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Urban Impervious Surface Extraction Using Seasonal
Time Series SAR Images

Wenfu Wu , Zhenfeng Shao , Jiahua Teng, Xiao Huang , Xinwei Zhao, and Songjing Guo

Abstract—Urban impervious surface (UIS) is an essential indica-
tor to measure urban ecology, and understanding its temporal and
spatial distribution is of great significance for alleviating urban dis-
eases, such as heat island. Although remote sensing techniques have
been widely used to extract UIS, the capability of synthetic aperture
radar (SAR) technology in UIS extraction has not been thoroughly
investigated. Accordingly, this article systematically analyzed the
role of the backscattering and interferometric coherence features
of dual polarized (VH/VV) SAR in UIS extraction, taking Tianjin
city, China, as a study case. Specifically, we used seasonal time
series Sentinel-1B backscattering and coherence images to extract
UIS via two object-based classifiers. We further investigated the
seasonal, polarization, and precipitation effects on UIS extraction
using SAR images. Our findings suggested that, for coherence
images, the extraction accuracy of UIS in summer is the highest,
while for backscattering that in spring and winter are the highest.
Our results also suggested that VH polarization is more suitable for
UIS extraction compared with VV polarization. These findings of
this study confirmed the utility and effectiveness of time series SAR
backscattering and coherence images in UIS extraction, providing
an essential reference for UIS extraction in other places with a
similar climate. We encourage more efforts to be made toward UIS
extraction using SAR images and toward designing a filling scheme
for the UIS extraction in a continuous manner, especially in cloudy
and rainy areas.

Index Terms—Coherence images, synthetic aperture radar
(SAR) backscattering, seasonal effect, time series SAR images,
urban impervious surface (UIS).
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I. INTRODUCTION

CHINA has experienced rapid urbanization in the past
40 years since the implementation of the reform and

opening-up policy in 1978 [1]. In 2021, the urbanization rate of
China has reached 63.89% and is expected to reach 75%–80% by
2035. The expansion of urban impervious surface (UIS) is one of
the prominent characteristics of urbanization, which affects the
material circulation of the urban ecosystem, potentially leading
to a series of ecological problems, such as increased surface
runoff [2], enhanced heat island effect [3], decreased urban
environmental quality [4], to list a few. UIS, considered as an
essential indicator for meaturing urban ecology, mainly includes
buildings, roads, parking lots, and other land covers where water
cannot penetrate into the underground. Recently, one of the sus-
tainable development goals of the United Nations 2030 Agenda
for Sustainable Development is to build inclusive, safe, resilient,
and sustainable cities and human settlements. The expansion
pattern of UIS is a crucial part of this development strategy,
and understanding the spatial and temporal distribution of UIS
can benefits the construction of sponge cities and promotes the
sustainable development of cities [5]. Therefore, monitoring,
extracting, and mapping UIS are of great importance.

Remote sensing technology has become an important tool for
extracting UIS due to its low cost and efficiency. According to
some previous literature reviews [6], [7], UIS extraction methods
based on remote sensing can be divided into the following
four categories: spectral mixing analysis, image classification
methods, index methods, and multisource data fusion methods.
However, most of these methods used optical remote sensing
data as the data source, such as moderate resolution imaging
spectroradiometer data with a resolution of 500 m [8], nighttime
light data with a resolution of 1 km [9], Landsat data with a
resolution of 30 m [10], and Sentinel-2 data with a resolution
of 10 m [11]. Although optical remote sensing provides direct
knowledge on impervious surfaces, the phenomenon of “the
same thing with the different spectrum, the same spectrum with
foreign bodies” stands out and cannot be ignored. At the same
time, optical remote sensing usually owns data quality issues that
include cloud contamination and rain/snow obstacles, resulting
in less available data. For example, Landsat could theoretically
provide data with a spatial resolution of 30 m and a revisit cycle
of eight days. However, due to the influence of weather, light,
and other limitations, the actual effective observation frequency
of Landsat ranges from biweekly to bimonthly (even less in
certain occasions), falling short to meet the requirements of
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Fig. 1. Geographical location of the study area. (a) Map of Tianjin; (b)–(d) are Sentinel-2 A (true color), VH backscattering, and VH coherence images covering
the study area, respectively.

