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Abstract—In petroleum geology, to assess the hydrocarbon gen-
eration potential in source rocks involves the determination of
the kerogen type by some destructive method. The usage of such
methods is a bottleneck in the process because it is time-consuming,
requires specialized tools and personnel, and ends up destroying
the rock sample, so it is not possible to do any posterior analysis.
This study presents an alternative method for determination of the
kerogen type that is fast and nondestructive using hyperspectral
data and machine learning techniques. The method is validated
using five distinct supervised learning algorithms that were applied
to spectral data collected in rock samples from Taubaté Basin,
Brazil, of an outcrop whose rocks have a wide range of hydro-
carbon generation potential. Cores and samples were collected
from the outcrop and had their kerogen type determined by geo-
chemical analyses performed in the laboratory. The robustness of
the method is evaluated in two distinct experiments. In the first
one, the hyperspectral dataset was collected using a nonimaging
spectroradiometer; in the second one, the method uses nonimag-
ing hyperspectral data as training and is tested in hyperspectral
images collected. In both experiments, the method was able to
establish a relationship between selected spectral features and the
kerogen type of the source rocks sampled. The results obtained
in this article are prospective for nondestructive classification of
kerogen type (and, consequently, the hydrocarbon generation po-
tential) since most of the models generated achieved accuracy above
0.8 in the validation step and 0.75 in the test step.
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I. INTRODUCTION

IN PETROLEUM geology, rocks that are able to gener-
ate hydrocarbons, whether in the form of oil or gas, are

called source rocks [1]. These rocks are usually composed of
sedimentary material of very fine granulometry and contain
organic matter in quantity and quality sufficient that, under ideal
conditions, the kerogen content is degraded for hydrocarbon
generation [2], [3]. The characterization of this rock type is
often performed by analyses based on the organic matter of
the rock, both in relation to its quantity (organic richness) and
quality (kerogen type), its generation potential, and thermal
maturity [1], [4], [5]. In this sense, Rock-Eval pyrolysis is a
valuable geochemical method as it allows us to obtain the quality
of organic matter, thermal maturity, and generation potential [3].
The determination of the kerogen type in the source rock is
performed using data obtained by Rock-Eval pyrolysis and also
by the amount of organic matter, measured as total organic car-
bon (TOC), which are later evaluated in the Van Krevelen-type
diagram [6].

Although the geochemical data mentioned provide valuable
information for geoscientists, these are obtained from laboratory
analysis, which are often destructive or requires sample pro-
cessing, besides involving high costs and skilled labor [7], [8].
Furthermore, these data suffer from a spatial-scale limitation [8],
[9] as they are often obtained from point sampling, whether
samples collected in outcrops or cores.

A nondestructive and fast alternative to overcome the limita-
tions of traditional geochemical methods is by using hyperspec-
tral remote sensing data to estimate the geochemical parameters
through methods that are based on reflectance spectroscopy [8],
[10], [11]. Reflectance is the fraction of the light intensity that
is reflected by a target [12] and is usually presented by a curve
in percentage values to different wavelengths, called a spectral
signature. Reflectance spectroscopy is widely exploited to col-
lect compositional information from rocks in a nondestructive
and replicable way [13]. This is possible because processes that
occur on a molecular scale in rock cause light absorbance in
some specific wavelengths [14]. As an example, organic car-
bon compounds (hydrocarbons) causes spectral features around
1700 and 2300 nm [7], [8], [13], [15].
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Hyperspectral data collected by nonimaging sensors with a
high spectral resolution, such as spectroradiometers, are ex-
tremely valuable for creating spectral libraries, analysis of spec-
tral signatures, and their relationship with the compounds in
rocks. However, given that the purpose of using hyperspectral
remote sensing is not only to detect these characteristics or to
infer them but also to map their spatial distribution, reflectance
spectra for each spatial point of a sample or outcrop must be
acquired [8]. This is possible using an imaging sensor that,
combining reflectance spectroscopy with a high-resolution dig-
ital image, provides a reflectance spectrum collected for each
pixel of the image [8], [13], [14], [16]. Therefore, by allowing
a synoptic view of large sections in spatial detail, hyperspectral
images can be used to guide sample collection on outcrops [8],
[13], [17]. In addition, they can be used on the mapping of
samples and cores as a support for the selection of relevant
samples for more detailed analyses, which should reduce the
number of samples needed for the investigation, and also on
helping with the lithological description process [9], [13], [18].

Hyperspectral data analysis in source rocks is a complex task
due to the mixture of minerals and, consequently, its spectral
signatures. Robust and automated techniques are needed to
identify patterns in slight variations of the spectra. Recently,
the use of machine learning (ML) techniques has been explored
for the analysis of hyperspectral data as it can perform fast and
objective analyses, improving the accuracy and robustness of
the models created compared to traditional methods [18]–[21].

Therefore, in this article, we explored ML techniques to
classify potential source rocks according to their kerogen type
from hyperspectral data. Samples of a sedimentary basin with
high hydrocarbon generation potential (Tremembé Formation,
Taubaté Basin, Southeastern Brazil) were used to assess the
performance of the selected ML algorithms: logistic regression
(LR), k-nearest neighbors (KNN), random forest (RF), support
vector machine (SVM), and multilayer perceptron (MLP). The
algorithms were trained and validated with data collected from
a spectroradiometer (nonimaging hyperspectral sensor) as input
and the kerogen type as output. Two experiments were per-
formed: the first considering two drill-cores collected in the
same study area, one to train and validate the models and another
to test them; and the second explored data from hand samples
collected at the outcrop and hyperspectral images of samples as
a test dataset.

