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Fast Patchwise Nonlocal SAR Image Despeckling
Using Joint Intensity and Structure Measures

Dongxing Liang , Ming Jiang, and Jinshan Ding , Member, IEEE

Abstract—Nonlocal means synthetic aperture radar (SAR) im-
age despeckling approaches have attracted much research atten-
tion. However, high computational burden always limits its appli-
cation in practice, especially using complex similarity measures. We
present a fast patchwise nonlocal method using joint intensity and
structure measures for SAR image despeckling. Nonlocal meth-
ods often define the similarity criterion only based on amplitude
or intensity image. In order to preserve structure details, the
structure information is also introduced into similarity measure
by constructing gradient orientation feature map. The gradient
orientation statistical test is performed to determine whether the
patches contain the same structural components, and the similar
patches are selected through the constant false alarm ratio strategy.
Furthermore, we reorganize the patchwise nonlocal despeckling
method and accelerate it using fast Fourier transform. Meanwhile,
we utilize a Gaussian kernel to aggregate patchwise weights for
each pixel in its patch area, so as to reduce the blur effect of classi-
cal patchwise nonlocal methods on details. The experiments have
demonstrated that the proposed method is an efficient restoration
method and has great structure and texture retention ability.

Index Terms—Despeckling, fast nonlocal means, gradient
orientation, radar image, structure measure, synthetic aperture
radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) images have been widely
used in remote sensing (RS) [1], [2]. However, SAR images

are often difficult to interpret due to speckle noise caused by ran-
dom constructive and destructive interference within a resolution
cell. The speckle noise degrades SAR image quality, therefore
impairing the performance of SAR image-based applications.

It is highly desired to recover clean images from noisy im-
ages, known as SAR image despeckling. Many SAR image de-
speckling approaches have been developed in the past decades.
They can be categorized into the spatial domain-based methods
[3]–[5] and the transformed domain-based methods [6]–[8],
utilizing sparse representation models [9], [10] or variational
models [11]–[13]. Recently, deep learning-based despeckling
methods have received much attention, which mostly require
supervision in training using simulated data or multilook images
as the ground truth [14]–[18]. A self-supervised despeckling
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method was proposed in [19]. The most successful despeckling
approach so far has been the nonlocal paradigm [20], which has
inaugurated a new generation of despeckling filters.

The nonlocal approaches, known as nonlocal means (NLM),
was originally proposed in [21] for image denoising, which
are based on the selfsimilarity property within image. The
estimation of a pixel is performed by averaging similar pixels
within the image (usually, within a search window for simplicity
and faster computation). The key procedure of these approaches
is the similarity measure, which is evaluated not directly on a
considered pixel but on the patches centered on the considered
pixel [22]. Over the last decade, several methods for measuring
patch similarity have been proposed [23]–[25].

Since the nonlocal approach was applied to SAR [26], a
few works have been reported with specific characteristics in
terms of the adopted similarity criterion and/or the procedure
used to fuse similar pixels. Under the assumption of additive
white Gaussian noise, the sum of squared differences is regarded
as an intuitive criterion for similarity evaluation between two
patches. However, considering the characteristics of the mul-
tiplicative noise and non-Gaussian noise, specific criteria for
SAR images must be derived. The criterion, adopted in [26],
is the logarithm of the ratio between arithmetic and geometric
means. Similar expressions were also reported in [27]–[29]. A
direct amplitude ratio-based metric was proposed in [30], and the
sigma filter was incorporated in the nonlocal framework [31]. In
SAR-BM3D [32], the nonlocal and wavelet decomposition are
combined to achieve satisfying results. Recently, a guided non-
local filter was reported, combining SAR data and optical data
to compute the joint filter weights, which requires strict coregis-
tered SAR and optical images [33]. Most of these methods rely
on strict speckle noise model assumption, while the assumption
cannot be verified in some cases. Hence, a model-free nonlocal
approach was proposed with two similarity criteria, one of which
is obtained by directly comparing the distributions of the patches
whereas the other compares the distribution of ratio patches [34].