UIS continuous monitoring [12]. All of the aforementioned
limitations of optical remote sensing led us to explore new data
sources for extracting UIS.

To address the limitations of optical remote sensing imagery,
active remote sensing data, such as light detection and ranging
and synthetic aperture radar (SAR), especially SAR, have been
used to extract UIS. Different from optical sensors, SAR, as
an active imaging system, has all-weather and day-and-night
imaging capability due to its long wavelength, making it as an
ideal data source that can complement optical remote sensing.
For example, Zhang et al. [13] extracted UIS by fusing texture
features of optical and SAR images, and achieved better results
than using optical data alone. Then, in order to reduce the
influence of shadows on Sentinel-2 image on the extraction
accuracy of UIS, Sun et al. [14] fused the polarization features
of Sentinel-1 and the multispectral features of Sentinel-2, and
proposed a hierarchical UIS extraction framework. And with
the open source of Sentinel-1 data, SAR data has gradually
become another important data source for UIS extraction,
which has been verified in large-scale UIS extraction [1], [15].
Backscattering and coherence features are two main features of

SAR images. However, the existing researches on UIS extraction
based on SAR image mostly focus on the fusion of optical and
SAR images, but the capability of SAR technology, by itself, in
UIS extraction has not been thoroughly investigated. Besides,
such a data fusion is a complex process that involves strict
registration between images and manual design of fusion rules
and choice of fusion levels, which brings great uncertainty to UIS
extraction [13], [16]–[18]. Recently, some scholars have tried to
use the coherence features of SAR images to classify land covers
and achieved satisfactory results [19], [20], which provides
inspiration for this study to extract UIS by using coherence
features.

Therefore, this study explored the potential of UIS extraction
using seasonal time series dual polarized SAR backscatter-
ing and coherence images. Two object-based classifiers were
involved in the UIS extraction process. Specifically, we first
segmented multitemporal Sentinel-2 multispectral images to
delineate meaningful objects to suppress speckle in SAR images.
To extract UIS, we used time series Sentinel-1B backscattering
and coherence images with VH and VV polarization from dif-
ferent seasons through object-based K-means (OB-K-means)
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Fig. 2. Temporal coverage of data used in this study. T1–T28 represents the number of Sentinel-1 images obtained, and P1–P24 represents the number of InSAR
pairs.

clustering algorithm based on dynamic time warping (DTW)
distance and object-based random forest (OB-RF) algorithm,
respectively. We further compared the results with the corre-
sponding pixel-based classifiers. Finally, we analyzed the effects
of season, polarization, and precipitation on UIS extraction using
SAR images. To the best of authors’ knowledge, this study marks
the first to analyze the seasonal effects of SAR backscattering
and coherence images on UIS extraction, providing a filling
scheme for the data blind spots that existed in continuous mon-
itoring of UIS in cloudy and rainy regions.

II. STUDY AREA AND DATASET

A. Study Area

In this study, we selected an area covering some developed
districts located in Tianjin, including Nankai, Hexi, and Heping,
as our study area [as shown in the rectangular area in Fig. 1(a)].
The selected area is with complete infrastructure and stable land
covers. Tianjin is located at 116◦43′ E–118◦04′ E, 38◦34′ N–
40◦15′ N, and its city center is located at 117◦10′ E, 39◦10′ N.
Adjacent to Beijing, the capital of China, Tianjin is the largest
industrial and commercial city in northern China. Thanks to
its advantageous geographical location, Tianjin has seen rapid
development in the past decades. Tianjin belongs to a temperate
monsoon climate with four distinct seasons: Winter: December
to February; Spring: March to May; Summer: June to August;
Fall: September to November. The average annual precipitation
of Tianjin is between 360 and 970 mm. Therefore, we chose
Tianjin as our study area and explored the use of seasonal time
series SAR backscattering and coherence images to extract its
UIS.

