = 1

(
wTX (i)− y (i)

)2
+ λw2

2 (1)

wherew represents a filter;X(i) refers to the ith circular shift of
X; y(i) indicates the regression target for X(i); λw2

2 denotes
a shrinkage penalty, which controls overfitting; λ is referred
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to as the penalty parameter; and the superscript T refers to
transposition.

By mapping the linear inputs X(i) to nonlinear space
ϕ(X(i)), the filter w can be expressed as a linear combination
of ϕ(X(i)). In nonlinear space, as opposed to linear space, the
feature map can be simply split into the object and background.
Additionally, the kernel trick can be used to express wTX(i) as

wTX (i) =
D∑

J=1

α (j)ϕT (X (j))ϕ (X (i))

=

D∑
J=1

α (j)K (ϕ (X (j)) , ϕ (X (i)))

= KXX (i)α (2)

where K(·) refers to the kernel function (e.g., radial basis func-
tion) used to compute the dot-product of nonlinear space;KXX

represents the kernel matrix with elements KXX (i, j) =
K(ϕ(X(j)), ϕ(X(i))); the ith rows of KXXare referred as
KXX (i) = [KXX(i, 1), · · · ,KXX(i,D)] ; and α is the
vector of coefficients α(i) (i = 1, · · · , D). Similarly, w2

2 can
be expressed as

w2
2 = αT KXXα . (3)

Thus, (1) can be reformulated as

min
α

D∑
i = 1

(KXX (i)α− y (i))2 + λαTKXXα . (4)

The solution of (4) is expressed as

α = arg min
α

{
KXXα− y2

2 + λαTKXXα
}

= (KXX + λI)−1 y (5)

where y is defined as y = [y(1), · · · ,y(D)]T . I refers
to a D ×D identity matrix. The filter w is replaced by
α. KXX + λI can be reformulated as circulant matrix
C(KXX + λδ)(δ = [1, 0, · · · , 0] ). KXX refers to the first
row of KXX . By using the discrete Fourier transform (DFT),
(5) can be expressed as

α̂ = ŷ

K̂XX+λ
(6)

where the hat ̂ denotes the DFT of a vector. When KCF filter
is used, the filter α̂T−1 is updated by (6) with K̂zT−1zT−1

. zT−1

refers to a target-centered patch of last frameT − 1whose target
is located in the center. Suppose that a new patch xT is sampled
in the current frame T , and the location of the target is detected
by

RT = F−1
(
K̂z̄TxT

α̂T−1

)
(7)

where F−1 denotes the IDFT operator. K̂z̄TxT
is computed

by xT and sample model z̄T . The position of the target is
determined by the position of the maximum value of RT .

Typically, the classical KCF does not use the filter α̂ derived
from (6) directly when an object is detected. Instead, linear

interpolation is performed to update the filter α̂T as follows:

α̂T = βα̂T−1 + (1− β) α̂T−1

= β

T−3∑
i=0

(1− β)iα̂T−1−i + (1− β)T−2α̂1 (8)

where β represents the coefficient of interpolation. Similarly,
the sample model z̄T is also derived from linear interpolation

z̄T = γzT−1 + (1− γ) z̄T−1

= γ

T−3∑
i=0

(1− γ)izT−1−i + (1− γ)T−2z1 (9)

where γ is also referred to as the coefficient of interpolation. By
using (8) and (9), the tracker can be updated at a fixed learning
rate.

Updating the filter with a fixed proportion can make the filter
retain part of the historical information and avoid the interfer-
ence from new information. However, the fixed learning rate
also causes the tracker to treat all the historical information in-
discriminately, which causes the waste of historical information.
Meanwhile, since the initial value of the tracker is obtained from
the first frame, the information contained in the first frame will be
exponentially attenuated when the tracker is updated [see (8) and
(9)]. In case of a low learning rate, α̂1 and z1 may account for a
larger proportion in the filter and sample model, respectively, in
the early stage of tracking, which has a significant impact on the
tracker. Therefore, the tracker is capable to recognize the object,
which is similar to the first frame. Hence, when the feature of
the object or the background changes, the tracking may fail.

