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Adaptive Decomposition and Multitimescale
Analysis of Long Time Series of Climatic Factors and

Vegetation Index Based on ICEEMDAN-SVM
Qianqian Sun , Chao Liu , Tianyang Chen, Anbing Zhang, Chunyang Liu, and Yuan Tao

Abstract—Climate change is of great significance to vegetation
coverage. However, the long time series of climatic factors and veg-
etation index are nonstationary and nonlinear, containing different
information in frequency and time scales. The study innovatively
integrated a support vector machine (SVM) and improved com-
plete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN), and analyzed the relationship between climatic
factors and the normalized difference vegetation index (NDVI) at
three timescales in Loess Plateau (LP). The results indicate that: 1)
The mode mixing phenomenon of empirical mode decomposition
can be better solved by using ICEEMDAN, and the end effect
can be mitigated by using SVM to expand both ends of the data
before decomposition. 2) The residual NDVI stripped out using
ICEEMDAN-SVM can represent the long-term trend of the orig-
inal data. The results show that the NDVI and climate factors
performed noticeable spatial and temporal differences under dif-
ferent climate zones. 3) The relationship between vegetation and
climatic factors revealed obvious spatial heterogeneity at different
timescales, and the climate change in the overall trend explained
the vegetation change to the greatest extent, approximately 95%.
The study has shown that temperature is a limiting factor affecting
the growth of vegetation on the LP. We propose ICEEMDAN-SVM
to study the relationship between climate factors and vegetation
indices at multiple timescales, revealing some hidden information
in long time series and providing a new method to quantify the
impact of climate change on vegetation dynamics.

Index Terms—Climate change, improved complete ensemble
empirical mode decomposition with adaptive noise (ICEEMDAN),
Loess Plateau (LP), multiple timescales, normalized difference
vegetation index (NDVI), support vector machine( SVM).
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I. INTRODUCTION

V EGETATION is an essential component in the terrestrial
ecosystem, and it is affected by the interaction of the

carbon, hydrological, and energy cycles in terrestrial and
atmospheric systems [1]–[4]. The long-time series of vegetation
index and climatic factors are nonstationary and nonlinear
and include different frequency information [5]–[7] such as
monthly, seasonal, annual, interannual, and short- or long-term
changes [8]–[11]. Therefore, the problem is to separate the
different timescales of the long time series.

Currently, some studies depend on normalized difference veg-
etation index (NDVI) data to investigate the connection between
vegetation dynamics and climate change[12]–[15]. For instance,
Bao et al. [16] explored the changing trend of vegetation and
its response pattern to seasonal climatic factors from 2001 to
2010 in the Mongolian Plateau. Chen et al. [17] studied the
annual vegetation change using NDVI from 1982 to 2011 in the
Asia-Pacific region. Rishmawi et al. [18] explored the response
mechanism of NDVI to different climate variables at the inter-
annual scale from 1982 to 2006. Bunting et al. [19] recovered
the lag effect of climate change on vegetation on a monthly
scale in the southwestern United States. All the above studies
are directly analyzed using the traditional time series analysis
method under the assumption of linearity and stationarity.

Considering the datasets of NDVI and the climatic factors are
nonlinear and nonstationary, we analyze the long time series
of vegetation index and climate variables using the multiple
timescale decomposition method. There are many decomposi-
tion tools to separate long time series into different timescales,
such as spectral analysis [20]–[22], wavelet analysis [23]–[25],
multiresolution analysis [11], [26], and time-series satellite data
analysis tool [27]. These methods cannot identify the temporal
and spatial patterns in long time series and there is no quantitative
method that focuses on seasonal and interannual fluctuations
[24], [28]. Although wavelet analysis can divide long time series
into time–frequency space and has been widely used in geophys-
ical research, it lacks quantitative results and self-adaptability in
studies [29].

In addition, some scholars have tried to use the decomposition
method, such as empirical mode decomposition (EMD),
ensemble empirical mode decomposition (EEMD), and
complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) to conduct multiple timescale
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analyses on long-term geospatial data (e.g., remote sensing
images, climate data, and hydrological elements) [30]–[33].
Verma and Dutta [34] used EMD to analyze the NDVI time series
to obtain different traits of vegetation phenology and confirmed
the significance of vegetation change trend by nonparametric
seasonal mann–kendall test. Chen et al. [35] integrated EMD and
redundancy analysis to show temporal and spatial differences in
the enhanced vegetation index, precipitation, and temperature
and analyzed the partial effect of precipitation and temperature
on primary productivity. Qi et al. [36] used EEMD and residual
trend methods to explore the relationship between climate
change, human activities, and vegetation index on multiple
timescales in China’s Silk Road Economic Belt. They indicated
that the time series of vegetation could be divided into 3- and 6-
year timescales and long-term trends. Moreover, climatic factors
mainly affected vegetation changes over short timescales. Zhang
et al. [37] analyzed the vegetation cover changes at different
temporal and spatial scales, and their correlation with climate
change depended on EEMD. Liu et al. [38] used CEEMDAN
and fast Fourier transformation (FFT) methods to explore the
temporal and spatial variations of vegetation and its relationship
with temperature and precipitation in the Inner Mongolia
Plateau, China. The outcomes indicated that the long time series
of vegetation and temperature had 1-year and half-year cycles,
whereas the period of precipitation was a 1-year cycle.