B. Data Collection and Preprocessing

The data used in this study included daily precipitation data,
and Sentinel-1 and Sentinel-2 images covering the study area
of Tianjin. Their specific acquisition dates are shown in Fig. 2.
Sentinel-1 and Sentinel-2 data were downloaded freely from
the European Space Agency’s, and the precipitation data were

obtained by ground meteorological stations. In this study, three
cloudless Sentinel-2 L1C images in different seasons were se-
lected, which contain four bands of B (Band 2), G (Band 3), R
(Band 4), and NIR (Band 8), with a spatial resolution of 10 m.
Then, we used sen2cor plugin v2.8.0 available on the sentinel
application platform (SNAP) v8.0 to conduct atmospheric cor-
rection on Sentinel-2 L1C data and obtained L2A data.

To estimate coherence, we acquired Level-1 Sentinel-1B sin-
gle look complex (SLC) format data under the interferometric
wide swath mode. A total of 28 SLC images were finally
used, with 7 for each season. The backscattering and coher-
ence information of Sentinel-1B were extracted through SNAP.
The main preprocessing steps of extracting backscattering from
SLC data included thermal noise removal, calibration, TOPSAR
deburst, multilook, speckle filter, and terrain correction. Among
them, the Refned Lee filter is used for speckle filtering. And to
estimate coherence from SLC data, the main preprocessing steps
included Sentinel-1 TOPS split, orbit correction, coregistration,
deburst, coherence estimation, multilook, and terrain correction.
In addition, we used the ENVI 5.3 software to register Sentinel-1
and Sentinel-2 data to the same geo-reference system of the
Universal Transverse Mercator projection (Zone 50 N) and
Datum WGS84. The root mean square error for registration was
less than one pixel. The final spatial resolution of the images
used in this study was 10 m.

III. METHODOLOGY

This section mainly described the overall workflow of this
study (Fig. 3) in detail, which includes the following steps:

1) data preprocessing and generating time series SAR
backscattering and coherence images in different seasons;

2) time series analysis;
3) multiresolution segmentation for multitemporal Sentinel-

2 images;
4) extracting seasonal UIS using OB-K-means and OB-RF

algorithms and assessing their accuracies;
5) investigating the seasonal, polarization, and precipitation

effects on UIS extraction using SAR images.
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Fig. 3. Overall workflow of this study.

A. Coherence Image Generation

Coherence image, mainly used to guide phase unwrapping,
is an intermediate product of interferometric SAR (InSAR) pro-
cessing. The coherence directly reflects the mechanical stability
of ground targets during the acquisition time intervals of the
master and slave images [21], and it is negatively correlated with
the randomness of the scatterers between the two SAR images.
Different ground objects have different coherence, which is the
theoretical basis of involving coherence images in UIS extract-
ing. Coherence images have been used in various fields, such
as land cover classification [22], flood mapping [23], and peat
extraction [24], to list a few. Before estimating the coherence, it is
necessary to register two SLC images that covered the same area.
Further, the coherence between two coregistered SLC images
can be estimated using the following formula:

γ =
|∑S1(x)S2(x)

∗|√∑ |S1(x)|2
∑ |S2(x)|2

(1)

where γ is the coherence value that ranges from 0 to 1. When
γ = 0, it means completely incoherent; when γ = 1, it means

completely coherent. S1 and S2 are the two coregistered SLC
images, respectively. ∗ represents the complex conjugation. In
this study, the window size for estimating the coherence is set
to the default values of SNAP software, which is 10 in the range
direction and 1 in the azimuth direction. To suppress the speckle
in the coherence image, we use the mean filter to post process
the coherence image, and the size of the filtering window is 3 ×
3. In the future, we can consider using the time series SAR data
despeckling toolbox developed in the literature [25] for better
despeckling.

