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Meta-TR: Meta-Attention Spatial Compressive
Imaging Network With Swin Transformer
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Abstract—As a flourishing research topic in the field of re-
mote sensing, spatial compressive imaging (SCI) can utilize prior
knowledge to recover high-dimensional signals from low-resolution
measurements through joint sampling and compression, thus con-
tributing to the bandwidth reduction of information transmission.
However, most of the existing SCI methods based on deep learning
cannot effectively utilize prior information, and difficult to perform
deep extraction of image features, so the reconstruction is not
ideal in the case of low sampling ratio. To address the above
difficulty, we propose an SCI network based on meta-attention
(MA) and swin transformer, named Meta-TR. We adopt the swin
transformer as the network backbone, through the wide application
of self-attention mechanisms, to achieve deeper extraction of image
features, thereby improving the reconstruction quality under low
sampling ratios. In addition, we design an MA module, which
adopts Squeeze-Excitation architecture to convert the metadata
of SCI image degradation process to attention vectors. Then, the
attention vectors are used in the channel modulation of network
feature maps to guide the network training. Extensive experiments
are performed on different benchmark remote sensing datasets and
different sampling ratios to confirm the superiority of the proposed
Meta-TR method.

Index Terms—Deep learning, meta-attention (MA), remote
sensing, spatial compressive imaging (SCI), swin transformer.

I. INTRODUCTION

COMPRESSIVE sensing is an epoch-making technology
in the field of signal transmission, which can recover the

original signal at a lower sampling ratio than Nyquist sam-
pling [1]. Spatial compressive imaging (SCI), as an application
of compressed sensing (CS) theory in the field of image spatial
compression, aims to reconstruct high-resolution (HR) images
from low-resolution (LR) measurements by employing prior
information [2]. With SCI algorithms, more signal information
can be recovered using a low-cost hardware, which can reduce
the requirement to a sensor and data transmission bandwidth.
Therefore, the idea of SCI has been favored by IR imaging [3],
MRI [4], radar imaging [5], and other application fields [6]–[8].
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As the emergence of extensive remote sensing tasks, such
as resource exploration, climate monitoring, and environmental
protection in recent years, the availability of remote sensing data
has also increased. However, the explosive growth of HR remote
sensing data has also brought great pressure on data compression
and reconstruction. Based on this, some super-resolution (SR)
methods are applied in the field of remote sensing, benefit from
the mapping from low-dimensional space to high-dimensional.
Molini et al. [9] proposed that DeepSUM uses a self-registration
method to achieve LR to HR reconstruction. Salvetti et al. [10]
designed a lightweight SR method with 3-D convolution and
attention mechanism. Hang et al. [11] designed an SR method
using the internal correlation and projection properties of hyper-
spectral images. Compared with SR, SCI has some advantages
in the field of image compression and reconstruction, mainly
due to the application of sensing matrix in the reconstruction
process, which can achieve compression and reconstruction of
sparse signals at a sampling ratio far lower than the Nyquist
frequency. Therefore, the SCI algorithm can effectively relieve
the data transmission pressure of remote sensing systems and
contribute to the development of HR earth observation applica-
tions [12], [13]. Mallat and Zhang [14] first proposed the usage of
a redundant dictionary to represent sparse signals and perform
reconstruction. The orthogonal matrix pursuit, by solving the
sparse approximation problem on redundant dictionaries, can
be used to reconstruct an object in a faster speed [15]. Besides,
these scholars [16], [17] use nonconvex sparse regularization
methods to calculate the global optimal solutions. In the work
of [18], the rank residual minimization algorithm is used to get
the original signal, by using the nonlocal self-similarity prior and
the low-rank characteristics of an signal. Although high-quality
reconstructions can be obtained, a main drawback of these
methods is the long running time due its iterative calculations.
In addition, the reconstruction quality degrades rapidly as the
sampling ratio decreases, which also limits their application.