EMD is developed initially from the engineering domain,
aiming to decompose a signal into named intrinsic mode func-
tions (IMF) along with a trend [39], which has two problems,
i.e., mode mixing and end effect [40]–[42]. Improved complete
ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) is the cutting-edge member belonging to the
EMD family to gain components with stronger physical meaning
and less noise from a long-term sequence, which can alleviate
the problem of mode mixing [43]. The end effect is a problem
throughout the whole family of EMD [41], [42], where both
ends of the long-term sequence to be decomposed will cause
data distortion because they are not continuous like those points
in the middle. The effect may also lead to a biased conclusion
on addressing research questions in the geographic domain. So,
the study uses the algorithm of machine learning to add a certain
number on both sides of the original data, which can effectively
suppress the end effect problem. support vector machine (SVM)
is a method in machine learning. At present, some scholars have
proved the SVM can be an excellent way to mitigate the problem
of end effect in the EMD family [44]–[48].

Based on the two problems proposed above, we innovatively
integrate ICEEMDAN and SVM into ICEEMDAN-SVM, to
study the long time series of NDVI and climatic factors (temper-
ature and precipitation) of Loess Plateau (LP) from 1982 to 2015
to obtain components at different timescales, and then use FFT
to conduct the spectrum analysis of different components [22],
[49], [50]. The main objectives of this article are as follows:

1) using ICEEMDAN and SVM methods to reduce the
effects of the mode mixing and end effect problems;

2) analyzing the change trends of vegetation NDVI, temper-
ature, and precipitation and detecting the performance of
the long-term trend of NDVI;

3) analyzing the relationship between vegetation types
and their corresponding climatic factors in different
timescales.

II. MATERIALS AND METHODS

A. Study Area

The LP is located between longitudes 100° 54′ E to 114°
33′ E and latitudes 33° 43′ N to 41° 16′ N, which belongs to
the upper and middle reaches of the Yellow River of China
[51]. Its area is approximately 640 000 km2 and the altitude is
800–3000 m. It has a complex landform, productive geological
environment, severe soil erosion, and a frail ecological system
[52], [53]. The annual precipitation is 150–750 mm and the
annual mean temperature is 3.6–14.3°C. The vegetation types
in the LP are mainly evergreen broad-leaved mixed forests,
desert steppe, typical steppe, and forest-steppe [54], [55]. Fig. 1
exhibits the spatial distribution of different vegetation types and
three climate zones of the LP.

B. Datasets

The NDVI product has 15-day intervals with 0.083° spatial
resolution, belonging to the third generation Global Inventory
Monitoring and Modeling System (GIMMS NDVI3g) dataset
[56]. The dataset was carefully calibrated to minimize the
harmful impacts including volcanic eruptions and orbital drift
[56], [57]. Its long time series variation indicates the true charac-
ter of vegetation activity changes [58]–[61]. The NDVI data were
obtained according to the maximum value composite method to
decrease the effect of clouds and aerosols on the atmosphere
[62]

NDVIi= Max (NDVIi1,NDVIi2) (1)

where NDVIi is the NDVI for the ith month, NDVIi1 is the
NDVI for the first 15 days of the ith month, and NDVIi2 is the
NDVI for the last 15 days of the ith month. To avoid the impact
of winter and early spring extreme weather on the vegetation, the
growing season for this study was chosen from April to October
[63], [64] and used the datasets from the growing season to
conduct research.

The climate datasets were obtained from the Chinese Climate
Academic and Science Dataset (http://cdc.cma.gov.cn/), which
includes, but is not limited to, monthly mean temperature and
accumulative precipitation from 52 meteorological stations of
LP. To obtain the identical temporal and spatial resolution as
NDVI data, we used the inverse distance weighting method for
climate datasets from 1982 to 2015 [65].

Land cover data are retrieved from MODIS products
(MCD12C1) with 0.05° spatial resolution and 17 land-cover
types (see Table I). We adopted the identified land cover dataset
from 2001 to 2012 and further selected those pixels that had not
been changed in this period. Moreover, we omitted those make-
believe land (e.g., farmland) since their greenness could be more
impacted by human activities rather than climate change. Finally,
three vegetation types, i.e., mixed forests, grasslands, and barren
or sparsely vegetated, are applied to analyze the relationship

http://cdc.cma.gov.cn/


SUN et al.: ADAPTIVE DECOMPOSITION AND MULTITIMESCALE ANALYSIS OF LONG TIME SERIES OF CLIMATIC FACTORS 6205

Fig. 1. Spatial distribution of different vegetation types and three climate zones of the LP.

TABLE I
INTERNATIONAL GEOSPHERE–BIOSPHERE PROGRAM LAND COVER

CLASSIFICATION

between vegetation and climate change. The interpolated surface
of climatic factors and land cover data were resampled to obtain
the identical format as the NDVI product so that each greenness
value corresponds to the values of a set of climatic factors and
land cover data (see Fig. 2).