B. Multiresolution Image Segmentation

Due to the effect of speckle and the low distinguishability of
ground objects, SAR data cannot provide sufficient detail [26].
To address this issue, we implemented image segmentation
to generate homogeneous regions with the aid of Sentinel-2
image, aiming to suppress the effect of speckle in SAR image
on UIS extraction. Given the seasonal effects, multitemporal
Sentinel-2 images were used as input in the segmentation pro-
cess. Due to the multiscale nature of remote sensing images,
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TABLE I
DIFFERENT UIS EXTRACTION TESTS EMPLOYED IN THIS STUDY

it is difficult to obtain satisfactory segmentation results using a
single-scale segmentation algorithm. Therefore, multiresolution
segmentation, a method based on the minimum heterogeneity
under the constraint of the segmentation scale [27], was used in
this study. After setting the appropriate segmentation scale, the
heterogeneity after merging with adjacent pixels is calculated
from a random pixel in the target image and compared with
the segmentation scale. If the heterogeneity is less than the
square of the segmentation scale, the adjacent pixels are merged.
Otherwise, the segmentation process is ended. The heterogeneity
of the image can be estimated using the following formula:

f = w • hcolor + (1− w) • hshape (2)

where hcolor and hshape indicate the spectral and shape hetero-
geneity, respectively. Their specific calculation formulas can be
found in reference [28]. w is the weight that ranges from 0 to 1.
More information on multiresolution segmentation can be found
in the literature [27].

In this study, we conducted multiresolution segmentation
using eCognition developer software. According to (2), scale,
shape, and compactness are three key parameters of the mul-
tiresolution segmentation algorithm. Unfortunately, there is no
common standards nor widely accepted approaches to determine
the optimal segmentation parameters. The existing efforts tend
to determine these parameters via the trial-and-error approach.
Through multiple experiments and comparisons, we set the
parameters of scale, shape, and compactness as 30, 0.1, and
0.5, respectively. Besides, to further avoid oversegmentation,
spectral difference segmentation is carried out on the basis of
multiresolution segmentation.

C. UIS Extraction

In this study, we implemented two object-based algorithms,
i.e., OB-K-means and OB-RF, to extract UIS. We further
compared them with their corresponding pixel-based methods,
namely PB-K-means and PB-RF. Table I lists the different UIS
extraction tests employed in this study.

1) K-Means Algorithm Based on DTW Distance: As a pop-
ular unsupervised classification algorithm, the basic steps of the
K-means algorithm include the following:

1) determining the number of clusters (K) to be divided
(number of ground objects categories);

2) selecting K pixels randomly from the image as the initial
clustering center;

3) calculating the distance between the remaining pixels and
the initial clustering center, and classifying each pixel
into the category corresponding to the nearest clustering
center;

4) recalculating the center of new classes. When the cluster-
ing centers remain unchanged for two consecutive itera-
tions, the iteration ends.

Because we are concerned with UIS and pervious surface
(NIS), the K is set to 2 in this study. In the K-means algorithm,
the Euclidean distance is usually used as the clustering criterion.
However, such distance measurement is not applicable to time
series data. Comparing to Euclidean distance, the DTW dis-
tance can overcome the problem of scale displacement and the
matching of unequal long time series data, thus leading to strong
outlier resistance and better matching of similar features [29].
The larger the DTW distance, the greater the difference of time
series data, and vice versa. Therefore, we selected the DTW
distance as the clustering criterion of K-means in this study.

2) Random forest (RF): RF is an ensemble learning algo-
rithm that has been widely used in various remote sensing
applications (e.g., land cover classification [30], UIS extrac-
tion [31], aboveground biomass estimation [32]) and achieved
satisfactory performances. In RF, the number of decision trees
to be generated and the number of variables to be selected and
tested for the best split when growing the trees (Mtry) are the two
most important hyperparameters. In this study, we set them to
20 and 5 empirically, and apply them to all test cases employed
in this study. The seasonal time series SAR backscattering and
coherence images were used as input in the RF classifier, and
the UIS and NIS were the output. Detailed information on RF
can be found in [33].

