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Focal Frame Loss: A Simple but Effective
Loss for Precipitation Nowcasting
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Abstract—Precipitation nowcasting is an important but hard
problem. Currently, with the landing of deep learning, it has been
treated as an image prediction problem based on radar echo maps.
However, deep learning models suffer from poor performance and
blurred prediction results. Lots of improvement works enhance the
model by adding complex modules, which increases insufferable
training memory and time overhead. Others tempt to add more
limitations or guidances on loss, but they usually have little effect
in such an extremely complex and difficult task. In this article, we
propose a simple but effective loss named focal frame loss (FFL),
which assigns different weights to the images in the prediction
sequence to focus on the images that are relatively difficult to
predict. Experiments on two large-scale radar datasets show that
FFL can greatly improve the performance of multiple popular
models without introducing additional training costs.

Index Terms—Deep learning, low overhead, precipitation
nowcasting, sequence prediction.

I. INTRODUCTION

NOWADAYS, precipitation nowcasting, usually up to
2 h [1], plays an important role in many fields such as agri-

culture [2], travel [3], transport [4], fieldwork [5], etc. It provides
critical guidance for planning and scheduling in production and
daily life. Accurate and high-resolution precipitation nowcasting
has become a hot research topic in meteorology and hydrology
communities [6]. However, predicting the short-term rainfall in
a region is challenging as it relies on a mass of meteorological
factors such as temperature, humidity, wind, pressure in the
region, and complex atmospheric physical mechanisms.

Traditional methods for precipitation nowcasting can be
roughly categorized into two classes, which are numerical
weather prediction (NWP [7], [8], [9]) based methods and radar
echo extrapolation based methods. Numerical models usually
require an integration period to spin up the deduction processes
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and are greatly affected by the initial condition field, which leads
to poor prediction performance in the first few hours [10]. Fur-
thermore, solving the complex atmosphere equations consumes
huge amounts of computing resources, which prevents real-time
and high-resolution predictions [11]. The echoes detected by
weather radar reveal the intensity of precipitation, and extrap-
olation (or prediction) of radar echo maps has become one of
the important means for precipitation nowcasting [12]. Another
prominent strategy is using optical flow methods to extrapolate
the radar echo maps [13], [14]. Precipitation prediction is made
along the optical flow field, which is calculated based on the last
few radar maps. These methods usually cannot give accurate
prediction results in practice since they can only capture the
simple linear change, while plenty of complex nonlinear changes
exist in nowcasting [15].

In recent years, with the development of deep learning, many
studies [16], [17], [18], [19], [20], [21] introduce deep learn-
ing into precipitation nowcasting by formulating it as a radar
echo spatiotemporal sequence prediction problem [22], [23],
[24]. Nevertheless, spatio-temporal prediction is challenging
attributing to the high nonlinearity in temporal dynamics as well
as complex location-characterized patterns in spatial domains,
especially in fields like precipitation nowcasting [25]. Some
works [26], [27], [28] use the convolutional model UNet [29]
with a simple structure for precipitation nowcasting. However,
convolutions have natural shortcomings in capturing temporal
trends due to their inability to cope with complex temporal
nonlinear changes. ConvLSTM [16] is the pioneer recurrent
model to solve this problem, which utilizes convolution and
LSTM [30] to model the spatial variation and temporal dynam-
ics, respectively. However, the performance of ConvLSTM is
not satisfactory, and the predicted frames usually suffer from
the blur problem [31].

Previous works can be divided into two ways to enhance the
capabilities of the basic deep learning model. One is using more
powerful structures. For instance, PredRNN [18], MIM [19],
and MotionRNN [20] enhance ConvLSTM’s ability in capturing
complex meteorological changes by adding more complex mod-
ules. However, they bring in a lot of model parameters and inter-
mediate variables, which greatly increase the time and memory
cost of training. Others [32], [33] attempt to add more limitations
or guidances based on the basic mean absolute error (MAE) or
mean square error (MSE) loss. These methods introduce less
overhead, but they usually have limited improvements in such
a complex scenario of precipitation nowcasting as they do not
take into account the nature of the problem.
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In this article, we find that the prediction difficulty of each
frame in the sequence is different in the radar map prediction
task. Lots of relatively easy predict images in the generated
sequence contribute no useful learning signal and dominate the
gradient. It prevents the model from learning potential dynamics
from difficult samples. We should pay more attention to the
frames that are hard to predict. Based on this simple idea, we pro-
pose the focal frame loss (FFL) based on the common MSE and
MAE loss for precipitation nowcasting, which spontaneously
assigns larger weights to those frames that are relatively difficult
to predict. It significantly improves the predictive performance
for multiple popular models without introducing additional over-
head. The main contributions of this article are as follows:

1) We find the phenomenon that the prediction difficulty of
each image varies in the radar sequence prediction task,
which is ignored by commonly used loss functions.