II. METHODOLOGY

The methodology we adopted for this study is presented in
the flowchart in Fig. 1. The main steps in the execution of the
proposed method are represented in the flowchart by letters to
facilitate their reference throughout the manuscript.

Overall, samples of potential source rocks from the study
area (A) had their geochemical and hyperspectral data collected
(B) and preprocessed (C) for ML experiments to be carried out
(D). Although we performed two experiments, both included the
same classifier algorithms, features, and approaches of training
(E), hyperparameter selection (F), and validation (G). The dif-
ference between them is in the data used in the model testing

Fig. 1. Simplified flowchart of this study. Each color represents a macrostep
of the process.

(H) and, consequently, in their results and discussions. Each of
these steps has been detailed in the following sections.

A. Study Area and Sampling

The study was performed in a mining area located in the city
of Tremembé, state of São Paulo, southeastern Brasil, which
is observed a vertical outcrop [see Fig. 2(a)]. In this place,
rock samples were collected from a representative section of
the Tremembé Formation (Taubaté Basin) containing rocks with
high potential hydrocarbons source.

The mapped outcrop represents the Tremembé Formation, a
playa-lake-type lacustrine system, from oligocenic age, located
in the central portion of the Taubaté Basin, a part of the Conti-
nental Rift of Southeastern Brazil [22]. The Taubaté basin was
filled with alluvial deposits intertwined with lacustrine deposits
as a consequence of the alteration of tectonic and sedimentation
rates influenced by climatic oscillations [22]. The Tremembé
Formation is predominantly composed of a succession of sedi-
mentary rocks composed of massive green claystones, rhythms
of bituminous shales and marls, dolomites, and sandstones as-
sociated with lake and swamp deposits [22]. Rocks from this
formation may have high TOC contents, close to 30% in some
portions [23], [24], indicating a high hydrocarbon generation
potential, being evaluated as analogous to other Brazilian source
rocks in studies of hydrocarbons generation, expulsion, and
migration processes [25].

At the studied outcrop, we carried out the sampling of 20
representative hand samples along five key lithological hori-
zons in the outcrop, named XP1, XP2, XG, AV, and ARE [see
Fig. 2(b)], being four samples from each horizon. In general,
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Fig. 2. Study area. (a) Location map and aerial image with drill-core location. (b) Outcrop sampled horizons.

the samples from the XP1, XP2, and XG horizons correspond
to shales, the AV horizon is predominantly formed by clays
with the presence of smectite (the minable portion of the
mine), and the ARE horizon has the occurrence of clay and
fine sand.

Among the collected samples, we selected five of them for
laboratory analysis (one referent to each horizon), whereas the
other 15 samples were reserved for spectral data collection.
Moreover, we noted that samples from XP1 horizon were not
homogeneous because they had differences in color between the
two faces, indicating that they could have different mineralogy
and organic content. Therefore, we choose to divide these sam-
ples into two aliquots (XP1a and XP1b) in order to confirm if this
difference would be reflected in the collected data (geochemical
and spectral).

Two drill cores were also collected near the mine area where
the samples were collected [see Fig. 2(a)], named SF-01 and
SF-02. The purpose of drilling for core extraction was the
continuous and total sampling of rocks outcropped in the mine
pit. Therefore, it would be possible to evaluate the characteristics
of the rocks in all horizons present in the outcrop and not just
those that had hand samples collected.

Although the drilling achieved 30 m, its recovery was very
low, on average 15% for SF-01 and even lower for SF-02 with
just 3%. Only the interval between 15 and 20 m of the SF-01 core
had a better rock recovery with few missing intervals. However,
even with the low recovery, it was possible to extract at least one
sample every 1 m of drilling. As well as the outcrop samples, the
SF-01 and SF-02 cores were also sent for laboratory and spectral
analyses.

We included the images of the hand samples collected from
the outcrop horizons and of the two recovered drill cores in the
Supplemental Materials of this article.

B. Data Collection and Preprocessing

As the proposed method is based on supervised ML, it is
necessary to collect a labeled dataset for models training and
evaluation [26]. Therefore, after the sampling in an outcrop
containing rocks with a high potential source of hydrocarbons
(hand samples and drill cores, step A in Fig. 1), we performed
laboratory analysis for geochemical and hyperspectral data col-
lection (step B in Fig. 1).

The geochemical characterization of the rocks aimed to obtain
data that describe the quantity and quality of organic matter from
the TOC analysis and Rock-Eval pyrolysis. TOC contents were
determined by combustion in a Leco SC-144DR carbon ana-
lyzer. The pyrolysis analysis was performed with a Rock-Eval 6
instrument, and from it was obtained the data of free or adsorbed
hydrocarbons from the sample (S1 peak), hydrocarbons and
CO2 produced from kerogen cracking (S2 and S3 peak), and
the temperature at the maximum generation rate of the S2 peak
(Tmax). The hydrogen index (HI) and oxygen index (OI) were
computed by the division of S2 and S3 by TOC, respectively.
Those indices allow kerogen type determination through van
Krevelen-type diagram [6].