It should be noted that the improvement in despeckling is
achieved at the expense of high computation burden, which
limits the applications of nonlocal approaches. Several meth-
ods have been proposed to reduce the computational cost. For
instance, the method of preselection of pixels [35], early termi-
nation to eliminate dissimilar blocks [36] and multiresolution
decomposition-based method [37], aim at reducing the number
of similar pixels involved in calculation. Besides, the complexity
of weight calculation can be decreased by using fast Fourier
transform(FFT)-based operation [38], which is an alternative to
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reduce the computational cost. FANS [39] employs a varying-
size search area driven by the activity level of each patch to
reduce the complexity, while probabilistic early termination
and lookup table strategies are also used. However, most of
these accelerated methods do not implement the exact nonlocal
approaches, which may impair the denoised image quality.

We propose a computational efficient patchwise nonlocal
approach for SAR image despeckling in this article. First, in-
tensity and structure information are both considered in the sim-
ilarity measure, where the structure information is represented
by constructing the gradient orientation map. Meanwhile, we
explore the statistical characteristics of gradient orientations,
then the constant false alarm ratio (CFAR) strategy is employed
to reject patches without obviously similar or with opposite
structural components. In addition, we optimize the patchwise
nonlocal algorithm so that it is accelerated by FFT. Finally, to
tackle the blur influence in the conventional patchwise nonlocal
despeckling, the filter weights derived from joint intensity and
structure similarity measures are computed by aggregating all
the patchwise weights within the patch area of each pixel using
a Gaussian kernel.

This article is organized as follows. Section II briefly reviews
the nonlocal approaches for SAR image despeckling. Section III
describes the proposed method using joint weights combining
the intensity and structure information and its acceleration by
FFT in detail. Experimental results are shown in Section IV.
Finally, Section V concludes this article.

II. NONLOCAL APPROACH

Assume a noisy image V, v(x) = f(u(x)), where v(x) and
u(x) denote, respectively, the degraded and true intensity values
at coordinates x = (x1, x2), and f(·) denotes a degradation
function. According to the nonlocal approach, the estimated
value û(x) is computed as the weighted average of similar pixels
v(x+ t) within a search neighborhood Nx of x

û(x) =
∑

(x+t)∈Nx

w(x+ t,x)v(x+ t) (1)

where t = (t1, t2) means a 2-D offset away from x. The weight
reflects the similarity level between the predictor patchP(x+ t)
and the target patch P(x). Actually, based on the similarity,
P(x+ t) can be either soft assigned or hard assigned to the set
of similar patches of P(x) [20]. In the case of soft assignment,
a weight reflecting the similarity level is associated to each
patch within the search area; otherwise, if the patch P(x+ t) is
significantly dissimilar to P(x), the pixel at (x+ t) is simply
removed from the neighborhood Nx or, equivalently, the weight
w(x+ t,x) is set to 0.

Recently, patchwise NLM has been shown to significantly
outperform the pixelwise version [20]. The main idea is to
aggregate more estimates of the same pixel, which are eventually
combined to reduce the estimate variance. In practice, this is
achieved by computing the nonlocal weighted average of all the
pixels of the target patch instead of only the center pixel, which

Algorithm 1: The Process of Classical Patchwise NLM.
Input: noisy image V, half-length of patch size ds,

half-length of search window size Ds, interval Sd

Initialize: Vd ← array filled with 0
Output: denoised image Vd

1: for all pixels at coordinates x in V with two
dimensional intervals (Sd, Sd) do

2: for all pixels at coordinates (x+ t) ∈ Nx do
3: Select the patches P(x) and P(x+ t)
4: Compute the weight w(x+ t,x)
5: Add P(x+ t) to the patch of coordinates x in Vd

with weight w(x+ t,x)
6: end for
7: end for
8: Compute final estimate Vd with weights normalization

can be shown as follows:

û(x+ k) =
∑

(x+t)∈Nx

w(x+ t,x)v(x+ t+ k) ∀k ∈ P

(2)
where P indicates the set of spatial offsets with respect to the
center point. It can be observed that a whole patch area can be
denoised at the same time. Therefore, a 2-D interval can be used
when the previous denoising process traverses the image, as long
as the interval is smaller than the patch size. The algorithm of
patchwise NLM is summarized in Algorithm 1.