2) We design a simple but effective loss named FFL for
precipitation nowcasting.

3) We verify FFL on two large-scale radar datasets. The
experiments show that FFL can greatly improve the per-
formances of current popular models without introducing
additional training cost.

II. RELATED WORK

Model Classification: Most works treat precipitation now-
casting as a radar sequence prediction (or video prediction)
task. The mainstream sequence prediction models can be di-
vided into two categories: the convolutional neural network
(CNN) and the recurrent neural network (RNN). The CNN
models are dominated by UNet [34] and its variants [26], [35],
[36]. However, CNN implicitly assumes complex changes in
spatial appearance and may therefore fall short in learning
long-term dependencies [21]. The RNN models are dominated
by ConvLSTM [16] and its variants, such as TrajGRU [17],
PredRNN [18], PredRNN++ [22], E3D-LSTM [23], MIM [19],
CubicLSTM [37], SA-ConvLSTM [24], MotionRNN [20], etc.
These RNN models are getting wider and deeper [38]. Al-
though they alleviate the prediction ambiguity problem to some
extent, it also brings a significant increase in computational
cost.

Loss Function: Using an L2 loss, to a lesser extent L1,
produces blurry predictions, increasingly worse when predicting
further in the future [31]. Many previous works try to deal with
the inherently blurry predictions obtained from the standard
MSE or MAE loss function in the precipitation nowcasting task.
Tran et al. [32] found that using a combination of structural sim-
ilarity (SSIM) [39] with MSE and MAE yields better prediction
quality. Song et al. [36] designed a loss function combining
root mean squared error (RMSE) and intersection over union
(IOU) [40] to better capture significant raining dynamics. [33]
adds gradient difference loss (GDL) [31] to the basis of MSE
and MAE, which is expected to guide the model to match the
gradients of pixel values and to alleviate the image blurring
tendency of predicted frames. However, these improvements are
just designed for the overall clarity of the image, which just plays
an auxiliary role. MSE and MAE are still playing a leading role.

Fig. 1. Architecture of ConvLSTM. For timestamp {0, . . .,m− 1}, The input
to the model is the ground truth frame. For timestamp {m, . . .,m+ n− 2}, The
input to the model is the model’s predicted frame at the previous moment.

III. PRELIMINARY

A. Formulation of Precipitation Nowcasting Problem

In this article, precipitation nowcasting in a local region
(e.g., Los Angeles) is translated to predicting the future radar
echo map (e.g., 0–2 h) based on the observed radar echo
map sequence. For a radar dynamical system, from the spa-
tial view, if we need to record C measurements of a cer-
tain local area (H ×W grid points) at any time, we can ex-
press it in the form of a tensor Xt ∈ RC×H×W . From the
temporal view, we can express the radar echo map sequence
as a sequence of tensors {X0, . . ., Xm−1, Xm, . . ., Xm+n−1}.
Let X = {X0, . . ., Xm−1} be the observation frames and Y =
{Xm, . . ., Xm+n−1} be the predicted frames. The precipitation
nowcasting problem is to predict the most probable length-n se-
quence Ŷ in the future given the length-m observation sequence
X . In this article, we train a neural network parameterized by θ to
solve such a task. Specifically, we use stochastic gradient descent
to find a set of parameters θ∗ that maximizes the likelihood of
producing the true target sequence Y given the input data X

θ∗ = argmax
θ

P (Y |X; θ). (1)

B. Convlstm

ConvLSTM [16] (see Fig. 1) has convolutional structures in
both the input-to-state and the state-to-state transitions. which
can model the spatial and temporal variation of radar sequence
simultaneously. ConvLSTM is formulated as

it = σ(Wix ∗Xt +Wih ∗H l
t−1)

ft = σ(Wfx ∗Xt +Wfh ∗H l
t−1)

gt = tanh (Wgx ∗Xt +Wgh ∗H l
t−1)

Cl
t = ft ◦ Cl

t−1 + it ◦ gt
ot = σ(Wox ∗Xt +Woh ∗H l

t−1)

H l
t = ot ◦ tanh(Cl

t) (2)
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where W∗∗ are the parameters that the model needs to learn; Xt

represents input; H l
t and Cl

t represent hidden state and cell state
of layer l at time t, respectively; i, f , g, and o stand for input gate,
forget gate, input modulation gate, and output gate, respectively;
“∗” is the convolution operation; “◦” is the Hadamard product;
and σ denotes the sigmoid activation function.