To facilitate the geochemical analysis step, the samples col-
lected on the same horizon of the Taubaté basin outcrop were
considered identical (twins). Therefore, among those samples,
one of them was selected for laboratory analysis (as a reference
sample for its horizon), whereas the others were reserved for
spectral data collection and ML experimentation.

In relation to the drill cores, each recovered fragment was
considered a new sample. In the depth of 15 to 20 m from the
SF-01, the collected fragments samples had an interval of 2 to
13 cm between them. This cores sampling resulted in 84 samples,
62 from the SF-01 core and 22 from SF-02 core. As it was not
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Fig. 3. Hyperspectral data collection. (a) Sprectroradiometer Spectral Evolution. (b) Hyperspectral camera Mjolnir.

possible to obtain twin samples for the cores (one for destructive
geochemical analysis and another for hyperspectral analysis),
we first collected their spectral response and then sent them for
laboratory analysis.

The hyperspectral data from the hand samples were collected
using two distinct types of equipment, a nonimaging spectrora-
diometer and an imaging hyperspectral camera. Data from the
drill core were measured only with the spectroradiometer for
logistical reasons.

The nonimaging sensor used was the spectroradiometer Spec-
tral Evolution, model SR-3500. This equipment acquired data
in 1018 bands in a spectral range from 350 to 2500 nm, with
spectral resolution between 3 and 7 nm. The methodology
adopted was the spectral measurement of absolute reflectance
using a contact probe [see Fig. 3(a)]. Therefore, before each
new reading of a sample, the reference panel (Spectralon) was
measured for reflectance correction.

Pointwise measurements were performed on the Taubaté
Basin’s samples and drill cores. We chose to perform more than
one measurement on each sample, with the number of readings
proportional to its size and availability of smooth surfaces on
both sides. This process guaranteed that most of the sample was
represented in the data collected.

The hyperspectral curves obtained through the spectrora-
diometer had some noise, mainly at the beginning and end of the
reading range. Therefore, the data went through spectral smooth-
ing using a moving average filter with a spectral window size
equal to three bands. This filter produces a smoothed reflectance
sr that is the mean value of the raw reflectance collected by the
sensor in neighbor bands sri =

ri−1+ri+ri+1

3 .
Samples imaging was carried out with the HySpex Mjolnir

S-620 hyperspectral sensor. The experiment was set up in the
laboratory with a 50 W tungsten halogen lamp (ILM-550, Spec-
tral Evolution accessory) for artificial illumination at a distance
of approximately 2 m between the sensor and the samples
[see Fig. 3(b)]. The sensor’s specification suggests a minimum
distance of 20 m from the target. If used for smaller distances (as
used in this work), the images may present a blurred aspect. As a

smaller distance is required to properly capture the hand samples
given their size, in this study, we established a more controlled
image acquisition setup in the laboratory and used an artificial
light source. This greater control allowed us to compare more
confidently the spectral signatures extracted from the images
with those collected with a spectroradiometer and, then, confirm
their usefulness for application in ML models.

After this disclaimer, the first step of image preprocessing
was its correction for reflectance values, given that the image
originally represents radiance values. The method used was the
empirical line [27], in which the reference values for known
targets in the image were used and a linear regression between
radiance (raw data) and reflectance (targets) was applied to
correct the image. In this study, the Spectralon panel was used
as reference.

The second step was the spectral smoothing to reduce the
noise present in the spectral curves of each pixel. This process
was carried out with the application of the Savitsky–Golay
filter, widely used in spectroscopy data. This filter consists of
smoothing the spectral band based on a polynomial adjustment
using the least squares method, considering a subset of data
located in the filtering window, whose center is the data/band to
be smoothed [28]. In this case, a filter with a window size three
and a second-degree polynomial was considered to smooth the
data with minimal loss of spectral information.

All of the steps of hyperspectral data preprocessing (round C
in Fig. 1) were performed in Python environment (version 3.7)
or using the software Envi (version 5.5).

C. Kerogen Type Classification

It is a common assumption in ML algorithms that training,
validation, and testing data are independent and identically
distributed. This assumption, although valid and necessary for
many theoretical results, is seldom useful in practice [29]. In
this study, two experiments are performed in the context of
kerogen type classification using hyperspectral data: the first
one explores how the trained classifiers are able to generalize
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between distinct targets and the second one explores how a
change in the acquisition sensor influences the classification
results.

In the first experiment, SF-01 core data were used in training
and validation, whereas the second core, SF-02, was reserved
for testing. The second experiment is an extended version of the
one published in [30] and includes the use of hyperspectral data
collected from hand samples from the outcrop with spectrora-
diometer data used for training and validation of the models and
the hyperspectral images as a test set.

The ML methods adopted for kerogen type classification in
this study were: LR, KNN, RF, SVM, and MLP. Our selec-
tion of learners spans many distinct subareas within ML. We
tested traditional statistical methods (LR), instance-based meth-
ods (KNN), theoretically optimal methods (SVM), ensemble
methods (RF), and connectionist methods with neural networks
(MLP).

The main steps consisted of: feature selection; dataset split
for training and validation (cross validation); model training for
tuning of hyperparameters (see Fig. 1-F); training and validation
of the adjusted models (Fig. 1-E and G); and, finally, the eval-
uation of the performance for each classification model applied
to the test dataset (Fig. 1-H).