Although the patchwise version was first presented as a way
to reduce the complexity of pixelwise NLM using the 2-D inter-
val [21], it is obvious that using fewer blocks in the aggregation
procedure probably also reduce the denoising performance.

III. PROPOSED APPROACH FOR SAR DESPECKLING

In this section, we propose a computational efficient patch-
wise nonlocal approach using joint weights combining the in-
tensity and structure information. The joint filtering weights
provide more reliable predictors and reduce the dependence to
the exact model of speckle noise. We reorganize the flowchart
of the patchwise nonlocal and accelerate it through FFT.

A. Intensity Distance

Let us consider a common multiplicative model, v(x) =
u(x)n(x), with n(x) a gamma random variable modeling the
speckle. The SAR intensity distance is computed with the ratio
between the arithmetic and the geometric means

di[x+ t,x] =
1

N

∑
k∈P

log

[
v(x+ t+ k) + v(x+ k)

2
√

v(x+ t+ k)v(x+ k)

]
(3)

where N = |P | is the patch size. This is the distance utilized
in [28], which is considered as the generalized likelihood ra-
tio and performs best. Specific statistical analysis is presented
in [33].
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Fig. 1. Original SAR image and corresponding gradient orientation feature
map (rad). (a) SAR image. (b) Gradient orientation map.

B. Structure Distance

To preserve the structure details, the structure similarity is
measured in this article. The gradient orientation has been proved
to be able to measure the structure similarity between RS images,
even for multisource RS images [40]. Hence, we attempt to
extract gradient orientation from an amplitude image as a feature
map to be measured. Fig. 1 shows an original SAR image and
the corresponding gradient orientation feature map, in which the
gradient information is obtained by using Sobel operator. One
can see that although the SAR image suffers from speckle noise,
its structure and texture information can still be clearly observed
in the corresponding gradient orientation map, which provides
a basis for the subsequent use of gradient direction for structure
similarity measure.

Inspired by Liang et al. [40], the patchwise structure measure
is written as follows:

do[x+ t,x] =
1

N

∑
k∈P

cos(o(x+ t+ k)− o(x+ k)) (4)

where o(x+ t) and o(x) represent the gradient orientation at
coordinates (x+ t) and x, respectively. The distance is not
exactly the same as the one with extra coefficient 2 in cos(·)
proposed in [40], because the gradient direction here belongs to
[0, 2π) instead of [0, π) for multisource RS images.

Based on the structure measure, we would like to identify
whether predictor patches have similar structural components as
the target patch. Assuming that if a homogeneous region is full
of random noise, its corresponding gradient orientation follows
a uniform distribution U(0, 2π) and is independent of the noise
model. Common noise models, such as Gaussian, Rayleigh,
and square root gamma distributions, are simulated, and the
gradient direction distribution corresponding to each case is
shown in Fig. 2. It can be clearly observed that the gradient
orientation distribution always follows the uniform distribution
U(0, 2π) and is independent of the specific noise models, which
is consistent with our hypothesis.

Further, let us consider the following three cases of patches:
1) flat patch,
2) patch with significant structure information, and
3) patch with different structure information from (2), and in

extreme cases with opposite gradient directions.

Fig. 2. Different noise models in amplitudes of SAR image and the corre-
sponding gradient orientation distributions. (a) Gaussian noise. (b) Gradient
orientation distribution of (a). (c) Rayleigh noise in the case of 1-look. (d)
Gradient orientation distribution of (c). (e) Square root gamma noise in the
case of 4-look. (f) Gradient distribution map of (e).

As expressed in (4), the difference of two orientations is
presented such that

Δθ = o1 − o2 (5)

where o1 and o2, respectively, represent the gradient orientation
values of the two pixels within two patches. It is intuitive that as
long as one of the patches is a flat area,Δθ still obeys the uniform
distribution U(0, 2π). Hence, the structure similarity measure
has no judgement for flat patches. If the two patches have a sim-
ilar structure, the value of cos(Δθ) will be close to 1; otherwise,
the value will be close to -1 for patches with gradient inversion.
Therefore, the similarity measure can help us to identify the
patches with similar or opposite structural components. On this
basis, the structure distance can be incorporated with intensity
distance to provide more reliable predictors by improving the
weights of patches with the same structure and suppressing the
weights of patches with heterogeneous structures.