The relationship between vegetation and climate is very
complicated and closely dependent on regional effects, such
as regional soil, landform, and vegetation types [66], [67].
According to the climatic regions in Fig. 1, the vegetation types
have been divided into six categories in Table II.

C. Analysis Methods

Two problems are embedded in the EMD family, i.e., mode
mixing and end effect [40]–[42]. The development of EMD
has been centering on mitigating the impact of these problems.
ICEEMDAN, the cutting-edge method in the EMD family in
this study, mitigates the impact of mode mixing. Moreover, the
SVM can suppress the end effect [44], [68] problem by adding a
certain number of points on both sides of the original data. The

Fig. 2. GIS data layers of LP.

TABLE II
DIVIDING ORIGINAL DATA INTO SIX CATEGORIES BASED ON THREE CLIMATE

ZONES AND THREE TYPES OF NATURAL VEGETATION

principles of the ICEEMDAN and SVM are demonstrated in the
following sections.

1) Improved Complete Ensemble Empirical Mode
Decomposition With Adaptive Noise (ICEEMDAN): The
ICEEMDAN is the latest member in the EMD family,
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where EMD is a method derived from the Hilbert–Huang
transform [39]. EMD is a time–frequency analysis method
with local adaptive characteristics, which is mainly used
to analyze nonstationary signals from nonlinear systems.
The above-mentioned method can decompose a signal into
multiple IMF components and a residual [38], [39], [47].
In geography, scholars treat IMF in specific frequencies as
cycles in corresponding timescales (e.g., annual and interannual
scales) [69]–[71]. The basic principle of the EMD is as follows.
For the original data f (t), we obtain the extreme point of f
(t) and generate the upper and lower envelopes via linking
all local maxima and minima with cubic spline interpolation,
respectively. Next, f (t) minus the means of upper and lower
envelopes. Repeating the above steps, until it satisfies the
stopping criteria that it cannot extract IMFs. That can obtain
a finite number of basic mode components imfj (t) and the
residual term rn (t). The expression is as follows:

f (t) =

n∑

j=1

imfj (t) + rn (t) . (2)

The ICEEMDAN is proposed by Colominas et al. [43], which
adds a certain amount of Gaussian white noise to original data
so that the data has continuity between different components.
It generates new extreme points, which can reduce the mode
mixing phenomenon. When it comes to a geographic domain,
we can assume the long-term sequences of NDVI or climatic
factor is x. Therefore, the algorithm can be described as follows.

1) Add a certain amount of Gaussian white noises to the
long-term sequence x. The signal to be decomposed is
as follows:

xi = x+ β0 · E1

(
wi

)
(3)

where xi is the signal to be decomposed with white noise, and
i is the number of times to add white noise, where i = 1, 2, …,
n. β0 is the size of the noise, wi is the zero mean unit variance
white noise, and E1 (wi) is the first EMD component of wi.

2) IMF1 of ICEEMDAN was obtained by decomposing xi

using EMD. That is

IMF1 = x− 〈
M

(
xi
)〉

(4)

where 〈·〉 is to achieve averaging and M(·) is the operator which
produces the local mean of the signal.

3) Assess the second residual as the local average of the
realization 〈M(xi)〉+ β1 · E2(w

i) = r1 + β1 · E2(w
i) ,

and define the second component

IMF2 = r1 −
〈
M

(
r1 + β1 · E2

(
wi

))〉
. (5)

4) In the same way, the kth signal to be decomposed is rk−1 +
βk−1 · Ek(w

i). Compute the kth mode

IMFk = rk−1 −
〈
M

(
rk−1 + βk−1 · Ek

(
wi

))〉
. (6)

5) Repeat step (4) when the obtained residual is a monotonic
function that is unable to decompose again.

2) Support Vector Machine (SVM): The SVM method was
put forward by Vapnik [72], which is one of the most commonly
used tools in many fields, including geography [46]. SVM uses

Fig. 3. Optimal separating line of SVM.

pattern recognition to find the optimal separation plane in the
linearly separable problem to classify the data nonlinearly (see
Fig. 3).

Using nonlinear mapping Φ to map data x to a high-
dimensional feature space F and to perform linear regression in
this feature space is the basic principle of SVM for regression.
x includes NDVI, precipitation, and temperature.

f (x) = ω · Φ(x) + b,Φ ·Rn → F, ω = F (7)

where ω represents the weight vector, b represents bias, and Rn

represents an n-dimensional vector.
The main advantage of SVM is that it employs the structural

risk minimization (SRM) principle, which has been shown to
outperform the empirical risk minimization (ERM) principle
used by traditional neural networks. SRM seeks to minimize
an upper bound on the generalization error consisting of the
sum of the training error and the confidence level based on
the Vapnik–Chernoverkis dimension, which is different from the
commonly used ERM principle that only minimizes the training
error. This method has proven to be very effective for solving
generic classification and regression problems [73]–[75]. The
basic idea of SVM for regression is to introduce kernel function,
map the input space into a high dimensional feature space via
a nonlinear mapping, and perform a linear regression in this
feature space [72].