To make full use of historical information, our tracker retains
the filter and the target-centered patch for each frame as HMs
H = {(α̂i, zi, si)}T−1

i=1 , where si represents a score of each
HM. As for the approach to score learning, it will be detailed in
Section III-B. Suppose that a new patch xT is sampled in the
current frame T , then the filter α̂T is calculated by

α̂T = β ˙̂αT−1 + (1− β) α̂T−1

˙̂αT−1 =

∑T−1
i=1 siα̂i∑T−1
i=1 si

. (10)

The sample model z̄T is calculated by

z̄T = γżT−1 + (1− γ) z̄T−1

żT−1 =

∑T−1
i=1 sizi∑T−1
i=1 si

(11)

where linear interpolation is still performed to update our fil-
ter and sample model at the learning rate β and γ, respec-
tively. At each frame, ˙̂αT−1 and żT−1 are calculated. They
both consist of the HMs. The score si (i = 1, · · · , T − 1)
leads to α̂i (i = 1, · · · , T − 1), which is more sensitive to
xT accounting for a larger proportion in ˙̂αT−1. In the same
way, si (i = 1, · · · , T − 1) leads to zi (i = 1, · · · , T − 1),
which is more similar as xT accounts for a larger proportion in
żT−1. In these operations, ˙̂αT−1 and żT−1 classify the object
and background in xT with high precision. In the meantime,
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it makes full use of the HMs, with the historical information
treated differently. In addition, when the feature of the object or
background changes, the scores can be used to reduce the impact
of the initial value by adjusting the proportion of the initial value
dynamically, because the scores will change in each frame. After
the filter α̂T and the sample model z̄T are obtained, the response
of xT can be calculated by

RT = F−1
(
K̂z̄TxT

α̂T

)
. (12)

The position of the maximum value ofRT is that of the object.

B. HM Evaluation Scheme

In Section III-A, it is proposed to update the tracker by
using HMs. In order to improve the capability of the tracker
to distinguish between the object and the background, it is
necessary to improve the sensitivity of the selected filters to the
object. Meanwhile, the selected sample models must be similar
to the object. In this section, an HM evaluation scheme will be
introduced to obtain the appropriate filters and sample models
by scoring the HM.

The cross-correlation function is applied to mea-
sure the correlation of two signals in signal analysis.
The discrete cross-correlation function is expressed as
follows:

S (τ) =
+∞∑

n=−∞
φ1 (n)φ2 (n+ τ) (τ ∈ (−∞,+∞)) (13)

where φ1 and φ2 represent signals. S(τ) is referred to as the
similarity of two signals when one of them is applied to a
τ -step discrete circular shift. The higher the value of S(τ), the
higher the similarity of the two signals. The maximum value
of S(τ) (τ ∈ (−∞,+∞)) can be taken to represent global
similarity. Meanwhile, the DFT is used to define the discrete
cross-correlation function as

S = F−1
(
φ̂H
1 φ̂2

)
(14)

where S represents the vector of S(τ) (τ ∈ (−∞,+∞)) and
the superscript H refers to conjugate transposition.

By taking the regression targets and the response as signals,
the global similarity of them can be calculated. In theory, the bet-
ter the performance of the tracker, the higher the global similarity
between the response and the regression targets. According to
this theory, an HM evaluation scheme is designed to score the
HMs.

In frameT , after position detection is completed, a new target-
centered patch zT can be obtained and a new filter α̂T can be
calculated by (6). HMs are updated to H = {(α̂i, zi, si)}Ti=1 .
In order to obtain si (i = 1, · · · , T ), each HM is combined as
a tracker in the first place. Subsequently, the responses can be
received on zT

Ri = F−1
(
K̂zizT

α̂i

)
. (15)

Then, the discrete cross-correlation function is applied on
Ri (i = 1, · · · , T ) and regression targets y

Si = F−1
(
yHRi

)
. (16)

The score si (i = 1, · · · , T ) for the ith HM in frame T is
given by

si =

{
max (Si) , Rank (max (Si)) ≤ θ
0, Rank (max (Si)) > θ

(17)

where max(·) denotes the maximum of the vector;
Rank(max(Si)) indicates the index of max(Si) in the set
{max(Si)}Ti = 1, which is ranked in descending order; and θ
refers to the threshold.

By using this scheme, the HM, which performs better in
distinguishing between the object and background in zT , is
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Fig. 2. Illustration of tracking result and response map. The yellow box is tracking box and the red box is ground truth. The object is obscured at frame 181.
(a) Tracking without antidrift tracker correction scheme. It shows the performance of tracker without antidrift tracker correction scheme. (b) Tracking with antidrift
tracker correction scheme. It shows the performance of tracker with antidrift tracker correction scheme.

given a higher score. Meanwhile, since the HM with low global
similarity is irrelevant to confirming the object location, the
scores of this kind of HMs are set to 0. All scores are used
to update the tracker [see (10) and (11)].