D. Extraction Accuracy Assessment

In this study, the accuracies of UIS extraction were evaluated
by two most commonly used indicators based on confusion
matrix, i.e., overall accuracy (OA) and Kappa coefficient. To
train the RF model and evaluate UIS extraction accuracies,
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TABLE II
SENTINEL-1 INSAR PAIRS USED IN THIS STUDY FOR CALCULATING THE COHERENCE OF FOUR SEASONS IN TIANJIN

we randomly selected samples that were uniformly distributed
throughout the study area through visual interpretation with the
aid of high-resolution Google Earth images. A total of 2013
training samples (943 for UIS and 1072 for NIS) and 1373
validation samples (604 for UIS and 769 for NIS) were finally
selected.

IV. EXPERIMENTAL RESULTS

A. Time Series Analysis of SAR Backscattering and Coherence

Due to the existence of disturbance, such as soil moisture,
surface roughness, and speckle, uncertainty is likely to be intro-
duced in the extraction of UIS using a single-temporal SAR
image, potentially leading to low extraction accuracy. Thus,
we decided to take advantage of time series SAR data. Before
running all UIS extraction tests, we first analyzed the temporal
patterns of UIS and NIS in SAR backscattering and coherence,
which were rarely done in the previous studies. Time series
backscattering and coherence images were generated according
to the preprocessing steps described in Section II-B. Table II
shows the dates of the different InSAR pairs in four seasons in
Tianjin. Thanks to Sentinel’s precise orbit control, the spatial
baseline was smaller than the limit spatial baseline, so reliable
coherence can be obtained. In consideration of the effect of
temporal decorrelation, the temporal baseline we chose was
mostly 12 days. Fig. 4 shows the time series box maps of
SAR backscattering and coherence of UIS and NIS. In the
box chart, the black line represents the average value of SAR
backscattering and coherence features, and the box represents
the main concentration range of the values. From this figure,
some interesting findings can be noted, as follows.

1) The SAR backscattering and coherence of UIS are stable
with relatively high values. The VH and VV backscatter-
ing of UIS fluctuate around −15 dB and −6 dB, respec-
tively. The VH coherence fluctuates between 0.5 and 0.6,
and the VV coherence fluctuates between 0.6 and 0.7.

2) The backscattering and coherence of NIS notably fluctuate
under the influence of seasons. The fluctuation is intense
in summer, which may be caused by summer precipitation
(detailed discussions can be found in Section V-C).

3) The backscattering and coherence of UIS are considerably
stronger than that of NIS. However, due to the fluctuation
of NIS over time, there is uncertainty in the separability
between UIS and NIS, which can affect the accuracy of

extracting UIS using single-temporal SAR image. This is
why we used time series SAR data in this study.

4) The differences in VH and VV polarization of UIS also
affect its separability with NIS.

The abovementioned results indicate that it is feasible to
use SAR backscattering and coherence to extract UIS. The
extraction results are dependent on the polarization, seasons,
and other factors, which reflects the significance of this study.
To quantitatively compare the extraction ability of UIS using
single-temporal and time series SAR data, we selected 50 UIS
samples and 50 NIS samples from spring SAR images and
calculated the single-temporal and time series features distance
to measure the separability of UIS and NIS. Fig. 5 shows the
calculated results with different SAR features. From Fig. 5, the
distances of the time series feature between UIS and NIS are
considerably higher than that of the single-temporal features. We
also notice that the single-temporal feature distances of some
samples are very small. These results indicate that compared
with single-temporal SAR data, time series SAR data can im-
prove the distinction between UIS and NIS, leading to improve
UIS extraction accuracy, which again shows the rationality and
necessity of using time series SAR data to extract UIS.