To address above issues, scholars have used deep learning
methods for vision tasks [19], [20]. In [21], convolutional neural
network (CNN) is used for SCI, and the reconstructions are
applied for target tracking to prove that sufficient semantic infor-
mation is maintained after the compression and reconstruction.
Some networks [22]–[25] are specifically designed for hard-
ware implementation friendly and low-storage requirements by
jointly optimizing compression and reconstruction during train-
ing. In deep residual reconstruction network (DR2-Net) [26], the
time complexity of network is greatly reduced by using multiple
residual blocks, while the reconstruction quality is improved.
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Although the neural networks discussed above have better
reconstruction quality than traditional algorithms, they are
hard to interpret and rely too much on dataset while ignoring
imaging process. Thus, some works, such as iterative shrinkage-
thresholding algorithm network (ISTA-Net) [27], combine
traditional methods with neural networks by replacing the
linear or nonlinear steps in each iteration of a traditional method
with designed CNN units. Cui and Sun et al. respectively use the
nonlocal self-similarity prior in the measurement domain and
the multi-scale feature domain to find similar vectors in the size-
limited vector space, fill each other with the missing information,
and reconstruct the original image [28], [29]. In the article [30],
the rank residual minimization algorithm is combined with
deep network units to obtain highly competitive reconstruction
results.

However, the above networks still have some unique prob-
lems. First, for SCI in remote sensing field, most networks for
reconstruction use basic CNN units and residual connections,
which limits the deep extraction of image global features. And
at low sampling ratios, the traditional CNN network cannot
achieve satisfactory results in some visual tasks due to its limited
representation ability. According to this, exploring a network
backbone with stronger and deeper extraction capabilities is the
key to the progress of SCI networks. Second, these previous
networks lack the effective utilization of prior information (such
as sensing matrix in SCI), leading to training process being
too dependent on the dataset, resulting in problems such as
overfitting and poor transferability. Therefore, how to adopt
the metadata of image degradation process is also vital to the
reconstruction of SCI.

To deal with the above issues, we study an end-to-end SCI
network based on meta-attention (MA) and swin transformer,
named Meta-TR. Compared with previous SCI networks, the
proposed Meta-TR can calculate the internal autocorrelation
of the input measurement frames through the self-attention
mechanism [31]. In this case, the network is able to mine
deeper image information for a better reconstruction, which
has shown clear superiority at low sampling ratios. In addition,
we design a MA module, which uses the Squeeze-Excitation
network (SeNet)[32] to convert the image degradation metadata
(sensing matrix in SCI) into attention vector, which are used
to modulate channels in each feature extraction module of the
network. In this way, Meta-TR can make full use of image
degradation metadata to guide network training, and the multi-
level sharing way also makes the weights of each level maintain
consistent convergence. The main contributions of this study are
summarized as follows.

1) We adopt the swin transformer as the network backbone
to extract higher-level information from LR measurement,
by calculating the self-attention results of shift windows.

2) We design a novel MA module to guide the training of
network, which employs dual-path pooling and SeNet to
convert metadata into attention vectors.

3) The proposed Meta-TR performs better than the represen-
tative SCI methods on benchmark datasets with different
bands and sampling ratios, which also shows an efficient
balance among reconstruction performance, parameter
size, and running time.

II. METHODOLOGY

In this section, the proposed SCI method is elucidated. For
better understanding of the proposed Meta-TR, a brief review
on the SCI problem formulation is given first. Then, we will in-
troduce the structure and principle of swin transformer. Finally,
we will introduce the proposed Meta-TR network architecture
in detail.

A. SCI Problem Formulation

Conventionally, SCI aims to reconstruct the original high-
dimensional object x ∈ Rn by inputting m(m << n) random
measurements y ∈ Rm [33]. Mathematically, the imaging pro-
cess can be described as follows:

y = Φx (1)

where Φ represents the sensing matrix of size (m× n), which
satisfies the restricted isometry property RIP criterion [38].
However, due to m << n, the number of unknowns in (1) is
much more than the number of equations, so there are infinite
solutions in (1). Therefore, the solution condition of the under-
determined problem requires the original object x to satisfy the
property of being sparse in the transform domain. Specifically
expressed as follows:

y = Φx = ΦΨs = Θs (2)

where Ψ represents the transformation matrix, which also sat-
isfies the RIP criterion. The parameter s represents the repre-
sentation of original object x in the transform domain, which is
sparse [39]. The parameter Θ represents the multiplication of Φ
and Ψ. Through this transformation, the solution of the (1) can
be converted into a constrained optimization problem of the l0
norm [40], [41], as follows:

min
s∈Rn

|| s ||0, s.t.Θs = y (3)

where || s ||0 represents the zero norm of s. In this way, the
complexity of the calculation is greatly reduced.