Under this scheme, the historical information can be applied
flexibly. Besides, the filter and the sample model are made more
robust for object tracking.

C. Antidrift Tracker Correction Scheme

It is a challenge to prevent tracker drift for object tracking.
In general, tracker drift occurs when object occlusion happens
and similar objects appear. In these cases, a significant deviation
can arise between the maximum position of the response map
and the ground truth of the object. Besides, the response map
fluctuates significantly or shows multiple peaks. Therefore, it
is necessary to monitor the tracking state and correct trajectory
in the process of tracking. In this section, it will be explained
how the KF and the PK of the response map can be applied to
correct the tracker.

Assume that the ground truth of the vehicle is represented
by {pt}Tt = 1. The motion of the vehicle can be expressed as dy-
namic equation pt = ft (pt−1, ut). In the process of tracking, the
position detected by our tracker can be expressed as {dt}Tt = 1.
The relationship between detected position and ground truth is
expressed as measurement equation dt = ht (pt, vt), where both

vt and ut are the noises that are independent and uniformly dis-
tributed. If ut and vt are Gaussian while dynamic equation and
measurement equation are linear, KF is applicable to estimate
the motion of the vehicle [51].

The dynamic equation and measurement equation of KF are
expressed as

pt = ft (pt−1, ut) = Apt−1 + ut (18)

dt = ht (pt, vt) = Bpt + vt (19)

where A denotes the state transition matrix and B denotes the
measurement matrix. The aim of KF is two-fold. One is cor-
rection and the other is prediction. Correction means correcting
the measured position, in our case is the detected position dt,
to an estimate of the ground truth p̂t. Prediction means using p̂t
to predict the ground truth p̂t+1 in the next frame. Herein, the
hat ̂ denotes the estimated value, and the bar ¯ denotes the
predicted value. The way of correction is defined as⎧⎨⎩ Gt = C̄t B

T
(
BC̄tB

T + Vt

)−1

p̂t = p̂t +Gt

(
dt −Bp̂t

)
Ct = (I −GtB) C̄t

. (20)

The way of prediction is defined as{
p̂t+1 = Ap̂t
C̄t+1 = ACtA

T + Ut
(21)
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Fig. 3. Overall OPE results on SatSOT. The legend shows the sorting of algorithms based on five pixels location error threshold and AOE, respectively. (a)
Precision plot. (b) Success plot.

where Gt denotes the Kalman gain; Ct indicates the covariance
matrix of error between ground truth and estimation (pt − p̂t);
C̄t represents the covariance matrix of error between ground
truth and prediction (pt − p̂t); Vt refers to the covariance matrix
of vt; Ut stands for the covariance matrix of ut; and I denotes
an identity matrix.

In the current frame, the detected position dt is inputted into
the KF to obtain a predicted position p̂t+1 for the next frame. If
the tracker is found to have drifted in the next frame, the detected
position dt+1 will be replaced by the predicted position p̂t+1. To
measure the reliability of tracker, the high-confidence criterion
proposed by Han et al. is adopted [50]. It relies on PK of the
response map to detect whether the tracker has drifted. The two
measurement thresholds are defined as{

Ptr = δ1 ×
∑T

i = 1 max(Ri)
T

Ktr = δ2 ×
∑T

i = 1 BKi

T

(22)

wherePtr andKtr represent peak threshold and kurtosis thresh-
old derived from the historical average values with certain ratio
δ1 and δ1, respectively; max(Ri) refers to the maximum of
response that denotes the peak value; and BKi denotes the
kurtosis value. Ideally, the response map resembles a Gaussian
distribution, with a single peak and smooth surroundings. When
the drift occurs, the response map exhibits multiple peaks and
fluctuates significantly, with the PK in decline (see Fig. 2).
Therefore, if the PK of the response map at the current frame
reaches above the PK threshold, it can be considered that the
response map at the current frame is reliable and no drift occurs
to the tracker. If one indicator falls below the threshold, the
position detected by the tracker is unreliable and it is necessary
to replace it with the position predicted by KF. Meanwhile, the
correction of KF and the update of tracker will be terminated
until the tracker returns to normal. Fig. 2 shows the effect of
antidrift tracker correction scheme. When PK decreases, the
tracker with the scheme ceases to be updated and KF predicts
the position of the object. Since the incorrect information is
not accepted by tracker, the tracking returns to normal when
the object is no longer obscured. On the contrary, the tracker

without the scheme keeps updating and cannot find the position
of the object. When the object appears again, the tracker becomes
ineffective.