B. Impervious Surface Extraction Results

In order to illustrate the effectiveness of the object-based
classification algorithms, i.e., OB-K-means and OB-RF, we took
their corresponding pixel-based algorithms, PB-K-means and
PB-RF, as the comparison algorithms in this study. Since the UIS
distribution of each season in the study area was similar visually,
we took spring as an example to show the UIS extraction results
in this section. The analysis of seasonal effects was shown in the
following sections.

Figs. 6 and 7 show the UIS extraction results using K-
means and RF algorithms, respectively. Despite that the UIS
distribution is similar overall, some differences can be found.
For example, from Fig. 6, we notice that, compared with the
extraction results of OB-K-means that of PB-K-means have a
notable “salt-and-pepper” phenomenon. And this phenomenon
can also be found in Fig. 7. These results indicate that the object-
based classifier can effectively suppress speckle in SAR images.
Besides, by comparing with the corresponding optical image,
overestimation of UIS occurs in the results obtained by time
series VV coherence image, as dry bare soils were misidentified
as UIS (as shown in the elliptical regions of Fig. 6(d)). Similar
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Fig. 4. Temporal patterns of SAR backscattering and coherence for UIS and NIS in the study area.

TABLE III
OA AND KAPPA COEFFICIENT OF UIS RESULTS EXTRACTED BY K-MEANS AND RF FROM SPRING TIME SERIES SAR IMAGES

issues can also be found in Fig. 7. To quantitatively assess
the accuracies of UIS extraction and compare the results using
different time series SAR features, Table III lists the OA and
Kappa coefficients for the extraction results using K-means and
RF with different SAR features, respectively. From Table III,

we observe that the OA and Kappa coefficient obtained by
the object-based methods are significantly higher than those
obtained by the pixel-based methods, which is consistent with
the above visualization results. In spring, the extraction accuracy
of using time series coherence images is lower than that of using
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Fig. 5. Comparison of separability of UIS and NIS in time series SAR and single-temporal SAR data, respectively.

Fig. 6. UIS extraction results using PB-K-means and OB-K-means with different time series SAR features. (a) OB-K-means VH backscattering. (b) OB-K-means
VV backscattering. (c) OB-K-means VH coherence. (d) OB-K-means VV coherence. (e) PB-K-means VH backscattering. (f) PB-K-means VV backscattering. (g)
PB-K-means VH coherence. (h) PB-K-means VV coherence.
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Fig. 7. UIS extraction results using PB-RF and OB-RF with different time series SAR features. (a) OB-RF VH backscattering. (b) OB-RF VV backscattering.
(c) OB-RF VH coherence. (d) OB-RF VV coherence. (e) PB-RF VH backscattering. (f) PB-RF VV backscattering. (g) PB-RF VH coherence. (h) PB-RF VV
coherence.

time series SAR backscattering, and the accuracy of results using
the VV polarization coherence image is the lowest. Besides,
the extraction accuracies obtained by the RF algorithm are
considerably better than those obtained by K-means, and the
PB-RF algorithm achieves a great performance, with OA up to
89% using VH backscattering, which indicates that the super-
vised machine learning classifier outperforms the unsupervised
algorithm in the extraction of UIS. Therefore, the extraction of
UIS using time series SAR data can be a feasible alternative
when limited optical remote sensing data are available.