3) Demonstrate the Result of the Simulation Signal by
Integrating ICEEMDAN and SVM: The ICEEMDAN can re-
duce the impact of the issue of mode mixing, but the end effect
is not resolved. The SVM mitigates the end effect, but there
is still uncertainty at both ends of the signal after extending.
Therefore, that needs to notice that the SVM extension can only
mitigate the impact of the end effect and does not eliminate it.
We use the simulation signal to demonstrate the performance of
SVM and ICEEMDAN. The simulation data is x(t) given by

x (t) = 2 cos (8πt) + cos (4πt) (8)

where x(t) is composed of two periodic functions. Fig. 4 illus-
trates time-domain waveforms, the horizontal axis represents the
value range to [−0.95, 0.95] and the vertical axis represents the
signal’s amplitude. There are 191 points in total. In the figure,
the red curve is the envelope of the original signal from the
value range [−0.95, 0.95] and the blue is the real envelope. It
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Fig. 4. Comparison of real envelopes and distorted envelopes of the simulation signal.

Fig. 5. Effect of the SVM on extending the simulation signal.

shows that the two endpoints of the signal are directly taken as
the maximum and minimum points (green curve), but the end-
points are not extreme (red curve). The local extreme points are
continuously reduced and sparse as the decomposition process
progresses, and these false components gradually “pollute” the
entire data inward. Because the data are distorted at both ends,
the end effect is gradually generated. To eliminate or optimize
the “end effect,” it should start from the correction envelope to
resolve, which requires that the left and right endpoints of the
data cannot be taken as extreme points. So, it is necessary to
predict the left and right endpoints to add extreme points.

The study used SVM to predict each end of the original
signal by adding 15 points, for adding a certain number of
extreme points and eliminating data distortion at both ends.
As shown in Figs. 5 and 6, the horizontal axis is used as the
length and the vertical axis is the amplitude. In Fig. 5, the
SVM expansion data were extended 15 points at each side of
the original signal, and the signal length after the expansion
was 221. We obtain a correlation coefficient between the orig-
inal expansion data and the SVM expansion data of 1, which
demonstrates that the curves of the original expansion data
and the SVM expansion data completely coincide, indicating
an adequate prediction by the SVM. Fig. 6 demonstrates the

two components of IMF1 and IMF2 obtained by ICEEMDAN
decomposition of the original signal and SVM expansion data in
Fig. 5. There is no mode mixing of the two components. IMF1
and IMF2 of the real signal are two trigonometric functions
from x(t), which are 2cos(8πt) and cos(4πt), respectively. Using
the real signal to demonstrate the results of the decomposition
is more convincing. The result of the original data decom-
position deviates at both ends. Moreover, this deviation has
affected the internal data, but the extended data can attenuate this
phenomenon.

Depending on the datasets (NDVI, precipitation, and tem-
perature) length used in this article and the range of growing
season, there are seven data points per year for a total of 34
years, so the length of each dataset includes 238 readings (seven
periods in the growing season × 34 years). Using SVM to
predict the datasets of a cycle at both ends of the long time
series of NDVI, precipitation, and temperature, a cycle is the
length of the growing season (seven points). The ICEEMDAN
decomposes each predicted dataset that can not only reduce the
end effect of the EMD family method itself but also eliminate
the mode mixing. Different components of the original dataset
can be obtained after decomposition, and then the frequency
information of different components can be obtained by FFT
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Fig. 6. Results of different data by ICEEMDAN.

Fig. 7. Representation of the methodological framework used in this study.

[38], [50]. The sampling frequency is 7, and the sampling point
is 238 for our study. After FFT, each point corresponds to a
frequency point in hertz (Hz). When the main frequency of the
obtained component is 1 Hz, it is divided into annual scales.
The last component of the original data is the residual, which can
represent the long-term trend, and the components between 1 Hz
and residual are accumulated to be interannual scale. Therefore,
the original datasets are divided into three scales, namely annual,
interannual, and overall trend (see Fig. 7).

III. RESULTS

A. Multiple Timescale Analysis for NDVI and Climate Factors
by ICEEMDAN-SVM

The study used a multiscale decomposition method to
decompose NDVI, precipitation, and temperature datasets to

uncover the correlation between the vegetation index and climate
variables at different timescales while discussing the vegetation
cover change of the LP in the past 34 years. Fig. 8 shows the
original data of NDVI, precipitation, and temperature during the
growing season from 1982 to 2015. NDVI has clear periodicity,
with some small fluctuations in the later stages. The change
is complex and random, whereas the temperature has a stable
periodicity. All three datasets show an upward trend, their long
time series are nonstationary, and each data type has its char-
acteristics. Therefore, when using ICEEMDAN to decompose
different datasets based on pixels, different data should be added
to different noises to reduce the mode mixing phenomenon.
After many experiments, the number of white noise additions is
50, the standard noise deviation of temperature is 0.1, and the
standard noise deviation of precipitation and NDVI is 0.3 [28],
[76], [77].
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Fig. 8. Long time series of NDVI, precipitation, and temperature during the 1982–2015 growing season on the LP.