For a more precise analysis, the statistics of patchwise struc-
ture distance are supposed to be reported. As abovementioned,
the adjacent pixels within 3× 3 area are utilized in Sobel
operation to compute the gradient information of the center
pixel. Consequently, the gradient orientation variables in a patch
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Fig. 3. Empirical PDFs of do for different cases. (1) One of patches is flat
patch (solid red). (2) Patches with similar structural components (dashed blue).
(3) Patches with opposite structural components (dashed black).

violate the independence. For the convenience of subsequent
statistical analysis, the structure distance is rewritten as follows:

do[x+ t,x]

=
1

N ′
∑

{k∈Z2:|3k|∞≤ds}
cos(o(x+ t+ 3k)− o(x+ 3k)) (6)

where N ′ presents the actual number of pixels involved in the
measure. By selecting the center pixel for each 3× 3 region, the
selected gradient orientations follows independent identically
uniform distribution U(0, 2π). Given an example, assuming a
patch of gradient orientation map with size of 7× 7, the mask
to select pixels is presented as follows:

Mo =
1

9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 1 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where the nonzero numbers represent the active (N ′ = 9 in this
case) pixels in the patch contributing to the structure distance
in this case. For the case Δθ ∼ U(0, 2π), cos(Δθ) is a random
variable with zero mean and variance of 1/2. The patchwise
structure distance do[x+ t, x] is the sum of N ′ independent
identically distributed random variables, which can be well
approximated by a Gaussian law with zero mean and varianceσ2

of 1/(2N ′). Note that the statistics are independent to the noise
model. In order to verify the theoretical analysis, we resort to
Monte Carlo simulation. Fig. 3 plots the empirical probability
density function (PDF) of structure distance between two flat
patches (solid red).

Fig. 4. Original SAR patches and the corresponding noisy patches. (a) Refer-
ence SAR patch. (b) Noisy version of (a). (c) SAR patch with opposite structure.
(d) Noisy version of (c).

Then, two patches with the same gradient orientations or
opposite gradient orientations are considered. Fig. 4 presents
the noise-free patches and corresponding noisy versions.

Lacking the closed form of the PDFs, we still resort to
Monte Carlo simulation. Fig. 3 illustrates the empirical PDFs
for two patches with the same structure (dashed blue) and for
two patches with opposite gradient information (dashed black).
As expected, the PDFs with significant structure can be well
separated. Therefore, the CFAR strategy is adopted to select
patches with strong structure information. Specifically, we set a
threshold T and assign the structure distance less than T to zero
such that

do(x+ t,x) =

{
0 |do(x+ t,x)| ≤ T

do(x+ t,x) |do(x+ t,x)| > T.
(8)

C. Joint Intensity and Structure Weight

Obtaining the patchwise intensity and structure distances, the
joint weight needs to be further determined. First, the intensity
weight is simply defined as follows:

wi(x+ t,x) = Ci exp{−λdi(x+ t,x)} (9)

whereCi is a normalization constant and λ determines the decay
of the exponential function.

As for the structure weight, the structure distance can only
judge whether two patches have similar structure or different
structure except for flat patches, as analyzed in the previous
section. As long as two patches have the same gradient orien-
tation information, the high similarity score will be obtained
regardless of the intensity difference between them. Hence, the
structure weight can be only taken as a gain of the intensity
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Fig. 5. Images to show the effect of joint weight. The center pixel and patch
are highlighted in red. (a) Original image window. (b) Noisy image window.
(c)Gradient orientation map of (b). (d) Weight map computed according to (9).
(e) Gain map from (10). (f) Joint weight map from (11).

weight, and the intensity distance is supposed to be taken into
account to calculate the gain at the same time. The gain is defined
as follows:

go(x+ t,x) = Co exp{−λdi(x+ t,x)[1− do(x+ t,x)]}
(10)

where Co is a normalization constant. The expression brings
a high gain if there is a high similarity in both intensity and
structure, or a low gain if one of them is weak.