C. Comparison of Time Series SAR Backscattering and
Coherence Images

The backscattering and coherence are the two most important
features of SAR images, but their performance in UIS extraction
has not been fully explored. Fig. 8 shows the comparison of the
UIS extraction accuracy obtained by OB-K-means and OB-RF
using time series SAR backscattering and coherence images in
four seasons. From Fig. 8, we notice that for VH polarization, the
accuracies of using time series backscattering are better than or
close to that of using time series coherence images in spring, fall,
and winter. However, in summer, the accuracies of using time
series VH coherence images are higher than that of using time
series VH backscattering images. This can be explained by Tian-
jin’s precipitation pattern, where rainfall rarely occurs in spring,
autumn, and winter, and less precipitation is observed, leading to
stable SAR backscattering of UIS and NIS. Nevertheless, due to
the influence of the precipitation in summer, the backscattering

of the NIS fluctuates considerably, and the coherence of NIS
decreases, resulting in decreased backscattering differences be-
tween NIS and UIS and increased coherence differences (more
discussion can be found in Section V-C). For VV polarization,
we notice that time series backscattering images perform better
than time series coherence images in four seasons. The reason
may be that VV polarization is sensitive to the changes of ground
objects backscattering. The abovementioned findings suggest
that for the purpose of extracting UIS, it is appropriate to use
SAR backscattering in the dry season and coherence images in
the nondry season, especially VH polarization.

V. DISCUSSION

A. Seasonal Effects on UIS Extraction

Accurate UIS extraction is a challenging task due to the
diversity of the vegetation phenology and climate. The seasonal
effects on UIS extraction via optical remote sensing images have
been investigated [34], while seasonal effects on UIS extraction
via SAR images were relatively rare studied. Fig. 9 shows
accuracies of UIS extraction obtained from different seasons
using time series SAR backscattering and coherence images.
From Fig. 9, we observe that different SAR features respond
differently to different seasons. For VH and VV backscattering,
the best results are obtained in spring, followed by winter.
The worst result of VH backscattering is in summer, while
that of VV backscattering is in fall. As shown in Fig. 9(c)
and (g), the VH coherence achieves the best accuracy in sum-
mer and is relatively less affected by seasons, i.e., its UIS
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Fig. 8. Comparison of accuracies of UIS extraction obtained by time series SAR backscattering and coherence images. (a)–(d) Results obtained by OB-K-means,
and (e)–(h) results obtained by OB-RF. The S_VH, S_VV, coh_VH, and coh_VV in the horizontal axis, respectively, represent VH backscattering, VV backscattering,
VH coherence, and VV coherence.

Fig. 9. Accuracies comparison of UIS extraction results obtained from different seasons using time series SAR backscattering and coherence images. (a)–(d) are
the results obtained by OB-K-means, and (e)–(h) are the results obtained by OB-RF.

extraction accuracies are rather stable in four seasons. Com-
pared with the VH coherence, the VV coherence is notably
affected by seasons, with the largest performance disturbance
occurring in winter [as shown in Fig. 9(d) and (h)]. Besides,
compared with the RF algorithm, the K-means algorithm is
more sensitive to seasonal changes. These results suggest that
we should consider the seasonal effects and select the ap-
propriate classifier and features accordingly during the UIS
extraction process.

B. Polarization Effects on UIS Extraction

VH and VV are the two polarization modes of Sentinel-1 data
used in this study, and their responses to impervious surfaces
are different. Therefore, this section presents the performance
disparity of VH and VV polarization in UIS extraction. Fig. 10
shows the OA of UIS extraction using VH and VV polarization

features. From Fig. 10, we can find that the extraction accura-
cies obtained by VH polarization backscattering and coherence
images are all higher than those obtained by VV polarization
backscattering and coherence images in four seasons, regardless
of the choice of classifiers. This finding is consistent with the
previous studies [35]. The abovementioned comparison results
indicate that VH polarization is more suitable than VV polar-
ization in the extraction of UIS.

C. Precipitation Effects on Impervious Surface Extraction

The main sources of InSAR decoherence mainly include tem-
poral decorrelation, spatial decorrelation, volume decorrelation,
geometric decorrelation, and thermal noise from the antenna [8].
In this study, we only focused on temporal decorrelation caused
by changes in the scatterers over time. The precipitation can
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Fig. 10. Comparison of OA of UIS extraction performance with VH and VV polarization features.