Due to its strong learning ability and operational effi-
ciency [34], [35], the neural network can use the fitting of the
network parameters on the dataset to achieve the solution process
of (3), i.e., to solve s from y. Compared to the traditional SCI
algorithm, network-based algorithms have lower complexity and
higher accuracy [36], [37]. In this article, we adopt Meta-TR
to perform SCI, as shown in Fig. 1. After training on dataset,
Meta-TR can reconstruct HR objects using LR measurements
in an end-to-end way.

B. Swin Transformer Architecture

In this subsection, we will introduce the swin transformer
architecture, which is the backbone of Meta-TR network.

Transformer was originally used in natural language process-
ing [42], and it has also shown its superiority in remote sensing
image processing in recent years [43]–[45]. However, the orig-
inal transformer needs to pay attention to all pixels of image in
the calculation, which leads to a sharp increase in calculation
and increases the restrictions on deployment and application.
Based on this, the swin transformer uses the window multihead
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Fig. 1. Spatial compressive imaging reconstruction process using Meta-TR.

Fig. 2. Structure of W-MSA (left) and SW-MSA (right) and the window shift
process.

self-attention (W-MSA) instead of the global multihead self-
attention (MSA), which greatly reduces the amount of compu-
tation. In addition, in order to ensure the correlation information
between windows, swin tranformer extends W-MSA to the shift-
ing window multihead self-attention SW-MSA calculation [46].
As shown in Fig. 2, the left side represents the W-MSA, while
the right side represents the SW-MSA. In SW-MSA, additional
cyclic shift operations and inverse operations are used to ensure
that, the window during self-attention calculation is consistent
with that in W-MSA.

Now let us talk about the working mechanism of the swin
transformer. For an input of size (H ×W × C), we divide it
into HW

M2 nonoverlapping windows X of size (M2 × C). X
is first processed using a layer normalization(LN), then the
self-attention calculation within a window X is performed,
specifically as follows:

Attention(Q,K,V) = SoftMax(QKT /
√
d+B)V (4)

where Q,K,V ∈ RM2×d are the query, key, and value matri-
ces of the preprocessed LN(X), respectively. The parameter d
represents the dimension of the key. The parameter B represents
the relative position encoding. After that, the residual structure
and multilayer perceptron (MLP) are applied to the self-attention

result, specifically as follows:

X = FwMSA(LN(X)) +X

X = FMLP(LN(X)) +X

X = FswMSA(LN(X)) +X

X = FMLP(LN(X)) +X (5)

where FwMSA, FMLP, and FswMSA represent W-MSA, MLP, and
SW-MSA, respectively. Note that, the self-attention operation on
the input of W-MSA and SW-MSA is the same, but the selection
and shifting of the window are different. Details of (5) can also
be found in Fig. 3(a). A gaussian error linear units (GELU)
activation function is used in front of MLP. As shown in Fig. 3(a),
each W-MSA is followed by an SW-MSA, and the two appear
in pairs. The shifting distance of the window is (M/2,M/2).

C. Meta-TR Network

In this subsection, we will first introduce the functional parts
(shallow information extraction, deep information extraction,
and MA) of Meta-TR, and then introduce the construction
process of the loss function.