Combining (9) and (10), the final joint weight is expressed as
follows:

w(x+ t,x) = wi(x+ t,x)go(x+ t,x)

= C exp{−λdi(x+ t,x)[2− do(x+ t,x)]}
(11)

where C is the joint normalization constant.
Fig. 5 shows an example of introducing gradient orientation

into weight calculation. As shown in the original image window,
the target patch includes only a small effective number of similar
patches, which are along the edge. The pixel intensity difference
in the noisy image is not obvious, which makes it unreliable to
select the similar patches only by intensity. Fig. 5(d) presents
the intensity weight map, where some dissimilar patches are
also assigned with high weights. Although the image intensity
information is destroyed to some extent, some structure infor-
mation can still be clearly observed in the gradient orientation
map, as shown in Fig. 5(c). The corresponding gain map and the
joint weight map are presented in Fig. 5(e) and (f). As we can
see, the weights of unreliable patches are suppressed in the joint
weight map, which verify the effectiveness of using gradient
direction information.

D. Fast Patchwise NLM

In this section, a fast nonlocal flowchart is introduced. As
described in Algorithm 1, the target patch is estimated simulta-
neously. A noticeable fact is that the pixelwise similarity mea-
sure is repeatedly calculated in the classical patchwise nonlocal
methods, and the larger the patch size, the more time-consuming
the repeated calculation. Therefore, first, loops are rearranged
so that one considers all pixels x for all translation vectors
t ∈ [−Ds,+Ds]

2. Then, given such a t, the distance maps of
intensity and structure are, respectively, obtained as follows:

si(x, t) = log

{
v(x) + v(x+ t)

2
√
v(x)v(x+ t)

}
(12a)

so(x, t) = cos(o(x)− o(x+ t)). (12b)

The corresponding weighted norms of patch differences are
written as a discrete convolution product

di(x,x+ t) =
∑

{k∈Z2:‖k‖∞≤ds}
Ki(k)si(x+ k, t)

= (K̃i ∗ si(t))(x) (13a)

do(x,x+ t) =
∑

{k∈Z2:‖k‖∞≤ds}
Ko(k)so(x+ k, t)

= (K̃o ∗ so(t))(x) (13b)

where K̃i(k) = Ki(−k) and K̃o(k) = Ko(−k) demonstrate
the weighted kernels for intensity and structure relatively, the
operator ∗ represents the discrete convolution production, and
si(t) and so(t) indicate intensity and structure distance map
corresponding to the shift vector t. It is worth noting that the
kernels used in intensity and structure measures are different.
The kernel for intensity is a (2ds + 1)× (2ds + 1) normalized
matrix with the same elements, while a matrix with the form such
as Mo for structure. After obtaining these patchwise distances,
the joint weights can be computed according to (11).

In this way, the repeated pixelwise distance calculation is
eliminated, and then, how to efficiently realize (2) needs our
further consideration.

The target pixel belongs to an amount of patches, not only the
patch centered on it. The weights between a considered pixel and
the target pixel are not only related on the similarity measures
between two patches center on them, but also all corresponding
patches including the two pixels. Fig. 6 shows a simple example
to illustrate this issue. There are two pixels v1 and v2 with
given offset t1. The estimation of pixel v1 does not only rely
on the weight measured by the two red patches centered on
them to weighted average the value of v2, but also the weights
measured by two green patches, two blue patches and other
corresponding patches including the two pixels. Actually, these
weights between v1 and v2 are exactly the weights obtained
between each patch centered on the point in the patch area of v1
and the corresponding patch with the same t1.
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Fig. 6. Representation of patchwise approach: the considered pixel is weighted
average with different weights measured by all corresponding patches including
the considered and the target pixels, but not only patches centered on them.

Hence, the weighted average procedure can be rewritten as
follows:

û(x)=
∑

t∈[−Ds,Ds]2

∑
m∈[−ds,ds]2

w(x+m,x+m+ t)v(x+ t)

=
∑

t∈[−Ds,Ds]2

(Kp ∗ w)(x+ t)v(x+ t) (14)

where Kp is a normalized kernel with the same elements to
collect the patchwise weights within a patch area.