Fig. 9. Compare the NDVI decomposition results by the ICEEMDAN and the ICEEMDAN-SVM.

Due to the shortcomings of the EMD method, it can cause the
issue of mode mixing and end effect. Therefore, it is essential to
alleviate the end effect based on the SVM and ICEEMDAN
method to eliminate the mode mixing phenomenon. Fig. 9
shows the results of NDVI decomposition by ICEEMDAN and
ICEEMDAN-SVM. The ICEEMDAN decomposition of the
data after SVM expansion can improve the end effect of the
obtained component, and it is better to get the real change trend

of each component than to perform the ICEEMDAN decomposi-
tion directly. The decomposition of the long time series of NDVI
using EMD and ICEEMDAN-SVM is shown in Figs. 10 and 11,
respectively, where, in Fig. 10(a), the horizontal axis indicates
the length of NDVI and the vertical axis indicates the fluctuation
range of NDVI values, and in Fig. 10(b), the horizontal axis
indicates hertz and the vertical axis indicates the amplitude.
IMF1 and IMF2 have mode mixing at the 1 Hz position in
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Fig. 10. (a) EMD decomposes the NDVI into six IMFs and a residual. (b) FFT spectrum of the seven components.

Fig. 11. Decompose long time series of the NDVI using the multiscale decomposition method. (a) ICEEMDAN-SVM decomposes the time series into six IMFs
and a residual. (b) FFT spectrum of the seven components. (c) Dividing seven components into three scales, annual scale, interannual scale, and overall trend.

Fig. 10(b). Using the ICEEMDAN-SVM decomposed the NDVI
in Fig. 11, the mode mixing of the components of IMF1 and
IMF2 has been basically eliminated at the 1-Hz position.

In Fig. 11, ICEEMDAN-SVM decomposes the NDVI original
time series into detailed information of different timescales.
The noise and periodic fluctuation information can be obtained
after decomposing the original data decomposition. The NDVI

time series after multiscale decomposition is smoother, and
the residual has an obvious increasing trend, which can more
intuitively reflect the changing trend of vegetation coverage.
NDVI is decomposed into six IMFS and a residual. According
to the scale segmentation in this study, the first component of
NDVI, IMF1 contains high-frequency changes as noise, IMF2
is the first scale as annual scale, and the four components of
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Fig. 12. Spatial change trends of NDVI between 1982 and 2015. (a) Original NDVI. (b) Residual NDVI.

IMF3-IMF6 are reorganized into the second scale as interannual
scale, residual is the third scale as the overall trend. Similarly, the
datasets of temperature and precipitation do the same processing
at pixel scale to decompose based on the ICEEMDAN-SVM
method.

B. Change Trends of Vegetation NDVI, Temperature, and
Precipitation in the Loess Plateau (LP)

Studying the spatial distribution characteristics and change
trend of the vegetation cover on LP from 1982 to 2015, using
linear regression to study the changing trend, and the F test
to analyze the significance level. The residual was obtained
by decomposing the original data using the ICEEMDAN-SVM
method, and then this study also conducted a trend analysis
on the residual NDVI to verify whether it could express the
long-term trend of the original data. The statistical results show
that the changing trend of vegetation coverage mainly performed
an increasing trend in the growing season. The percentage of
areas with increasing trends of original NDVI was 91.23%, of
which an extremely significant increase (p < 0.01) and signif-
icant increase (p < 0.05) accounted for 59.95% and 10.59%,
respectively [see Fig. 12(a)]. In Fig. 12(b), the residual NDVI
with an increasing trend is 91.16%, of which the proportions of
areas showing an extremely significant increase and significant
increase accounted for 87.89% and 0.98%, respectively. From
the two results, it can be seen that the percentage of areas with
an increasing trend of NDVI is much larger than the percentage
of areas with decreasing trend. The proportion of area with
significance in the residual NDVI change trend is greater than
that in the original NDVI change trend, so the residual NDVI
reflects the changing trend better than the original NDVI. All
in all, the vegetation change in the LP area in the past 34
years has been dominated by improvement, with an increase in
vegetation cover and an improved area larger than the degraded
area.

TABLE III
MEAN VALUES OF GROWING-SEASON TOTAL PRECIPITATION (GSP), MEAN

TEMPERATURE (GST), AND NDVI (GSN) OF DIFFERENT VEGETATION TYPES

FROM 1982 TO 2015 ON THE LP

The growing-season mean temperature (GST), NDVI (GSN),
and growing-season total precipitation (GSP) are shown in
Fig. 13, and the mean values of the study periods are shown
in Table III. GSN and GST show a significant increasing trend,
with increasing rates of 0.0018 year-1 and 0.0253 °C year-1

(p< 0.01), respectively, whereas GSP shows a slowly increasing
trend (slope = 0.1983 mm year-1, p > 0.05). Regarding the
various trends of different vegetation types, there are significant
spatial differences for GSP, GST, and GSN.