The first step for the ML experiments was the selection of
features for the models, which was performed by using domain
knowledge. For this, we use the following criteria:

1) Reduce the analysis range to 1000–2500 nm, so both the
spectroradiometer and the spectral camera have features
in the same range.

2) Select bands that represent the absorption features re-
ported in the literature about the spectral behavior char-
acteristic of source rocks (clays, carbonates, and organic
fraction) [7] that most likely could contribute with the
classification.

3) Include the median and standard deviation of the selected
features according to the sample to make the classifier
more robust to noise in the data.

Knowing that Mjolnir is able to acquire hyperspectral data
in a shorter range of the spectra, the first criterion in the list
above guarantees that we would be able to collect the same
features using both sensors. The second criterion allowed us to
use knowledge about the geochemical processes to select only a
subset of the available features that most likely could contribute
to the classification. The third and final criterion introduces two
features that were engineered to make the classifier more robust
to noise in the data.

To estimate the error of the trained classifiers, we adopted
k-fold cross validation. In this approach, the dataset is divided
into k disjoint subsets (folds) and then k runs are performed
separating one of the folds for validation at each time.

Our dataset has characteristics that demand extra caution to
perform the data sampling required for cross validation: there
are several hyperspectral readings for each of the samples, the
core data are ordered with semantic meaning (by depth) and the
target value is not balanced. Two caution steps are performed in
the data sampling to guarantee a proper error estimation under
this circumstance: 1) stratified grouped sampling needs to be

TABLE I
TUNED HYPERPARAMETERS IN ML EXPERIMENTS

performed to guarantee that the same sample does not appear
represented in training and in validation data (as this would be
data leakage) while also keeping the target value distribution
roughly the same among folds; 2) data need to be shuffled before
the folds are created, otherwise we would have a cross-validation
scheme where each of the folds represents specific depths in the
core data, which in turn would make the cross-validation error
estimation more pessimistic.

To tune the hyperparameters of the classifiers, we adopted the
random search strategy with tenfold stratified cross validation.
Random search was chosen instead of traditional grid search
because it explores the search space randomly, being more robust
in cases where some hyperparameters do not affect the results
while also allowing us to define a limit to the computational
budget [31]. The method is executed in the following manner:
for each of the hyperparameters in the search space, we defined
a sampling distribution, as described in Table I. In each of the
runs, the hyperparameter value was sampled from the defined
distribution. We also defined the maximum compute budget to
be 1000 executions. In cases such as the MLP, we stopped the
experiment at 1000 runs, whereas in the case of learners with less
than 1000 combinations, such as the KNN, the search exhausted
all the possibilities (similar to a grid search setup). The best set
of hyperparameters for each learner was the set that resulted in
the highest f1-score averaged on the three classes.

To evaluate how the models classified each kerogen type and
their general performance, the following metrics were computed
in the validation set: overall accuracy (Acc), Kappa coefficient,
precision, recall, and f1-score. The definition of these metrics is
found as follows:

Acc =
1

N

N∑
i=1

I(y(i) = ŷ(i)) (1)

Kappa =
(po − pe)

(1− pe)
(2)

Precision = 〈P (yc, ŷc)|c ∈ C〉 (3)

P (A,B) =
|A ∩B|
|A| (4)
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Fig. 4. Geochemical results from the six hand samples (colored triangles) and two cores collected (gray and red circles). (a) Modified Van Krevelen diagram to
indicate the kerogen types. (b) HI versus Tmax graph to indicate source rock thermal maturity.

Recall = 〈R(yc, ŷc)|c ∈ C〉 (5)

R(A,B) =
|A ∩B|
|B| (6)

Fβ_score = 〈Fβ (yc, ŷc) |c ∈ C〉 (7)

Fβ(A,B) =
(
1 + β2

) P (A,B)×R(A,B)

β2P (A,B) +R(A,B)
(8)

where C = {I, II, III}, yc and ŷc are the set of observations and
predictions from class c, respectively, and β is the parameter that
controls the Fβ_score, being defined β = 1 in this study, so we
track the harmonic mean between Precision and Recall.

Finally, the five trained models (one for each classifier)
were applied to the test set and the same evaluation metrics
were computed. In the case of the first experiment, the data
came from another core and in the case of the second experiment,
the data came from hyperspectral images from the Taubaté
Basin’s samples.

For model testing in the hyperspectral images, the bands
related to the wavelengths chosen as features for the models
were extracted from each pixel of the images and then used for
inference of a kerogen type class for each corresponding pixel.
As a result of this process, classified images according to the
kerogen type were obtained for each sample.

The implementation of this ML step was performed in a
Python environment (version 3.7) using the scikit-learn library
(version 1.0.1) and tracked using the MLOps platform Weights
and Biases. As support for the application of the models in hyper-
spectral images and their subsequent visualization, it were used
the software ArcGIS (version 10.6.1) and ENVI (version 5.5).

III. RESULTS AND DISCUSSION

A. Geochemical Data

The geochemical analysis results showed different rocks’
characteristics regarding the presence of organic matter. In hand

samples collected at the outcrop, TOC values ranged from 0.3%
and 0.5% in claystones (ARE and AV samples, respectively) to
4.0% and 4.3% in shales (XP1a and XG samples, respectively).
Generally, for thermally immature source rocks (such as those
from Fm. Tremembé), TOC values starting at 4% are consid-
ered excellent [3]. Due to the more significant amount of data
collected, the range of core results is greater with high TOC
contents (greater than 10%) found in papyraceous shales at the
beginning of the profile (up to 7 m).