This scheme is effective in avoiding tracker drift through the
combination of KF and PK. Under the strategy of updating ter-
mination, the tracker and KF avoid receiving false information,
which ensures the reliability of the tracker and the accuracy of
KF. When the tracker stops working, the prediction function of
KF can be used to predict the trajectory reasonably and ensure
the continuity of the trajectory. The full algorithm is detailed in
Algorithm I.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setups

1) SatSOT Dataset: As a densely annotated satellite video
single-object tracking benchmark dataset, the SatSOT dataset
[49] covers four categories of objects, including vehicle, train,
plane, and ship. Herein, the videos of vehicle are used, involv-
ing 65 objects, 19 948 frames, and 9 challenges. The object
is annotated by a bounding box and recorded with upper-left
coordinate, the width, and height of the bounding box. Table I
lists the description of nine challenging attributes given by the
article [49].

2) Evaluation Metric: The evaluation metric used in the ex-
periments is one-pass evaluation (OPE) [1], [2], with two eval-
uation indicators involved to perform quantitative evaluation,
i.e., precision and successful rate. By plotting precision plot and
success plot, the performance of algorithms can be visualized.

Precision is an indicator used to evaluate the error between the
detected position of the tracker and the ground truth. The location
error of the tracker can be obtained by calculating the Euclidean
distance between the center point of the tracking box and the
center point of the ground truth. Typically, there is a threshold
of location error (e.g., 20), and the percentage of frames whose
location error is smaller than this threshold is referred to as the
tracker’s precision. In the meantime, precision plot is created.
The horizontal axis of the precision plot is the location error
threshold, and the vertical axis is the precision.



CHEN et al.: VEHICLE TRACKING ON SATELLITE VIDEO BASED ON HISTORICAL MODEL 7791

Fig. 4. Performance on challenging attributes. The number in the upper left corner is the frame number. The tracking boxes in different colors represent the
tracking results of different trackers in the frame. (a) car_01. This video contains two challenges, ROT and FOC. (b) car_24. This video contains three challenges,
ROT, POC, and FOC. (c) car_08. This video contains three challenges, BC, SOB, and TO. (d) car_26. This video contains three challenges, IV, BJT, and TO.

Success rate is an indicator used to evaluate the overlap
between the tracking box and the ground truth. Suppose that the
tracking box is Rt and the ground truth is R0, then the overlap
of tracker is expressed as S = |Rt ∩R0|/|Rt ∪R0| , where
|Rt ∩R0| refers to the number of pixels at the intersection of Rt

andR0, and |Rt ∪R0| refers to the number of pixels at the union
of Rt and R0. The success rate is expressed as the percentage of
frames whose overlap exceeds the overlap threshold. Also, the
success plot is created. The horizontal axis of the success plot
represents the overlap threshold, and the vertical axis indicates
the success rate.

Based on this evaluation metric, the location error threshold is
set to 5 pixels to sort the algorithms on precision. As for success
rate, the average overlap score (AOE) is introduced as the basis

for sorting, which is an average of overlap. Hence, all algorithms
are evaluated from two perspectives.

3) Implementation Details: Our experiments are performed
on a PC with 2.40-GHz CPU, and our tracker is implemented
in MATLAB 2018a. The sample patch is 3.5 times the size of
the object’s ground truth. Besides, the standard deviation of the
Gaussian surface, which is used to fit the regression targets,
is 0.125. By comparison, the standard deviation of the kernel
function is 0.6. The penalty parameter λ is 1e-4, whereas the
learning rates β and γ are both 0.02.