As it is well known, the convolution operation can be accel-
erated by using 2D-FFT denoted by F and its inverse F−1

K̃ ∗ si = F−1(F(K̃)F(si)). (15)

Thus, all convolution operations mentioned above are acceler-
ated using the same means as (15).

Although patchwise nonlocal filter has been proved to be
effective in reducing the rare patch effect [20], we found that the
details will be blurred and several structure contours are eroded
so that some small targets disappear. To conduct an in-depth
analysis of this issue, let us consider a special case of a pixel
near a line, such as the red point shown in Fig. 7(a), where the
rectangles represent patches with the size of 7× 7. It is clear that
the patch centered on the target pixel has strong heterogeneity
and most other patches, due to the homogeneous area in the
search region, are obviously dissimilar from it. Using pixelwise
nonlocal filter, only a small effective number of patches, dashed
red ones along the black gap in Fig. 7(a), can be utilized to the
average, which results in high variance. As a result, a visible
“halo” of residual noise is observed near the gap, as shown in
Fig. 7(b). However, the target pixel belongs to a large number of
patches centered on the neighboring pixels of the target pixel and
these neighboring pixels are within the patch area of the target
pixel. In the patchwise NLM, all of these patches are included
in the average reducing the estimate variance. However, many
pseudo similar patches, such as the green rectangles with high
weights, may be included in the procedure in Fig. 7(a). The solid
green patch contains the target pixel at the corner of the patch,

Algorithm 2: The Process of FND-IS Algorithm.
Input: noisy image V, half-length of patch size ds,

half-length of search window size Ds, threshold T
Initialize: Vsym ← symmetrized noisy image

Vd ← array filled with 0
Output: denoised image Vd

1: Construct gradient orientation map G and
symmetrized version Gsym

2: for t = (t1, t2) ∈ [−Ds, Ds]
2 do

3: Select the intensity map and gradient orientation
map Vsym[t] and Gsym[t]

4: Compute the element-wise distance between V and
Vsym[t], G and Gsym[t]

5: Compute the patchwise distance di(t) and do(t)
using FFT

6: Transform do(t) according to (8)
7: Compute the joint filtering weight map w(t)

according to (11)
8: Collect all patchwise weights within the patch area

for each pixel according to (15)
9: Add the Vsym[t] to the Vd with corresponding

weights
10: end for

Fig. 7. Denoising results using different nonlocal filters. (a) Original noisy
image. (b) Classical pixelwise nonlocal method. (c) Classical patchwise nonlocal
method. (d) Proposed method with a Gaussian kernel.

which is strongly similar to other dashed green patches in the
homogeneous region. Nevertheless, the target pixel is clearly
different from the corresponding pixels in these pseudo similar
patches and the number of these pseudo similar patches is much
larger than the actual number of similar patches. In the classical
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TABLE I
DETAIL INFORMATION OF THE TEST IMAGES

Fig. 8. Test images. (a) No.1. (b) No.2. (c) No.3. (d) No.4. (e) No.5. (f) No.6. (g) No.7. (h) No.8.

patchwise NLM, Fig. 7(c) shows the filtered result, where the
black gap is significantly thinner and the edge details are blurred.

In order to deal with the issue, we would like to use a spatial
kernel in (14), where Kp is set to a Gaussian kernel such that

∀m ∈ Z, |m|∞ ≤ ds,Kp(m) =
e
− |m|2

2σ2
1

∑
{j∈Z2:|j|∞≤ds}

e
− |j|2

2σ2
1

(16)

where σ1 controls the action range of Gaussian kernel, and the
value is set tods/3 in the article. With the improvement, Fig. 7(d)
presents the despeckling result in the proposed method. As we
can see, the proposed method provides a satisfactory result,
which outperforms the conventional pixelwise and patchwise
NLM.

The proposed method, called as fast nonlocal despeckling, us-
ing joint intensity and structure measures (FND-IS), is described
in Algorithm 2.

IV. EXPERIMENTAL RESULTS

A. Datasets

The experiments conducted on real SAR images are pre-
sented. Four single-look and four multilook SAR images were
both tested to validate the effect of the proposed method. To
evaluate the robustness of the proposed approach, the test images
were acquired from different sensors, different platforms, dif-
ferent work frequency, and different work modes. These images
cover a variety of scenes, such as urban, suburban, farmland, and
crossroad. The detail information of the test images are presented
in Table I, and all the images are shown in Fig. 8.