1) Shallow Information Extraction: In this part, we use con-
volutional layers to perform shallow extraction on the
input image and retain most of the original information for
subsequent deeper processing. After shallow information
extraction, we use the layer normalization operation to
prevent the gradient from disappearing and improve the
network convergence speed. The formula of this part is
expressed as follows:

ISIE = FSIE(ILR) (6)

where ILR represents the input of network; FSIE repre-
sents the shallow information extraction module and ISIE

represents the output of FSIE .
2) Deep Information Extraction: After shallow information

extraction, Meta-TR employs N1 residual swin trans-
former block (RSTB) for deep information extraction.
In RSTB, as shown in Fig. 3, short residual connections
are used to aggregate features from different levels. Each
RSTB contains N2 swin transformer layer (STL), and the
structure of STL is described in (5). Note that, W-MSA
is used for odd-numbered STL, and SW-MSA is used for
even-numbered STL. The two kinds of attention mecha-
nism calculation methods appear alternately, in order to
use the shift window to reduce the computational com-
plexity of the network, which is also the core of the swin
transformer. The formula of deep information extraction
part is as follows:

FRSTB = FC(FSTL1
. . .(FSTLN2

)) + 1 (7)

FDIE = FC(FRSTB1
. . .(FRSTBN1

)) + 1 (8)

IDIE = FDIE(ISIE) (9)

where FC , FSTL, FRSTB, and FDIE represent convolu-
tional layer, STL, RSTB, and deep information extraction,
respectively. IDIE represent the output of FDIE .
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Fig. 3. Architecture of Meta-TR. The top is the overall structure of Meta-TR. (a) RSTB module in Meta-TR. (b) MA module in Meta-TR. (a) Residual Swin
Transformer Block (RSTB). (b) Meta Attention (MA).

Fig. 4. Transformation process of the sensing matrix in the MA module. The subscript represents the size of the tensor.

3) Metaattention: In this subsection, we introduce the frame-
work of MA. MA aims to utilize the metadata of image
degradation to guide the overall training of the network.
In the design of MA, we mainly adopt maxpooling, avg-
pooling, and SeNet structure. The two pooling structures
are to extract the maximum and mean information of the
sensing matrix, and reduce the 3-D tensor to a 1-D vector.
After the pooling, each element has a global receptive
field, and global features are obtained. Then, the SeNet is
adopted to use the global features to obtain the nonlinear
relationship between channels, and finally obtains a series
of modulation factors between (0, 1) to guide the training
of each RSTB module. In SCI, the most critical factor of
image degradation is the sensing matrix. The following is
a detailed description of the transformation process of the
sensing matrix in MA.
As shown in the Fig. 4, for a sensing matrix of size (K ×
K × 1), pass through the dimension expansion module
consisting of convolutional layers, and the output tensor
size is (K ×K ×D), where D is equal to the number of
channels in each RSTB. After that, MA utilizes average

pooling and max pooling for core information compres-
sion, and outputs two vectors of size (1× 1×D). And
then, the SeNet is used to modulate the vector to achieve
the extraction of core features with a small amount of
parameters. Finally, the modulated vectors are added and
activated using the sigmoid function, resulting in a final
attention vector of size (1× 1×D), named meta attention
output (MA-OUT). At this point, MA-OUT represents the
core information of the sensing matrix, and then we use
it to channel-modulate the output of each RSTB. In this
way, the network reconstruction quality can be improved
by making the network pay more attention to feature maps
with more important information.

4) Loss Function: Finally, after the upsample module, Meta-
TR outputs a reconstruction with the same size of the
original object. In this article, we utilize the maximum a
posteriori (MAP) to construct the loss function, as follows:

�x = argmin
x

1

2σ2
||Φx− y||2 +R(x) (10)
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TABLE I
QUANTITATIVE COMPARISON (AVERAGE PSNR/SSIM) WITH STATE-OF-THE-ART SCI METHODS FOR RED AND NIR IMAGES ON PROBA-V DATASET

Best performance are in bold.

TABLE II
QUANTITATIVE COMPARISON (AVERAGE PSNR/SSIM) WITH STATE-OF-THE-ART SCI METHODS FOR RGB IMAGES ON SATELLITE DATASET I (GLOBAL CITIES)

Best performance are in bold.

where �x represents the output of Meta-TR, σ is the noise
level, R(x) is a regularization term. We can rewrite (10)
as a function of parameters y, Φ, σ, and Θ, where Θ
represents the parameters of MAP inference, specifically
as follows:

�x = M(y,Φ, σ,Θ). (11)

Based on this, we design the loss function for Meta-TR as
follows:

L(Θ) =
1

2in

in∑

i=1

||M(yi,Φ, σ,Θ)− xi||2 (12)

where in represents the batch size of a sample in training.