C. Focal Loss

In the object detection task, the extreme foreground-
background class imbalance and the different contributions of
easy and hard examples to the loss are the main reasons for the
accuracy of the one-stage object detector is not as good as that
of the two-stage object detector. Based on this, Lin et al. [41]
proposed the famous focal loss (FL), which alleviates the above
problems by modifying the cross-entropy function.

Here, we take the binary classification task as an example,
and extending the FL to the multiclass case is straightforward.
If we have

pt =

{
p, y = 1

1− p, otherwise
(3)

and

αt =

{
α, y = 1

1− α, otherwise
(4)

then

FL(pt) = −αt(1− pt)
γ log(pt) (5)

where y ∈ {±1} specifies the ground-truth class, p ∈ [0, 1] is
the model’s estimated probability for the class with label y =
1, and weighting factor α ∈ [0, 1] is introduced for class with
label y = 1. For notational convenience, we define pt and αt.
In FL, weighting factor αt is introduced to address the class
imbalance problem between positive and negative examples, and
modulating factor (1− pt)

γ is proposed to down-weight easy
examples and thus focus training on hard examples.

IV. FOCAL FRAME LOSS

A. Problem of MAE or MSE Loss

For a consecutive radar sequence, m frames for the obser-
vations and n frames for the predictions. Xt and X̂t repre-
sent the true target frame and its predicted frame, respectively.
ΔXt =|Xt − X̂t | represents the sum of the absolute difference
of all pixels at frame t. Then, the MAE and MSE loss can be
formulated as

MAE =

∑m+n−1
t=1 ΔXt

m+ n− 1

MSE =

∑m+n−1
t=1 ΔXt

2

m+ n− 1
(6)

where m+ n represents the total sequence length. Here, we
follow the frame reconstruction loss setting in PredRNN [18],
MIM [19], and MotionRNN [20], which computes frame
loss at each timestamp [21] and is better than the regular

Seq2Seq structure [42] that only penalizes predicted frames.
Specifically, they have the same structure as ConvLSTM
(shown in Fig. 1), which input the real frames or predicted
frames {X0, . . ., Xm−1, X̂m, . . ., X̂m+n−2}, then output pre-
dicted frames {X̂1, . . ., X̂m, X̂m+1, . . ., X̂m+n−1}, and finally
calculate the average loss for all output frames.

From (6), we can see that the loss weight of each frame
in the sequence is the same, which is 1. However, intuitively,
the prediction difficulty between each frame should be differ-
ent. In the beginning, the inputs of the model are real frames
{X0, . . ., Xm−1}, and the model can gradually learn sequence
trends. After that, the inputs of the model are the predicted
frames {X̂m, . . ., X̂m+n−2}, which are inaccurate, and errors
will accumulate over time [43], resulting in increasingly inaccu-
rate predictions. That is to say, frames {X̂1, . . ., X̂m} with cor-
rect prior knowledge {X0, . . ., Xm−1} are progressively easier
to be predicted and frames {X̂m+1, . . ., X̂m+n−1} with inac-
curate prior knowledge {X̂m, . . ., X̂m+n−2} are progressively
harder to be predicted. These difficult frames are exactly what
we want. It is unreasonable to assign the same penalty weight to
each frame with different prediction difficulties. Therefore, the
loss functions used by these advanced models in recent years
have a problem.

To verify our opinion, we use ConvLSTM and L1 + L2 loss
to experiment on the HKO-7 dataset [17], using 10 frames for
the observations and 10 frames for the predictions. As shown
in Fig. 2, we sample frames at intervals. We can see that Δ at
time {t = 1, t = 3, t = 5, t = 7, t = 9} is getting smaller and
smaller, while Δ at time {t = 11, t = 13, t = 15, t = 17, t =
19} is getting bigger and bigger. This is consistent with our
analysis: The prediction difficulty varies for each frame.