The average GSP in the study area from 1982 to 2015 was
387.05 mm. The GSP distribution has obvious regionality, and
the vegetation types with the largest to smallest values of mean
GSP are SHF > SAF > SHG > SAG > AG > AB. The mean
GST during the study period is 16.60 °C. The vegetation type
with the highest GST is SAF (17.99 °C), and the lowest average
is SHG (14.20 °C). From the trend in Fig. 13(d) and Table III, the
GST of different vegetation types shows a significant increasing
trend with time, and there are certainly regional differences.

For GSN, it showed an apparent upward trend during the study
period. In addition, the changing trend in GSN was significant
for all vegetation types except for AB (slope = 0.0001 year-1),
and the changing trend of SAF was the most significant at 0.002
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Fig. 13. Change trends of growing-season total precipitation (GSP), mean temperature (GST), and NDVI (GSN) from 1982 to 2015 on the LP.

year-1. It indicates that the humid climate is more conducive to
vegetation growth than the arid climate. The analysis of the three
indicators shows that different climate regions have some effects
on NDVI on LP, whereas there are some spatial differences
in GSP and GST in different climate regions, which also have
different degrees of influence on vegetation cover.

C. Relationships Between Vegetation and Climate Factors at
Different Timescales

Our study used ICEEMDAN-SVM to divide the original
datasets (NDVI, temperature, and precipitation) into annual
scale, interannual scale, and overall trend to study the relative
importance of climatic factors (temperature, precipitation) to

NDVI. Partial correlation analysis was performed with temper-
ature and precipitation as independent variables and NDVI as the
dependent variable (see Fig. 14). Table IV shows the significant
percentages of the area between climatic factors and NDVI at
different timescales.

At the annual scale, the spatial characteristics of the partial
correlation between the NDVI and temperature are illustrated
in Fig. 14(a). The partial correlation coefficients have 97.29%
of the study area passing the significance test (p < 0.05), and
the percentage with significant positive correlation are 96.51%.
Only a few vegetations had a nonsignificant negative correla-
tion with temperature. The spatial characteristics of the partial
correlation between NDVI and precipitation are illustrated in
Fig. 14(b), 92.64% of the areas passed the significance test
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Fig. 14. Relationship between NDVI and climate factors (a), (c), and (e) represent the relationships with temperature, and (b), (d), and (f) represent the relationships
with precipitation at the annual, interannual and overall trend, respectively.

(p < 0.05), and the significant positive areas accounted for
90.24%, mainly located in arid and semiarid areas. The nega-
tively correlated areas are primarily distributed in the semihumid
areas. The overall effect of precipitation on vegetation changes
in semiarid areas is greater than in arid areas. It shows that

both precipitation and temperature have a powerful influence on
vegetation coverage, and the temperature has a greater impact
than precipitation on the annual scale.

At the interannual scale, the spatial characteristics of the
partial correlation between NDVI and temperature are illustrated



6214 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE IV
PERCENTAGE OF AREAS FOR DIFFERENT RELATIONSHIPS BETWEEN NDVI AND CLIMATIC FACTORS AT DIFFERENT TIMESCALES

in Fig. 14(c). In 72.08% of the areas, the temperature and NDVI
are negatively correlated. Only 35.56% passed the significance
test, with 6.19% of the regions where the temperature was
positively correlated with NDVI. The spatial characteristics
of the partial correlation between NDVI and precipitation are
illustrated in Fig. 14(d). The partial correlation coefficients
between precipitation and NDVI have 71.27% of the areas that
passed the significance test. The areas with a positive correlation
are 64.29%, generally located in the central LP, containing the
semiarid areas. The negative correlation (6.98%) is primarily
distributed in the upper reaches of the Yellow River and semi-
humid regions. Therefore, it can be explained that vegetation
coverages have less demand for precipitation when the soil
moisture is relatively high. In addition, the explanatory power of
the effect of temperature and precipitation on vegetation cover
change is weaker than that of the annual scale.

In the overall trend, the spatial characteristics of the par-
tial correlation between vegetation NDVI and temperature are
illustrated in Fig. 13(e). The positive areas were 68.33%, the
negative areas were 27.22% (p < 0.05). The spatial character-
istics of the partial correlation between NDVI and precipitation
are illustrated in Fig. 14(f). The partial correlation coefficients
between precipitation and NDVI passed the significance test,
in 94.95% of the areas, with 53.80% (p < 0.05) of the regions
showing a significant positive correlation. It can be seen from
the above analysis that the change of NDVI is influenced by
both temperature and precipitation, and different regions and
climates have different influences on vegetation coverage. On
different timescales, the response of vegetation to precipitation
and temperature is different. The above analysis results can show
that precipitation and temperature can better explain the changes
in vegetation coverages on the annual scale and the overall trend,
which is greater than the interannual scale.

This article analyzed the correlation between different veg-
etation types and climatic factors at different timescales, and
the correlation coefficients of pixels of different vegetation
types were statistically analyzed. As can be seen in Fig. 15,
the same vegetation responds differently to temperature and
precipitation on different timescales. At the same timescale,
the same climatic factors have different effects on different
vegetation types. Fig. 15(a) illustrates the distribution of the
correlation coefficients of AB for annual scale, interannual scale,
and overall trend with precipitation and temperature. On the
annual scale, the influence of temperature on AB is greater than
that of precipitation, and the mean values of the absolute values
of the partial correlation coefficients (|R|mean) are 0.53 and 0.47

(p < 0.05), respectively. For the interannual scale, precipitation
has a greater impact on it than temperature. On the overall trend,
precipitation and temperature have similar effects on AB.