III. EXPERIMENTS

In this section, we compare the proposed Meta-TR with the
state-of-the-art SCI methods on remote sensing datasets with
multiple bands and sampling ratios. First, the datasets and train-
ing details are introduced. Then, the comparison between our
method and other SCI methods on visual effects and evaluation
metrics is presented. After that, ablation experiments of the
MA module and internal structure are performed to confirm its
effectiveness. Finally, the parameter size and running time of the
network is discussed.

A. Datasets and Training Details

Datasets: In this article, we train and test on two datasets
detailed below: 1) Project for on-board autonomy vegetation
(PROBA-V) [47]; 2) Satellite dataset I (global cities) [48].

PROBA-V is an earth observation satellite used to map global
land and vegetation cover. This dataset has been released by the
Advanced Concepts team of the European Space Agency. The

PROBA-V dataset includes LR images of size (128 × 128) and
HR images of (384 × 384). All images in the dataset are 14-
b depth and single-channel. Additionally, this dataset contains
1160 scenes, 566 from the near infrared (NIR) band and 594
from the visible red (RED) band.

Satellite dataset I (global cities) is a subset of the wuhan uni-
versity (WHU) building dataset, which is collected from remote
sensing resources around the world and is mainly constructed
with urban building clusters. This dataset includes 204 red green
blue (RGB) images of size (512× 512). In addition to satellite
sensor differences, factors such as atmospheric conditions and
seasonal changes make this dataset more informative and suit-
able for neural network training.

Training Details: In the experiment, Meta-TR is trained on
the PROBA-V and Satellite datasets. There are 1160 images in
PROBA-V dataset, 1000 as training set, and 160 as test set. There
are 204 images in Satellite dataset, 153 as training set, and 51 as
test set. As described in Section II-A, this article proposes an SCI
method, and the LR input in the SCI process is obtained by HR
through sensing matrix modulation and downsampling. The core
component (sensing matrix) in the compression process of SCI
can be regarded as the metadata of image degradation. There-
fore, in the PROBA-V dataset and Satellite dataset I (global
cities), we only need the HR dataset, and the LR dataset to be
manually generated, by using the sensing matrix. During dataset
preparation, for sampling ratios of 1/4, 1/16, and 1/36, we use
sensing matrices of size (2 × 2), (4 × 4), and (6 × 6), respec-
tively, to generate LR datasets by sliding and dot producting on
HR datasets.

The LR patch size is set to (24 × 24), and the batch size is set
to 16. It can be deduced that when the sampling rates are 1/4,
1/16, and 1/36, the corresponding HR image sizes are (48 × 48),
(96 × 96), and (144 × 144). Data augmentation is performed
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Fig. 5. Comparison of visual effects of different SCI methods on the PROBA-V dataset (RED band). Sampling ratio is set to 1/4, 1/16, and 1/36, respectively.

with rotation and cropping during training. The evaluation in-
dicators of network reconstruction performance are peak signal
to noise ratio (PSNR) and structural similarity (SSIM)[49]. The
Adam optimizer with β1 = 0.9, β2 = 0.999 is adopted to train
the Meta-TR [50]. The initial learning rate is set to 1e−4. We
train Meta-TR on an Nvidia GTX 3090 GPU for approximately
two days to achieve the optimal results.

B. Comparing SCI Methods

In this subsection, we compare Meta-TR with representative
SCI methods in recent years, including total variation augmented

lagrangian alternating Direction algorithm (TVAL-3), Recon-
Net+res, modified super resolution residual network (MSRRes-
Net), residual attention multi-image super-resolution (RAMS),
Joinput-CiNet, Meta-CiNet, and residual channel attention net-
work (RCAN). For a fair comparison, all methods use the same
sensing matrix and dataset, and the networks are trained to
convergence. These methods are described in detail below.

TVAL-3 [51]: This is a classic traditional algorithm, which
adopts an augmented Lagrangian based total variational regu-
larization model to achieve iterative SCI reconstruction.