B. Focal Frame Loss

In general, the prediction difficulty of each frame is differ-
ent in radar spatiotemporal sequence prediction tasks, frames
without the correct prior knowledge are difficult to predict and
become more difficult over time, and simply averaging the losses
for these frames results in the model penalizing the easy-to-
predict and hard-to-predict frames the same. Lots of relatively
easy predict frames in the generated sequence contribute no
useful learning signal and dominate the gradient. In this article,
inspired by [41] (see Section III-C), we introduce FFL to solve
this problem, which redistributes the loss weight of each frame.
In detail, let ΔXt =|Xt − X̂t | be the sum value of absolute
frame difference and ΔX = {ΔX1,ΔX2, . . .,ΔXm+n−1} be
the difference set of the predicted sequence, then ΔXt can be
regarded as the degree of difficulty of predicting the frame at
time t. If ΔXt is relatively large, it proves that the current frame
is more difficult to be predicted, and we should focus on it, vice
versa. Therefore, we can assign a weight

Wt =

(
ΔXt − min(ΔX)

max(ΔX)− min(ΔX)
+ ε

)k

(7)

to the tth frame according to the frame difference, where
min(ΔX) and max(ΔX) represent the minimum and maxi-
mum difference value in a prediction sequence, respectively,
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Fig. 2. Framewise difference of the ConvLSTM model on the HKO-7 dataset [17]. Δ denotes the difference value between the true image and the predicted
image. The larger the Δ, the worse the prediction result and the harder it is to predict.

Fig. 3. Function curves of the function y = xk as k change.

k is a non-negative number (k ≥ 0), and ε is the bias (ε > 0).
That is, we normalize the difference of the predicted sequence
and then map it to the weight Wt using the function y = xk

(see Fig. 3), where the larger k is, the less weight is given to
the frame that is easier to predict (smaller ΔXt). Additionally, ε
is introduced to prevent the most predictable frame (min(ΔX))
from having a weight value of 0. Combined with MAE or MSE,
we propose focal frame mean absolute error (FF-MAE) and focal
frame mean square error (FF-MSE), which are defined as

FF-MAE =

∑m+n−1
t=1 WtΔXt

m+ n− 1

FF-MSE =

∑m+n−1
t=1 WtΔXt

2

m+ n− 1
. (8)

In (8), we can see that the loss weight of each frame in
the sequence is different, which is Wt. Specially, when k = 0,
Wt = 1, FF-MAE, and FF-MSE degenerate into MAE and
MSE, respectively. FF-MAE and FF-MSE loss care about frames
that are difficult to predict. When ΔXt is relatively small, it
means that the frame is easier to predict than other frames in the
sequence, and we should pay less attention to it. Therefore, Wt

is relatively small, resulting in a smaller loss contribution of this
frame, and vice versa.

In this article, we set the hyperparameter k = 2 and ε = 0.01.
We experiment and analyze the setting of the value of k in
Section V-D. It is worth mentioning that our proposed loss is
different from FL [41] (see Section III-C): FL extends cross-
entropy loss for classification tasks, while ours is combined with
the L1 or L2 loss for regression tasks.

TABLE I
OVERVIEW OF THE HKO-7 AND DWD-12 DATASETS

V. EXPERIMENTS

A. Datasets

In this article, we use the HKO-7 [17] and DWD-12 [26]
datasets (see Table I) to verify the performance of FFL, where
HKO-7 is produced by the Hong Kong Observatory (HKO) while
DWD-12 is produced by the German Weather Service (DWD).

For the HKO-7 dataset [17], only one Doppler radar is used to
collect the data, and the radar echo map is collected from a height
of 2 km every 6 min. We only use rainy days data, with 812 days
for training, 50 days for validation, and 131 days for testing. The
raw radar images have a resolution of 480 × 480 pixels covering
a 512 × 512 km area centered in Hong Kong. The conversion
relationships between radar echo reflectivity intensity (dBZ) and
pixel value (P : 0-255) and rainfall intensity value (R : mm/h)
are

P = �255× dBZ + 10

70
+ 0.5�

dBZ = 10× lg (58.53×R1.056). (9)

For the DWD-12 dataset [26], 17 Doppler radars are used
for collecting the data, and the spatial and temporal resolution
of the product is 1 × 1 km and 5 min, respectively. It has a
spatial extent of 900 × 900 km, covering the whole area of
Germany. The raw radar images have a resolution of 900 ×
900 pixels. We use the data from 2006 to 2014 for training,
the data in 2015 for verification, and the data from 2016 to
2017 for testing. The conversion relationships between radar
echo reflectivity intensity (dBZ) and pixel value (P : 0-255) and
rainfall intensity value (R : mm/h) are

P = �255× dBZ + 10

70
+ 0.5�

dBZ = 10× lg (256×R1.42). (10)
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TABLE II
QUANTITATIVE STUDY ABOUT FFL ON THE HKO-7 DATASET