The features extracted in the tracker are grayscale feature
and CN [52]. Additionally, the principal component analysis is
conducted to simplify the features to ensure the computational
speed of the tracker. The features of the vehicle on satellite
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TABLE I
NINE ATTRIBUTES FOR VEHICLE ON SATSOT [49]

TABLE II
OPE RESULTS OF TRACKERS FOR SENSITIVITY ANALYSIS

videos are weak and the size of the object is tiny. Normally,
the texture feature is not suitable for representing the vehicle,
e.g., HOG and local binary patterns [53]. This is mainly because
these features must be extracted from the minimal cells, e.g., 4
pixels. Whereas, the object is too tiny to be divided into cells,
so that it may make the loss of information and be meaningless.
As stated by Shao et al. [12], the texture feature is ineffective for
object tracking on satellite videos. As a result, simple features,
such as grayscale and CN, are much more reliable.

B. Sensitivity Analysis and Varying Criteria Comparison

In this section, we first conduct a sensitivity analysis to
determine the most effective usage of the HM evaluation scheme.
Then, we conduct varying criteria comparative experiments to
compare PK with other high-confidence criteria.

In the sensitivity analysis, we vary the start frame ϑ of the
HM evaluation scheme and test the sensitivity of ϑ. Besides, we
test the sensitivity of θ in (17). When test ϑ, θ and the other
parameters in the tracker are fixed. When test θ, ϑ is set with the
optimal one received from the last test and the other parameters
in the tracker are also fixed. Table II shows the OPE results of
two tests. The tracker works best when ϑ = 10 and θ = 70.

In the varying criteria comparative experiments, we compare
the PK with other high-confidence criteria, including the average
peak-to-correlation energy (APCE) [54], the peak, and the kurto-
sis. We designed four trackers, and Table III lists the OPE results
of them. HMTS_APCE uses APCE as the high-confidence cri-
terion. HMTS_PEAK and HMTS_KURTOSIS employ the peak
and the kurtosis of the response map as the criterion individually.
They are compared with our tracker HMTS, which employs both
the peak and the kurtosis of the response map as the criterion.

TABLE III
OPE RESULTS OF TRACKERS FOR VARYING CRITERIA COMPARISON

From the OPE results, it can be found that high-confidence
criterion can indeed improve the precision and robustness, and
the PK is more suitable for our application.

C. Ablation Experiments

As mentioned earlier, our tracker treats KCF as the baseline,
with the HM used to improve the update strategy of KCF. At the
same time, KF is introduced for motion estimation, and the PK
of the response map is used to detect whether the tracker drifts.
To verify whether the HM, KF, and PK are effective in improving
tracker performance, ablation experiments were conducted.

We design four trackers. Table IV lists the composition
of them. Among these trackers, KCF_CN uses only CF,
HMTS_NKFPK does not rely on KF and PK to correct the
trajectory, and HMTS_NHM does not require HM for updating.
They are compared with our tracker HMTS. The OPE results of
these four groups of trackers are shown in columns 5 and 6 of
Table IV.

From the performance of HMTS_NHM, it can be found out
that the introduction of KF and PK improves the precision and
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TABLE IV
COMPOSITIONS AND OPE RESULTS OF TRACKERS FOR ABLATION

EXPERIMENTS

success rate of the algorithm, which is because KF and PK
terminate the tracker updating and predict the trajectory of the
object when the tracker drifts.

From the performance of HMTS_NKFPK, it can be discov-
ered that using HM plays no role in improving the precision and
success rate, which is mainly because the baseline tracker tends
to drift when the object is occluded and similar objects appear.
Since the antidrift scheme is not used, the tracker does not stop
updating. At the same time, the HM evaluation scheme scores
HMs based on the drifting frame, and these HMs render new
filter unreliable. Consequently, the tracker is less likely to return
to normal, which reduces the performance of HMTS_NKFPK
without KF and PK control.

Our tracker HMTS combines HM, KF, and PK. Also, the
HM evaluation scheme keeps scoring HMs based on the correct
sample. In this way, the updated filter will become more reliable.
Hence, our tracker can take full advantage of HM.

In summary, the introduction of HM, KF, and PK is verified
as effective. Our tracker shows a significant improvement over
the baseline on the precision and success rate.

D. Quantitative Comparison

Our tracker HMTS is evaluated with 16 state-of-the-art
trackers, including CF-based tracker KCF [29], STRCF [40],
BACF [41], STAPLE [55], LADCF [56], MCCT [57], AS-
RCF [58], CCOT [34], ECO-HC [35], ATOM [59], and DiMP
[60]. And deep Siamese networks based tracker, SiamFC [46],
SiamRPN [61], and SiamRPN++ [62]. And transformer-based
tracker STARK [63]. Besides, an open-source satellite video
tracker CFME [16] is also used for comparison with our
tracker.