As a result of the relationship between the geochemical analy-
ses of TOC and Rock-Eval pyrolysis, the HI and OI indices were
computed and plotted on the Modified Van Krevelen Diagram [6]
for kerogen type classification [see Fig. 4(a)]. We noticed that
the hand samples collected in the outcrop are distributed in one
sample as Type I (sample XG), three as Type II (XP1a, XP1b,
and XP2), and two as Type III (AV and ARE). The data from
the SF-01 core are well distributed in the three classes, while the
SF-02 core presented only Type I and II samples. The samples
of this study present interesting variations in facies (shales,
siltstones, and claystones) in the preservation state of the organic
matter, probably in organic matter type and, consequently, in the
kerogen.

Moreover, in Fig. 4(b), we present a diagram between HI
and temperature at maximum hydrocarbon generation rate
(Tmax) [6]. This graph indicates the low degree of thermal
maturation of the analyzed samples, which are considered to
potential source rocks.

To analyze the kerogen type behavior in the outcrop
in a sequential way (according to the depth), we present
Fig. 5.

In Fig. 5, the regions of the geochemical profile of the SF-01
core corresponding to the sampled horizons XP1, XP2, XG, AV,
and ARE are highlighted. One aspect to be highlighted is that,
although the AV and ARE horizons are predominantly composed
of Type III kerogen, they have intercalations and mixtures of
Type II kerogen resulting from the entry of distinct organic
matter into the lake during its formation.
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Fig. 5. Geochemical profile of the SF-01 core with OH and HI plotted. The
horizons where samples were collected are demarcated in the image. The colors
indicate the kerogen type.

B. Hyperspectral Data

The process of hyperspectral collection resulted in a spectral
library with 163 reflectance curves from cores and 91 from hand
samples. The mean values of some spectral curves from SF-
01 core and from hand samples are presented in Fig. 6. Full
results can be viewed in the Supplemental Materials added in
the Appendix.

In order to use hyperspectral data in the characterization of
source rocks, we need to know the spectral signature of the
different minerals and compounds that constitute these rocks,
mainly through reference libraries. However, since these rocks
are sedimentary (constituted by a large mixture of minerals),
their reflectance spectrum is composed of the superposition of
all the spectra of their components [12]. Thus, to establish a
relationship between the spectral responses of these potential
source rocks with the parameters of interest, this mixture of
spectra must also be considered.

In Fig. 6, we note that although the mean curves for each
sample show their differences, it is possible to see the presence
of absorption features in 1400, 1900, and 2200 nm in most
samples. The presence of these features occurs throughout the

Fig. 6. Some mean spectral reflectance curves collected from the core (solid
line) and from the hand samples (dotted line). Full results can be viewed in the
Supplemental Materials.

entire hyperspectral dataset, collected both in the hand samples
and drill cores, and has a relation with molecular water and
hydroxyl ion, common in clay minerals [7], [32], [33]. As the
outcrop is from a lacustrine environment, all layers present a
clay composition.

Among the spectral library collected, only a few samples of
the cores showed the absorption bands at 1700 and 2300 nm,
indicated in the literature as characteristics of the presence of
bitumen in rocks [7], [13]. These features are observed in the
spectral signature at 6.45 m of the core’s depth (see Fig. 6),
whose laboratory analysis indicated a TOC concentration of
8.1% and Type I kerogen. On the other hand, the spectral
responses at 13.18 m core’s depth (6.2%) and XG hand sam-
ple (4.3%), which showed a lower TOC concentration in the
geochemical analyses, did not show the features mentioned.
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TABLE II
SPECTRAL ANGLE SIMILARITY—HAND SAMPLES

TABLE III
SPECTRAL ANGLE SIMILARITY—SF-01 DRILL CORE

In addition to the bands related to the organic content and
clay minerals, in some spectral curves was also identified an
absorption band at 2350 nm, which is a spectral feature of
carbonate minerals. This feature may be related to the presence
of ostracod, which are fossils of small crustaceans present in
rocks whose characteristic is the presence of a calcified bivalve
carapace [34]. The presence of these fossils was observed in the
samples’ visual analysis, agreeing with the spectral curves that
presented the mentioned absorption band.

The similarity between the collected hyperspectral data was
analyzed using the similarity function defined in (9), which is the
same similarity that is used in the spectral angle mapper—SAM
algorithm [35]. We compared the spectral libraries of this study
with each other and confirmed what is observed in Fig. 6.
Among the outcrop samples, the lowest correspondence index
was greater than 0.8, indicating high similarity between the
spectra, even though they may have differences in their main
mineralogical composition or their amount and type of organic
matter. As the core data were more heterogeneous, when we
analyzed this spectral library, the minimum similarity values
were up to 0.45 (between a papyraceous shale type I with 16%
TOC and that of a type III claystone with 0.9% TOC).