B. Key Parameters

The proposed method depends on several key parameters.
In Algorithm 2, all key parameters are presented. Some of
them were simply set similar to other literatures, such as search
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window size, 21× 21, and patch size, 7× 7. With a low false
alarm ratio, the threshold T was set to 1 + 2σ, which is 1.47, as
analyzed in Section III-B. The selection of T is independent of
the noise model. The decay λ has a rather obvious meaning and
need no more special analysis. A common principle is that for
large noise, λ is supposed to be set a smaller value to smooth the
image. On the contrary, for small noise variance, a larger value
is preferred to preserve the image details. In the experiments,
λ was set as 10 and 30 for single-look and multilook images,
respectively.

C. Evaluation

A good filter is supposed to guarantee both effective reduction
of speckle and reliable preservation of structure details, but
these requirements are often contradictory. In general, deep
despeckling tends to blur details of the image, while conservative
details preserving leads to residual speckle remained in the
image. Therefore, two quantitative criteria, equivalent number
of looks (ENL) and edge-preservation degree-based ratio of av-
erage (EPD-ROA), to evaluate the image quality are considered.
Besides, visual inspection is necessary to assess details of the
filtered images.

ENL is the squared ratio between the mean and the standard
deviation of the image intensity over a homogeneous region of
the image. The regions utilized to compute the index are drawn
in white boxes in Fig. 8. The ideal value should be as large as
possible.

EPD-ROA [30] measures the quality of edge preservation in
the filtered image, which is expressed as follows:

EPD-ROA =

∑n
j=1 |v̂D1

(j)/v̂D2
(j)|∑n

j=1 |vo1(j)/vo2(j)|
(17)

where n is the total number of selected regions, v̂D1
(j) and

v̂D2
(j) represent two adjacent pixels of the filtered image in a

certain direction (usually horizontal or vertical), and vo1(j) and
vo2(j) are two pixels of the original image corresponding to
v̂D1

(j) and v̂D2
(j). The closer EPD-ROA to 1, the better the

edge preservation. In the subsequent experiments, the average
of EPD-ROA obtained in the horizontal and vertical directions
is computed.

Except for these indicators to measure the quality of the
filtered images, the execution time of the despeckling method is
also an important consideration for applications in practice.

D. Reference Methods

We compared the performance of the proposed method with
the state-of-the-art methods, such as PPB, FANS, GNLMS, and
MEET-SAR, with a brief summary given as follows.

1) PPB [26]: A probabilistic patch-based nonlocal filter,
where the output is given by an iterative weighted maxi-
mum likelihood estimator.

2) FANS [39]: A faster and spatially adaptive version of SAR-
BM3D [32], which is superior to the original SAR-BM3D.

3) GNLMS [33]: A guided patchwise nonlocal method using
optical images is called GNLM, but it is also effective
with only SAR images. In this section, GNLMS is derived

TABLE II
ENLS OF SINGLE-LOOK IMAGES

Bold entities are used to indicate the best performance among the algorithms, as
suggested by the Review Board.

TABLE III
ENLS OF MULTILOOK IMAGES

Bold entities are used to indicate the best performance among the algorithms, as
suggested by the Review Board.

from GNLM as only SAR images considered for a fair
comparison.

4) MEET-SAR [34]: A model-free nonlocal denoising
method, which is independent of the noise model.

For all of the reference methods, the suggested parameters in
the original papers were retained. A noticeable fact is that there
are some hidden parameters in these reference methods, such
as the interval Sd described in Algorithm 1. All of the intervals
were set to 1, which ensure the exact implementation of the
approaches and make it faithful for comparison.

E. Performance Analysis

Tables II and III show the ENL results for single-look test
images and multilook images, respectively. Table IV reports the
average EPD-ROA values in horizontal and vertical directions.