Fig. 11. Comparing the relationship between SAR backscattering and coherence and precipitation data in the study area in 2017. (a)–(d) VH backscattering, VV
backscattering, VH coherence, and VV coherence, respectively.

TABLE IV
CORRELATION ANALYSIS BETWEEN PRECIPITATION AND SAR BACKSCATTERING AND COHERENCE OF UIS AND NIS

modify the permittivity of ground objects and further change
the SAR backscattering, resulting in temporal decorrelation.

Therefore, we mainly analyze the influence of precipitation in
the backscattering and coherence of UIS and NIS in this section.
The daily precipitation data corresponding to Sentinel-1B data
acquisition dates were obtained from the surface meteorological
stations in Tianjin. To facilitate further analysis, a 2 km ×
2 km buffer zone was established with a meteorological station
(located in 117◦04′12′′ E, 30◦04′48′′ N) located in the study
area as the center. A total of 100 UIS samples and 100 NIS
samples were randomly and uniformly selected within the buffer
zone to conduct correlation analysis of precipitation with SAR
backscattering and coherence. Table IV shows the result of the

correlation analysis. From Table IV, we notice that precipitation
is positively correlated with the backscattering of ground objects
but negatively correlated with the coherence of ground objects.
Moreover, the correlation between the precipitation and NIS is
stronger than that with UIS.

Fig. 11 shows the relationship between the precipitation and
the mean backscattering and coherence of 100 NIS samples and
100 UIS samples. Note that, since only the precipitation data of
2017 were collected, the images acquired in December 2016
were removed from the analysis. From Fig. 11, we observe
that in the case of rainfall, the SAR backscattering of NIS
increases significantly and fluctuates considerably, while the
SAR backscattering of UIS does not change much and remains
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relatively stable, resulting in decreased coherence of NIS and the
stable coherence of UIS with a high value. According to Fig. 11,
we can conclude that in the dry season, the backscattering and
coherence of NIS and UIS are stable, leading to great separa-
bility between NIS and UIS. However, in nondry season, due
to the influence of precipitation, the backscattering of NIS is
enhanced with weakened coherence, leading to the decreased
separability between NIS and UIS in the backscattering and
increased separability between NIS and UIS in the coherence,
which can further explain the abovementioned experimental
results in the Section IV. In addition, we also notice that the
separability between NIS and UIS in VV coherence is better in
the nondry season compared to the dry season. The abovemen-
tioned findings indicate that the influence of precipitation and
other meteorological factors should be taken into consideration
when using SAR images to extract UIS.

VI. CONCLUSION

UIS is an important indicator for measuring urban ecology,
which is of great significance for alleviating urban diseases, such
as heat island. However, affected by various factors, extracting
UIS in an accurate manner is an important and challenging task.
This study fully explored the utility and effectiveness of UIS
extraction using seasonal time series SAR backscattering and
coherence images, in order to find an alternative scheme of
extracting UIS by optical remote sensing, and get rid of the
restriction of weather on optical remote sensing. Two different
approaches were investigated, i.e., OB-K-means and object-
based RF classifiers. In addition, the seasonal, polarization, and
precipitation effects on UIS extraction were also investigated.
The results suggest that the extraction of UIS using time series
SAR data can be a feasible alternative scheme when limited
optical remote sensing data are available. The results also point
to notable seasonal effects on UIS extraction using SAR image,
and different SAR features tend to have different responses
in different seasons. For coherence images, the UIS extraction
accuracy in summer is the highest, while for backscattering, that
in spring and winter is the highest. Compared with VV polariza-
tion, VH polarization is more suitable for UIS extraction. These
findings of this study confirmed the utility and effectiveness
of using time series SAR backscattering and coherence images
in UIS extraction, providing an essential reference for UIS
extraction in other places with a similar climate of the study area.
We encourage more efforts to be made toward UIS extraction
using SAR images and toward designing a filling scheme for the
UIS extraction in a continuous manner, especially in cloudy and
rainy areas.
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