SA(X(i), X(j)) = arccos

(
X(i) ·X(j)

‖X(i)‖‖X(j)‖
)
. (9)

To evaluate the spectral behavior of kerogen types, we com-
puted the mean reflectance values and standard deviation among
all samples of each class (see Supplemental Materials, Fig. 15).
The similarity between the kerogen type spectra was also ana-
lyzed using SAM and the results are presented in Tables II (for
outcrop samples) and III (SF-01 core). Likewise, the comparison
of similarities between the samples and cores spectra, here we
also observed the spectral proximity between the kerogen types
with the lowest correspondence between the classes of Types
I and III (0.798 for samples and 0.8 for core), mainly due to
the impact that the change of facies and the presence of organic
matter cause in the spectrum.

This high spectral similarity between the samples and, conse-
quently, between the different kerogen types is indicative of the
complexity of the problem approached in this article and cor-
roborates the need to use robust techniques for its classification.

At last, we present the hyperspectral images collected with
the Mjolnir S-620 sensor and preprocessed according to the

Fig. 7. Hyperspectral images of XP2 and AV samples and an example of its
reflectance curves.

TABLE IV
BANDS ADOPTED AS FEATURES FOR ML MODELS

methodology previously explained. Fig. 7 shows the hyperspec-
tral image from two samples and an example of the reflectance
curve extracted from one pixel of each image. Experiments
showed that for this considered acquisition setup, the effective
pixel is on the order of 1 cm.

The blurred effect on the images is due to the small distance
used in this study between sensor and target (2 m instead of the
20 m minimum distance indicated by HySpex), which can hinder
the clear visualization of samples’ edges and small features on
their surface. However, we performed validation on Mjolnir’s
reflectance data by inspecting the spectral curves extracted in
image pixels and comparing them with the data obtained by the
spectroradiometer. Therefore, when observing Figs. 6 and 7, we
noted that the spectral signatures of the samples acquired in the
XP2 and AV horizons are similar.

After analyzing the spectral signature of all the outcrop sam-
ples (hand samples and drill cores data), we selected ten features
(bands) that could be important for the classification of kerogen
type in source rocks. The features used as input of the models
are presented in the Table IV and in Fig. 6.
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TABLE V
SELECTED HYPERPARAMETERS IN EXPERIMENTS 1 AND 2

TABLE VI
RESULTS ML EXP. 1 VALIDATION

By proposing as the model’s features not only the bands
directly related to the organic matter (B1, B2, and B3) but also
those characteristics of inorganic minerals constituting these
rocks (Cl1, Cl2, Cl3, and Ca); instead of trying to isolate or-
ganic matter and ignoring the influence of these minerals in the
spectrum, we sought to take advantage of possible relationships
they might have with our target variable (kerogen type).

C. Experiment 1: Core

In this first experiment, data from drill cores were explored
with ML algorithms to classify potential source rocks based
on its kerogen type. After numerous runs performed, the set
of hyperparameters selected for each algorithm is presented in
Table V.

In Table VI, we present the results of the model validation
step. With the exception of RF, all other classifiers had Acc
and Kappa greater than 0.8 and 0.7, respectively. We emphasize
SVM and MLP, which presented the highest values of all metrics
computed. Application of the SVM algorithm was also proposed

TABLE VII
RESULTS ML EXP. 1 TEST

in [36] for a robust oil estimation method in oil shale samples
showing promising results.

Focusing on the results by class, we noticed that the best
performance of most models was in the classification of Type
I. This is an encouraging result because this type is the one
with the greatest interest in hydrocarbon exploration, indicating
the rocks with a high generation potential [3], [6]. In addition,
another important aspect is that when analyzing the models’
confusion matrices,1 LR, KNN, SVM, and MLP did not present
confusion in the classification between Types I and III (opposite
classes in terms of generating potential).

To evaluate the models ability to generalize what had been
learned to targets different from those used in their construction
(data from SF-01 as training and validation), we submitted them
to a new dataset from another core collected in the same study
area (SF-02). The computed metrics of this test are presented in
Table VII.

With the application of a new dataset to the trained models,
some degradation in their performance is expected, but it should
not be significant to the point of generating distrust of overfitting
in the learner. Although the SF-02 core dataset does not have
samples of Type III kerogen, the results presented in the table
show that LR and SVM performed well, both with Acc greater
than 0.8 and Kappa greater than 0.6. Moreover, while MLP had a
high result in the validation step, when applied to the new dataset
its performance decreased a lot (Kappa from 0.73 to 0.43). Cases
such as the MLP, with a considerable decrease in the metrics
from validation to testing indicate that there is some overfitting.
This happens because, although spectral data from distinct cores
are similar they are not the same (see Supplemental Materials,
Figs. 21 and 22 for a visualization of those differences); on the
other hand, the SVM appears to be able to generalize to distinct
cores.

Regarding the Type I and II classes, we highlight that the
five models had precision = 1 for Type I kerogen (i.e., every
prediction in this class was assertive) and recall = 1 for Type II
(i.e., samples from this group were 100% classified correctly).

1The confusion matrices can be checked in the Appendix (Supplementary
Material).
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Fig. 8. Representative image of the true classification of the SF-02 core and
the results of each model (unscaled image). The subdivisions in each line/depth
indicate spectral measurements performed on the same drill core fragment (at
the top, bottom, and side positions, for example).

To instance the results mentioned and listed in Table VII, we
present Fig. 8. This image illustrates the comparison between
classes predicted by each algorithm from the spectral signatures
of the SF-02 fragments in different depths and its real kerogen
classification.