Fig. 15(b), (d), and (f) shows the partial correlation coeffi-
cients of grassland in arid, semiarid, and semihumid regions with
precipitation and temperature at different scales. For the annual
scale, the correlation between Grassland and precipitation in
the semiarid region is the strongest, with the |R|mean being
0.57 (p < 0.05), and the semihumid region (|R|mean = 0.35)
is the weakest, indicating that precipitation exists a little effect
on vegetation in the semihumid region. The temperature exists
the strongest impact on Grassland in the semihumid region
(|R|mean = 0.77), and the arid region (|R|mean = 0.50) is the
weakest impact. This indicates that temperature has an inhibitory
effect on vegetation in arid areas. For the overall trend, the
effect of precipitation on Grassland is greater than that of
temperature.

Mixed forests are mainly distributed in semiarid and semihu-
mid climate regions. As shown in Fig. 15(c) and (e), at the annual
scale, the impact of precipitation on SAF (|R|mean = 0.44) is
higher than SHF (|R|mean= 0.15). There is no obvious difference
in the effect of temperature on mixed forests in different climate
regions. The effect of temperature on mixed forests is higher
than that of precipitation. Similarly, at the interannual scale,
the effect of precipitation and temperature on mixed forests
is weaker. For the overall trend, for SAF, both precipitation
and temperature correlate well, but for SHF, the effect of tem-
perature (|R|mean = 0.86) is higher than that of precipitation
(|R|mean = 0.72). It showed a higher correlation compared to
the annual and interannual scales.

In general, at the annual scale, the impact of precipitation on
different vegetation types is SAG>AG>AB> SAF> SHG>
SHF, and the effect of temperature on different vegetation types
is SHF > SAF > SHG > SAG > AB > AG. At the interannual
scale, the effect of precipitation on different vegetation types
is AG > SAG >AB > SHF > SAF > SHG, and the impact
of temperature on different vegetation types is AG > SAG >
AB> SHG > SAF > SHF. For overall trend, the effect of
precipitation on different vegetation types is AG>AB> SAF>
SAG > SHF > SHG, and the effect of temperature on different
vegetation types is SHF > SHG > SAF > AB > SAG > AG.
Therefore, at different timescales, precipitation has a greater
impact on vegetation coverage in arid and semiarid regions. The
temperature has a greater effect on vegetation coverage in the
semihumid region, and the impact on mixed forests is higher
than that on Grasslands.
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Fig. 15. Partial correlation coefficients of different vegetations with temperature and precipitation at different timescales.

IV. DISCUSSIONS

A. Methodological Considerations and Innovations

The ICEEMDAN method is a time-frequency analysis method
in the field of signals, which is used in this article to study the
relationship between vegetation dynamics and climate change.
As an extension of the EMD method, ICEEMDAN can obtain
components with less noise and stronger physical meaning
[36], [43], which largely eliminates the problem of mode mixing
[28]. However, the ICEEMDAN method produces endpoint
effects in the decomposition, which is a problem with the EMD
family [40]–[42]. When time series are decomposed directly
using ICEEMDAN, both endpoints of the original data are
mistaken for extreme values. Therefore, the false information
will gradually “pollute” the entire data inward, causing the
information at two endpoints of each component to be distorted.

Using SVM to predict the changing trend of long time series in
many fields, and previous studies considered that the SVM has
favorable generalization ability and high prediction accuracy
[44]. Cheng et al. [40] and Yang et al. [48] used the SVM to
expand the original time series at the two endpoints to reduce
the endpoint problem of the EMD method and achieved excellent
results. Our study also proves that SVM can predict extending
the original data before decomposition, which reduces the end
effect on each component.

B. Spatial and Temporal Variation of NDVI, Temperature, and
Precipitation in the Loess Plateau (LP)

The study used the ICEEMDAN-SVM method to strip out the
residual of the long time series to study the spatial and temporal
trends of vegetation on the LP from 1982 to 2015. Previous
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studies pointed out that the residual component can represent the
overall trend of the original time series [35], [36], [78], so it can
justify the study in this article. The study showed that the spatial
trend of vegetation mainly increased on LP from 1982 to 2015.
Related studies also show that vegetation cover of the LP has
had an increasing trend in recent years [63], [79], [80], which is
identical to our findings. Meanwhile, the residual NDVI change
trend is more significant (95.84%, p < 0.05) than the original
NDVI (72.24%), p < 0.05). Therefore, the residual NDVI can
reflect the changes in vegetation well. The above results support
the conclusion that vegetation activity has increased signifi-
cantly in the northern hemisphere at middle and high latitudes
[81]–[83]. Spatially, the LP region straddles three climatic zones,
arid, semiarid, and semihumid, and has obvious environmental
characteristics of ecological transition zones (see Fig. 1).