The proposed method outperforms other reference methods
in most cases. Especially for the multilook case, the proposed
method provides the best results in both speckle reduction and
details preservation. This may benefit from the improvement
of signal-to-noise ratio (SNR) so as we can further smooth
images while maintaining the structure details due to the gradient
information. Among these methods, PPB provides competitive
or even the best ENLs in single-look case to ensure effective
speckle reduction, but some details are lost according to the
values of EPD-ROA. FANS and GNLMS obtain similar results
in speckle reduction and detail preservation, where the ENLs
of FANS is slightly higher than GNLMS for single-look case.
MEET-SAR seems to produce the least values in both ENL and
EPD-ROA.
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Fig. 9. Denoising results over a test single-look image. Row 1 (from left-hand side to right-hand side): original image, despeckling results of PPB, FANS,
GNLMS, MEET-SAR, and proposed method, respectively. Row 2: excerpts from row 1 highlighted in red.

Fig. 10. Denoising results over a test multilook image. Row 1 (from left-hand side to right-hand side): original image, despeckling results of PPB, FANS,
GNLMS, MEET-SAR, and proposed method, respectively. Row 2: excerpts from row 1 highlighted in red.

TABLE IV
EPD-ROA OF TEST IMAGES

Bold entities are used to indicate the best performance among the algorithms, as
suggested by the Review Board.

To further compare the denoising details, Figs. 9 and 10
present filtered results and zoomed areas of a single-look sample

and multilook sample, respectively. Through a visual com-
parison, PPB can effectively suppress speckle, but sometimes
smear edges and structures such as buildings. Likewise, FANS
also performs smoother results, but remarkable wavelet-related
artifacts, which degrades the image quality. GNLMS provides
better results in speckle suppression and detail preserving. How-
ever, on close inspection, some details are blurred and structure
contours are eroded. MEET-SAR maintains the image details
at the expense of poor speckle reduction for single-look case,
but provides smoother result for multilook case. For both of
single-look and multilook cases, the proposed method performs
well in speckle reduction and structure preservation. Especially,
with the improvement of the SNR of the SAR images, the
proposed method outperforms the others, which smooths the
homogeneous areas and retains the details.

F. Computational Cost

In this section, the computational cost of these methods
is evaluated in terms of image size. The image size l × l is
varying with l = 64, 128, 256, 512, 1024. The computational
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TABLE V
RUN TIME (S)

Bold entities are used to indicate the best performance among the algorithms, as
suggested by the Review Board.

complexity of the methods was evaluated by CPU time on a
3.40 GHz 64 b desktop equipped with 64 GB memory. The
source code of PPB and FANS, based on C++ mex function,
are available in [41] and [42], respectively, while the rest of the
methods are implemented in MATLAB.

Table V reports the running time for the methods versus the
various image size. We note that MEET-SAR is at least seven
times more computationally expensive than the other methods,
which is intractable in practical applications. This is because the
distribution measure is time-consuming, and four anisotropic
patch shapes are taken into account, which further increases
the computational time of the method. GNLMS is the second
only to MEET-SAR in the execution time, as it is implemented
pixel by pixel in the spatial domain. PPB and FANS, due to
the C++ implementation, are theoretically faster than the other
methods implemented in MATLAB. Between FANS and PPB,
FANS is at least 30 times faster than PPB as FANS uses varying
size search area and lookup tables and employs a probabilistic
early termination approach. Although implemented in MAT-
LAB, our proposed method is the most efficient among all of
the methods, noting three magnitudes faster than MEET-SAR,
two magnitudes than PPB and GNLMS, and several times than
FANS.

It has been demonstrated that the proposed method is the most
efficient and provide competitive or even the best despeckling
results.

V. CONCLUSION

An efficient patchwise nonlocal method based on joint inten-
sity and structure measures has been proposed in this article
for fast SAR image despeckling. We introduce the structure
information into similarity measure that is independent of the
noise model and the number of looks. Then, the CFAR strategy
is adopted to ensure reliable similar patches. Meanwhile, the
proposed method is accelerated by FFT after theoretical opti-
mization. In addition, a Gaussian kernel is utilized to suppress
the weights of some pseudo similar patches, which can avoid
oversmoothed area and retain more details. The experimental
results have convinced the efficiency of this method.

The gradient orientation information cannot be fully utilized
due to the independence requirement, which can be further im-
proved. Future work focuses on further exploring the statistical
characteristics of structure features.
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