Analyzing Fig. 8, we highlight two interesting observations.
The first is that KNN, RF, and MLP presented disagreeing clas-
sifications for spectral measurements of the same sample/depth.
For example, the MLP model predicted different classes for
the two spectral curves from the 3.45 m fragment (3.45_1 as
Type I and 3.45_2 as Type II). This indicates that the threshold
between classes of the mentioned models may not have been
adjusted enough to hyperspectral data from the same samples
(and, consequently, very similar).

Also, four learners, among them LR and SVM which had the
best performance, missed the prediction in the same samples
(from depths 7.45 to 11.45 m). In an attempt to understand this
behavior, we first analyzed the geochemical data that determined
these samples as Type I kerogen, but all of them had HI greater
than 600 mg HC/g TOC, and therefore, they are not on the thresh-
old between the two groups. Eliminating the first possibility,
we looked at the models input data: the spectral signatures. In
Fig. 9, we present some curves of the SF-02 core plotted in
the wavelength range from 1200 to 2400 nm. Observing the
five curves of interest (represented by the yellow lines), it is

Fig. 9. Comparison between some spectral curves of the SF-02 core. The
colors represent: in green are some Type I samples whose LR and SVM models
correctly classified; in yellow are samples from depths of 7.45 to 11.45 m that
are Type I and were classified as Type II; in red some samples correctly classified
as Type II.

noticed that they are visibly different from the others of the same
class (green lines), mainly in the reflectance intensity and in the
behavior of the two regions of absorption bands characteristic
of organic matter at 1700 and 2300 nm. Indeed, the curves seem
to have an intermediate behavior between those of Type I and II
(red lines). Therefore, we assume that these misclassifications
were motivated by the resemblance between the spectra of the
7.45 to 11.45 m samples with those of Type II (lack of 1700 and
2300 nm absorption bands, for example).

D. Experiment 2: Sample

The results of the previous experiment were the first step for us
to state that kerogen type classification using hyperspectral data
is possible. Here, we went further using the models trained with
spectroradiometer to classify images collected by an imaging
sensor, in this case Mjolnir Hyperspectral camera. Table I lists
the hyperparameters selected for this second experiment.

In Table VIII, we present the results of the model validation
step. SVM and MLP also had the best performances, such as
in the first experiment, both with Acc of 0.94 and Kappa of
0.90. When we look at the metrics by class (and the confusion
matrices in the Supplemental Materials), we notice that 100%
of Type I and III samples were correctly classified (recall = 1)
and all Type II and III prediction was correct (precision = 1).

Table IX presents the results of the Experiment 2 test, i.e.,
the application of trained models in the hyperspectral images
of hand samples. Two highlights can be made when inspecting
these results: MLP was kept as the best model; and the LR model,
which had lagged in the validation, fit well with the images
and ranked second among the classifiers in the test step. For
us, this pattern that happened with LR result is not interesting
because the validation result of this model was the best in the
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TABLE VIII
RESULTS ML EXP. 2 VALIDATION

TABLE IX
RESULTS ML EXP. 2 TEST

hyperparameters random search, and then, this superior result in
the test may indicate some poor fit to the data that could lead to
poor generalization. Differences in the distribution of the bands
can be visualized in the Supplemental Materials (Figs. 19 and
20).

When we applied the models to the hyperspectral images,
some differences regarding the precision and recall metrics
between the validation (see Table VIII) and test (see Table IX)
were identified. To help these results discussion, it is important
to analyze, together with the tables, the classified images of each
sample. We show in Fig. 10 the classified images of ten samples
for the five models and their ground truth obtained by laboratory
analysis. We highlighted two results: the worst (RF with Acc
= 0.60; Kappa = 0.38) and the best (MLP with Acc = 0.86;
Kappa = 0.79).

The first issue about the images presented in Fig. 10 is the uni-
formity of the classification inside the same sample. Preliminary
results published in [30] showed very noisy classified images,
which caused some confusion in its interpretations. Here, we
decided to perform feature engineering to extract the mean and
std values for each band selected as input into models to try
attenuate this problem. Therefore, when including as features the
median and standard deviation of these bands for each sample,
we made the classifier more robust to noise in the data.

The same behavior observed in the first experiment also
occurred in this one: the excellent adjustment of the learners
to classify the Type I kerogen samples and the good ability
to distinguish the Type I and Type III classes. First, as Type
I is the best for hydrocarbons generation, our models working
well for this class is a good indication of the functioning and
applicability of the classifier. It is even more encouraging if we
also bring out the aspect of errors (misclassification) occurring
only between adjacent classes, i.e., Types I and II, and Type
II and III. These results indicate that the classifiers correctly
learned the relationship between the hyperspectral data and the
hydrocarbon generation potential of the samples, reducing the
possibility of the high metrics in the validation stage, were due
to some spurious correlation.

The low recall values for class Type III listed in Table IX
are evident when looking at the classified images in Fig. 10. It
appears that the ARE samples are the hardest ones to classify;
only kNN was able to correctly classify one of ARE samples,
the other models misclassified them as Type II. The MLP results
(best model) are slightly different. The spectral signature of one
face of each ARE sample made the model classify it as two
kerogen types spatially distributed, in some portions as Type II
and others as Type III.