ReconNet+res [21]: ReconNet is a block-to-block SCI net-
work. For remote sensing datasets, a residual structure is
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Fig. 6. Comparison of visual effects of different SCI methods on the PROBA-V dataset (NIR band). Sampling ratio is set to 1/4, 1/16, and 1/36, respectively.

added to enhance the reconstruction performance in this
article.

MSRResNet [52]: The original MSRResNet is a modified
version of the super-resolution reconstruction residual network.
This article trains it to perform SCI reconstruction.

RAMS [10]: This is a representative lightweight network for
remote sensing images reconstruction, which builds feature and
temporal attention mechanism modules through 3-D convolu-
tion, and achieves excellent results on the PROBA-V dataset.

Joinput-CiNet [2]: It is a SCI network with joint input of
degradation maps and LR measurements, which uses principal
component analysis to extract sensing matrix information to
guide reconstruction.

MetaCiNet [54], [55]: It is an improved version of Joinput-
CiNet, which extracts more dimensional information of the
sensing matrix than the former.

RCAN [53]:This is one of the most representative CNN SR
networks, which uses residual-in-residual and channel attention
mechanism to build a very deep network to achieve high-quality
reconstruction.

C. Results on PROBA-V Dataset

In this subsection, we train and test all methods on the
PROBA-V dataset. Experiments are carried out at sampling
ratios 1/4, 1/16, and 1/36. In Table I, we summarize recon-
struction PSNR and SSIM values using TVAL-3, ReconNet+res,
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Fig. 7. Comparison of visual effects of different SCI methods on the Satellite dataset I (global cities). Sampling ratio is set to 1/4.

MSRResNet, RAMS, Joinput-CiNet, Meta-CiNet, RCAN, and
Meta-TR. In the table, NIR, RED, and ALL represent the
reconstruction results of each method in the infrared band,
visible light band, and all bands, respectively. It can be seen
that, the images in the RED band show better results than the
NIR images at each sampling ratio, because the RED images
have lower average brightness compared to the NIR images. In
conclusion, our Meta-TR achieves the best PSNR/SSIM values
on all sampling ratios and datasets. At sampling ratios of 1/4,
1/16, and 1/36, Meta-TR can achieve average improvements of
0.68 dB/0.0057, 0.43 dB/0.0104, and 0.25 dB/0.0092 compared
to the classic MSRResNet method. It is worth mentioning that,
the parameter amount of Meta-TR is about 1/16 of that of RCAN,
but the reconstruction quality still exceeds that of RCAN under
different datasets and sampling ratios. Extensive quantitative
data demonstrate the superiority of the proposed Meta-TR on
SCI.

Figs. 5 and 6 show the reconstruction visual results of different
SCI methods in the RED and NIR bands, respectively. In each
band, we can find that, as the sampling ratio decreases, the
reconstruction results of all methods also decrease. Compared
with other methods, the reconstruction results of the proposed
Meta-TR have more detailed information (rivers, mountains,

etc.), which is beneficial to the subsequent identification and
analysis of remote sensing images. In addition, our method
shows superiority in both RED and NIR bands, confirming that
it can work well in different wavelengths.

D. Results on Satellite Dataset I (Global Cities)

Similar to the above subsection, we train and test all methods
on the Satellite dataset I (global cities). The dataset consists
of RGB images, which are located in the visible light band, and
mainly reflect the information of urban building groups. Table II
shows the PSNR/SSIM values of the reconstruction results of
different methods at sampling ratios 1/4 and 1/16. It can also be
found that, Meta-TR achieves the best indicators under different
sampling ratios. Compared to the second best method, Meta-TR
can achieve 0.16 dB/0.0043, 0.16 dB/0.0128 improvements in
PSNR/SSIM at 1/4, 1/16 sampling ratios, respectively. Figs. 7
and 8 show the reconstruction visual results of different methods
at sampling ratios 1/4 and 1/16, respectively. From the figure,
we can find that, compared with other methods, the reconstruc-
tions of Meta-TR have more detailed information of buildings
and roads, which is beneficial to the follow-up target moni-
toring and terrain mapping of remote sensing data. Extensive
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Fig. 8. Comparison of visual effects of different SCI methods on the Satellite dataset I (global cities). Sampling ratio is set to 1/16.

reconstruction indicators and visual results demonstrate the
superiority and universality of Meta-TR.