1) Overall Results: The overall OPE results are shown in
Fig. 3. Our tracker HMTS ranks top on both indicators. The
precision of HMTS is 0.7253, and the AOE of HMTS is 0.4344.
Compared with the classical CF-based tracker KCF, our tracker
HMTS improves the precision and AOE by 0.05 and 0.0331,
respectively.

Meanwhile, as shown in the ranking list, CF-based trackers,
e.g., KCF, MCCT, ECO-HC, STAPLE, and CFME, are advanta-
geous over end-to-end networks based tracker, e.g., SiamFC and
transformer-based tracker, e.g., STARK. That is to say, CF-based
trackers are more suitable for vehicle tracking on satellite videos.

2) Attributes-Based Results: Overall, HMTS has excellent
performance on most of challenges. Since the antidrift tracker
correction scheme are effective on solving the object occlusion

TABLE V
PARTIAL PRECISION ON CHALLENGING ATTRIBUTES

TABLE VI
PARTIAL SUCCESS RATE ON CHALLENGING ATTRIBUTES

and similar objects appearance, it is no surprise that our tracker
came out on top on POC, FOC, and SOB (see Tables V and
VI). When these challenges arise, the antidrift tracker correc-
tion scheme plays a dominant role in preventing drift. When
these challenges are addressed, the HM supports the tracker in
returning to normal rapidly and precisely.

Meanwhile, tiny object is the object with a small size. There
are few features on itself, so it is better to use background
information as negative sample. The HMs make HMTS collect
rich background information, which is favorable to tracking tiny
object. Hence, our tracker has an excellent performance on TO
(see Tables V and VI).

E. Qualitative Comparison

In order to better demonstrate the performance of each tracker,
qualitative experiments are carried out, with the tracking box
of each tracker at each frame displays the video frame. Partial
performance is shown in Fig. 4.
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Fig. 5. Inferior cases. The number in the upper left corner is the frame number.
The yellow box is tracking box and the red box is ground truth. (a) Size change.
(b) Motion change

1) Qualitative Analysis: From video car_01 and car_24, it
can be seen that HMTS is effective in solving the occlusion
issue while most of trackers drift when hitting the obstacle. In
video car_01, the object is occluded at frame 173, only CFME
and HMTS overcome this challenge. The reason is CFME and
HMTS use the motion estimation scheme, whereas other trackers
do not perceive the disappearance of the object and collect false
information when object is occluded. Meanwhile, the time of
occlusion is long, and the object moves a long distance. Hence,
when the object occurs again, the object is not in the ROI of them,
and it is difficult for them to detect the object after collecting
so much false information. On the contrary, the antidrift tracker
correction scheme makes HMTS stop collecting information and
predict the object’s position when object is being occluded. Even
with long occlusions, the object will be in our ROI. This scheme
not only makes HMTS reliable but also leads to a continuous
trajectory.

Meanwhile, from video car_08 and car_26, it can be found out
that the performance of our tracker is superior in case of SOB,
TO, IV, etc. Although the feature of object itself is insufficient to
identify it, HM is beneficial for HMTS to collect the background
information. As a result, HMTS can ensure accurate tracking.

2) Inferior Cases: Although HMTS is verified as the optimal
tracker, there are some inferior cases within the tracking process
(see Fig. 5).

HMTS does not use the scale-adaptive mechanism, which
leads to the tracking box cannot be adjusted along with the
change of the object size, as shown in Fig. 5(a). It results in
a lower success rate. Besides, the prediction function of KF
is limited. If the velocity and orientation of the object change
during occlusion, the KF prediction is likely to be unreliable and
may result in drift, as illustrated in Fig. 5(b).

V. CONCLUSION

In this article, a tracker (HMTS) is proposed for vehicle track-
ing on satellite videos. In addition, an HM evaluation scheme is

proposed for the evaluation of HMs by using cross-correlation
function. Besides, to prevent tracker drift, an antidrift tracker
correction scheme is proposed. Our tracker is compared with
16 state-of-the-art trackers. As demonstrated by the quantita-
tive and qualitative experiments, HMTS produces an excellent
performance. Additionally, sensitivity analysis, varying criteria
comparative experiments, and ablation experiments reveal that
HM, KF, and PK are effective in improving the accuracy and
robustness of the algorithm.
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