The study analyzed precipitation, temperature, and NDVI
according to six vegetation types (see Table II), and the results
showed that NDVI, temperature, and precipitation under differ-
ent climatic zones in the LP region had significant differences
in the past 34 years. It has been shown that climatic zones can
influence the growth of vegetation [84], [85]. Overall, our results
further reveal the spatial and temporal changes in vegetation
dynamics and climate in the LP over the past 34 years.

C. Effects of Climate Change on Vegetation NDVI Changes at
Multitimescale

There are different effects of different climatic factors on
the same vegetation, and there are also different responses of
different vegetation to the same climatic factors [69], [86],
[87]. Using the ICEEMDAN-SVM method can divide long
time series (NDVI, temperature, and precipitation) into annual
scale, interannual scale, and overall trend and use regression
analysis to study the relationship between climatic factors and
NDVI at different timescales. The research uncovered that the
relationship between vegetation cover and climatic factors is
not only influenced by climatic and vegetation types but also
changes with timescales [88]–[90]. The effects of temperature
and precipitation on NDVI are different at different timescales
[16], [91], [92]. NDVI correlates more with temperature and
precipitation on the annual scale and overall trend than on the
interannual scale. At the annual scale, the correlation between
precipitation and NDVI (|R|mean = 0.51, p < 0.05) is lower than
the correlation between temperature and NDVI (|R|mean = 0.60,
p<0.05), and the relationship between precipitation and temper-
ature on vegetation coverage is mainly positive, which is consis-
tent with the study of Zhang et al. [90]. At the interannual scale,
the correlation between precipitation and NDVI (|R|mean = 0.29,
p< 0.05) is higher than the correlation between temperature and
NDVI (|R|mean = 0.19, p < 0.05), and the effect of precipitation
on vegetation is mainly positively correlated, and the tempera-
ture is mainly negatively correlated. For the overall trend, the
correlation between precipitation and NDVI (|R|mean = 0.75,
p < 0.05) is lower than the correlation between temperature and
NDVI (|R|mean = 0.80, p < 0.05), and temperature promotes
vegetation growth more than precipitation. Therefore, long-term
precipitation increases will prevent vegetation changes, and

long-term temperature increases can promote photosynthesis,
which is further beneficial to vegetation changes [36], [88], [94].

This article showed the correlation between different vege-
tation types in different climate regions and climatic factors at
different timescales have obvious differences. Overall, vegeta-
tion in arid and semiarid regions requires higher precipitation
than temperature [95]–[98]. However, this relationship has less
impact in semihumid regions [18], [36], [64]. The temperature
is the main driving factor for vegetation in semihumid regions,
which is also consistent with previous studies [94], [99]. At
different timescales, precipitation has greater changes in vege-
tation coverages in arid and semiarid regions, and the effect of
precipitation on Grassland is greater than that of Mixed forests.
The temperature has a greater effect on vegetation coverages in
semihumid regions, and the impact on Mixed forests is higher
than that on Grasslands. Most studies have shown that NDVI has
no significant correlation with temperature and precipitation in
most areas. Although, only the interannual scale showed that
most areas were insignificant on the LP in our study. As the
timescale increases, the effect of climate change on vegetation
becomes stronger. It shows that climatic factors are the major
factors that affect long-term vegetation changes [36], [38].

V. CONCLUSION

Taking the LP as an example, this article innovatively inte-
grates ICEEMDAN and SVM methods to study the relationship
between vegetation dynamics and climate change at different
timescales. The main findings are as follows:

1) Compared to the EMD method, the ICEEMDAN method
can reduce the effects of mode mixing, and the use of
SVM can suppress the effects of the end effect before
decomposition.

2) ICEEMDAN-SVM was used to separate the long-time
series of vegetation and climate change on the LP from
1982 to 2015 into three scales, annual, interannual, and
overall trend, where NDVI under the overall trend scale
can symbolize the overall trend of the original data.

3) The vegetation indices and climate factors show sig-
nificant spatial and temporal differences under different
climate zones.

4) The relationship between vegetation dynamics and
climate change showed significant variability at different
timescales, where overall trend > annual > interannual.
Under the same timescale, different climatic factors have
different effects on the same vegetation, and different
vegetations have different responses on the same climatic
factors.

The study proved that the climatic zone of the LP also had an
impact on the study results. Overall, vegetation types in arid and
semiarid regions have a greater demand for precipitation, and
temperature is the major driving factor for vegetation in a semi-
humid climate. This study reveals the nonlinear characteristics of
vegetation change and its relationship with the drivers in the LP.
The patterns and dynamics of ICEEMDAN-SVM are significant
for further use in ecosystem research in other regions, which can
reveal some hidden information to better understand the dynamic
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changes of fragile ecosystems and is important for the research of
vegetation conservation and fragile ecosystem restoration under
global climate change. Since this study does not consider the
nonlinear effects of human activities and other natural factors,
further work should gather more influencing factors for multiple
timescale analysis to ascertain the influences of other factors on
vegetation cover to conduct a more comprehensive analysis.
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