E. Ablation Experiments of MA Module

In this subsection, the validity of the MA module and its
internal structure are verified. As shown in Fig. 3(b), the core
part of MA consists of Maxpool, Avgpool, and SeNet. Therefore,
Meta-TR trains the following four versions on the PROBA-V
dataset with a sampling ratio of 1/16:

1) Baseline (without MA);
2) Avgpool (MA that only contains Avgpool);
3) Maxpool (MA that only contains Maxpool);
4) Avgpool+Maxpool (with complete MA).
The training results are tested in the NIR and RED bands.
As shown in Table III, Meta-TR (Avgpool+Maxpool) has

about 0.11 dB and 0.0034 improvement in PSNR and SSIM than
Meta-TR (Baseline). This proves that MA module can boost
the reconstruction indicator of Meta-TR. Furthermore, Meta-
TR (Avgpool+Maxpool) surpasses the models using Avgpool
or Maxpool alone, which confirms the rationality of the MA
internal structure in this article.

TABLE III
ABLATION EXPERIMENTS OF MA STRUCTURE

The bold entities represents the method proposed in this paper.

Fig. 9 shows the visual reconstructions of the two network
versions. It can be found that, Meta-TR (w/ MA) has more
advantages in detail reconstruction, and has improvement in
both bands. Through the ablation experiments in this section,
it is confirmed that the MA module can make full use of the
degradation information to guide the network training, and also
prove its effectiveness for SCI.

F. Comparison of Parameters and Running Time

In this subsection, the parameter quantities and running time
of different SCI networks are compared and discussed. Table IV
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Fig. 9. Comparison of reconstruction results of Meta-TR with and without
MA module at sampling ratio 1/16. The value in parentheses is PSNR (dB).

TABLE IV
COMPARISON OF PARAMETERS OF DIFFERENT SCI NETWORKS AT MULTIPLE

SAMPLING RATIOS

The bold entities represents the method proposed in this paper.

shows the parameters of ReconNet+res, MSRResNet, RAMS,
Joinput-CiNet, Meta-CiNet, RCAN, and Meta-TR, under sam-
pling ratios 1/4, 1/16, and 1/36. It can be seen that, as the
sampling ratios decreases, the parameters of all networks will
increase, which is mainly due to the increase of layer numbers
in the upsampling module. Furthermore, we can find that, Meta-
TR achieves the third-least number of parameters among all
methods, but achieves the best reconstruction results (according
to Sections III-C and III-D). This shows that Meta-TR can
achieve better reconstruction results with a lower number of
parameters, which is more conducive to model deployment and
application. This subsection reflects that Meta-TR achieves an
excellent balance between network performance and parameter
quantity.

Finally, the reconstruction running time comparison of dif-
ferent SCI methods is presented. As shown in Table V, except
TVAL-3, the reconstruction time of other SCI methods for an
image of size (384*384) is kept between 20 and 60 ms, which can
basically meet the needs of real-time imaging. This subsection
illustrates that Meta-TR still achieves a good balance between
reconstruction time and quality.

TABLE V
COMPARISON OF THE RUNNING TIME OF VARIOUS SCI METHODS ON

(384*384) IMAGES, WITH A SAMPLING RATIO OF 1/16

The bold entities represents the method proposed in this paper.

IV. CONCLUSION

In this article, we propose a SCI network employing MA and
swin transformer. The proposed Meta-TR uses the swin trans-
former as the network backbone to extract global information
inside the image block by using self-attention, which improves
the depth of network information extraction while ensuring
that the amount of parameters is not overloaded. Furthermore,
we design a MA module to extract key information from the
image degradation metadata in SCI through Squeeze-Excitation
structure, and perform channel modulation in the feature maps
of Meta-TR. By using this module, additional prior information
can be used to guide the network training process, which im-
proves the network reconstruction quality and interpretability.
Extensive experiments on remote sensing benchmark datasets
with different bands and different sampling ratios confirm the
superiority of the proposed Meta-TR in both reconstruction
metrics and visual effects.
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