In the evaluation of the classified images, we expect to see
only one class for each sample. Although there is spatial vari-
ation in the content of organic matter within the sample, this
should not be significant to the point of changing its kerogen
type. However, when analyzing the result of the ARE sample
classified by the MLP algorithm (see Fig. 10), the hypothesis of
mixing two classes in the same sample was considered. This
fact may be related to episodes of sedimentary transition of
the lake in which zones of mixing occur close to the events of
sedimentation transition, thus occurring the mixing of different
organic materials, resulting in kerogen of different compositions.
In the SF-01 drill core profile (see Fig. 5), it is possible to observe
the mixture of kerogen types present in the respective ARE
horizon.

These reported inconsistencies in relation to the different
methods for kerogen classification (geochemical and hyperspec-
tral) occur due to the analyses nature. The laboratory data are
obtained by a punctual and uniform sampling, where a volume
of the sample is powdered and homogenized to obtain the result,
which is extrapolated for all the sample. In the other hand,
the hyperspectral image analyzes the surface of a target, being
considered as a broader sampling, given that each point (in
this case, pixel) has a respective value with no need for data
extrapolation.

Considering the above-mentioned results and discussion, the
use of hyperspectral images in applications like this experiment
clearly further expands the potential of the nondestructive clas-
sification method proposed here. Besides, inferring the kerogen
type in the sample (approach with a nonimaging sensor as a
spectroradiometer), this information can also be analyzed spa-
tially. In addition to the application of hyperspectral images in
the sample scale, helping with a fast characterization of them
without the need for laboratory analysis, this can be even more
useful in the outcrop scale, being extremely important and useful
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Fig. 10. Classified images for the five models for Taubaté samples and their ground truth obtained by laboratory analysis. The highlighted result (MLP model)
had the best performance.

for understanding the kerogen type’s spatial behavior in the
outcrop and also for sampling orientation [8].

E. Remarks About the Experiments

Differences in the results between learners and experiments
were expected. Each learning algorithm used in the experiments
has inductive biases, that is, it prioritizes some functions from
the hypothesis space from others when trying to approximate the
relation between the reflectance spectra and the kerogen type.

Considering Tables VII and IX, there is discrepancy between
the results of the same learner across experiments (e.g., MLP‘s
accuracy in testing is 0.71 and 0.86 for Experiments 1 and 2,
respectively). This is due to the fact that each of the experiments
explores how the models generalize in distinct situations. In
Table VII, we present the results obtained using the trained
models in a new/unseen core, whereas Table IX represents
the results obtained in the same samples but using a dis-
tinct hyperspectral sensor. This difference in experiment set-
ting shows us that the same learner (e.g., the MLP) behaves
differently when used in a different setup than it was trained
on; from our experiments, the generalization between sensors
appears to be easier than generalization between targets. The
LR learner appeared to be more robust to changes than the
others; this was expected because LR is a high-bias low-variance
learner.

The method presented in this study proved to be applicable for
kerogen type classification in potential source rocks (immature
rocks). The samples analyzed here represent a lacustrine depo-
sitional system with variations in the facies in the preservation
state of the organic matter and, probably, in the type of organic
matter. The effect that other types of lithologies would have on
trained models was not evaluated here, and therefore, our models
may be limited to formations with characteristics similar to the

study area. To apply the method presented in this study to other
sedimentary basins, it is vital that the geochemical and hyper-
spectral dataset used in the models’ training is representative of
these new areas; otherwise, our results will not be replicable.
Future studies will aim on expanding the dataset to account
for more sedimentary basins and different degrees of thermal
maturation.

IV. CONCLUSION

The kerogen type is closely related to the hydrocarbon gen-
eration potential. Therefore, defining it is a critical step in
source rock characterization. Traditional methods to determine
the kerogen type have significant drawbacks: they require spe-
cialized tools and personnel and are destructive. Our results
are prospective and show that ML techniques applied to the
hyperspectral data were useful to classify potential source rocks
according to their kerogen type. The method presented in this
study provides researchers and practitioners with an alternate
procedure that alleviates the bottlenecks of traditional methods
to determine kerogen type. It is fast, nondestructive, and, to the
extent of our testing, appears to be robust in distinct hyperspec-
tral sensors.

We performed two experiments in this study, both using spec-
tral signatures collected with spectroradiometer in core samples
and hand samples to train and validate several supervised ML
models, most achieving accuracy above 0.8 in the validation
step. We presented evidence that the models trained are robust, as
they were able to generalize to datasets with different targets and
to data collected by another hyperspectral sensor. Furthermore,
we show the interesting ability of classifiers to correctly define
Type I samples and mainly distinguish the kerogen type between
Type I (high generation potential) and Type III (low potential)
samples.
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Rapid and synoptic techniques for the inference of geochem-
ical characteristics of source rocks, as proposed in this work,
have great potential to be translated into real-world applications.
Some benefits of this approach are: to simplify sample screening,
allow estimation of organic matter quality indirectly, minimize
operation and time costs, and avoid possible errors caused by
discrete and punctual sampling in heterogeneous geobodies.

Finally, it is not expected that the models trained in this study
would be immediately able to generalize to rock formations with
physicochemical characteristics not represented in the dataset.
On the contrary, the model generalization error is often bounded
by the quality and diversity of the sampling procedure. It is vital
to have access to a representative dataset of the area studied
before using this method.
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