TABLE III
QUANTITATIVE STUDY ABOUT FFL ON THE DWD-12 DATASET

B. Metrics

We use the rainfall intensity thresholds 0.5, 2, 5, 10, and
30 mm/h to calculate the critical success index (CSI) [44], the
heidke skill score (HSS) [17], and the probability of detection
(POD) [16]. We first convert the pixel values in prediction and
ground-truth radar images to 0 or 1 by threshold τ mm/h. In
detail, we use (9) or (10) to convert the pixel values to rainfall
R. If R ≥ τ , the pixel value will be 1. In other cases, the pixel
value will be 0. Then, we can calculate TP (prediction = 1,
truth = 1), FN (prediction = 0, truth = 1), FP (prediction = 1,
truth = 0), and TN (prediction = 0, truth = 0) separately. In the
end, the HSS, CSI, and POD scores can be calculated as

HSS =
TP × TN − FN × FP

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)

CSI =
TP

TP + FN + FP

POD =
TP

TP + FN
(11)

respectively.
The peak signal to noise ratio (PSNR), SSIM [39], the

GDL [31], MSE, MAE, the Balanced Mean Squared Error
(B-MSE) [17], and the Balanced Mean Absolute Error (B-
MAE) [17] are also adopted in our experiments. Among them,
PSNR, SSIM, and GDL measure the quality of forecast image,
CSI, HSS, and POD measure the accuracy of rainfall forecast,

TABLE IV
SENSITIVITY ANALYSIS OF THE HYPERPARAMETER (k) USING PREDRNN ON

THE HKO-7 DATASET

MAE, MSE, B-MAE, and B-MSE not only can measure the
quality of forecast image, but also can measure the accuracy of
rainfall forecast.

C. Implementation Details

To make fair comparisons, we apply the same experimental
settings for all models. All models use a similar structure like
ConvLSTM (see Fig. 1), which is stacked with three RNN layers.
We use B-MSE + B-MAE [17] to solve the rainfall imbalance
problem of the datasets. On this basis, we introduce FFL for
precipitation nowcasting. We multiply the loss by a constant
0.001 to make the model converge. We use AdamHD [45] as
the optimizer and set the initial learning rate to 0.0005. In the
training phase, the mini-batch is set to 4, the training process is
stopped after 30 epochs for both HKO-7 and DWD-12 datasets.
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Fig. 4. Qualitative comparison about FFL on the HKO-7 dataset.

We take 20 consecutive frames as a batch, the first 10 frames are
used as observations, and the last 10 frames are used to validate
model predictions. The channel of the hidden state is 64. To
quickly verify the proposed loss function, we resize the radar
images of the two datasets to 120× 120. Both the convolutional
layer and the RNN layer have a kernel size of 3. All experiments
are tested on NVIDIA Tesla A100 GPU.

D. Quantitative Analysis

Hyperparameter: We show the change of model performance
when FFL takes different values of k in Table IV. We use
PredRNN as the base model, training on the HKO-7 dataset.
The experimental results demonstrate that with the increase of k,
the model performance gradually increases but then decreases,
where k = 2 is the best. Although the introduction of the FFL
loss makes the training process focus on those hard-to-predict
frames, giving excessive weight to difficult frames will cause the
model to fail to learn the motion trend of the entire sequence,
which is the reason why the model performance degrades when
k is large.

We conduct experiments on five advanced rainfall predic-
tion models from 2015 to 2021, namely ConvLSTM [16],

Fig. 5. Qualitative comparison about FFL on the DWD-12 dataset.

TrajGRU [17], PredRNN [18], MIM [19], and MotionRNN [20].
We conduct comparative experiments on many metrics for these
models with and without FFL. As shown in Tables II and III,
the number of parameters of these models has become larger
and larger, occupying more and more memory resources and
training time, while FFL hardly increases the memory and time
consumption of training models but has a huge improvement for
each model. Specifically, with the inclusion of FFL, the MAE
of MotionRNN decreases by 10.9% from 159.424 to 142.075,
and the POD (R � 30) of MotionRNN increases by 51.9% from
0.129 to 0.196 in the DWD-12 dataset. What’s more shocking
is that FFL improves the performance of models to such an
extent that using it on the basic model will result in the basic
model (ConvLSTM) with a stronger predictive ability than the
advanced model (MotionRNN).

E. Qualitative Analysis

Overall, from Figs. 4 and 5, we see that FFL mitigates the
blurriness of predicted images, and even the last frame still
retains a high degree of clarity. This is consistent with our loss
design philosophy, focusing on those frames that are not easy to
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predict. In addition, the models with FFL can learn more details
in the prediction. For example, as indicated by the white box
in Fig. 4, the models without FFL except ConvLSTM predict
a deformed shape of the cloud, but the models using FFL all
can accurately predict. As indicated by the white box in Fig. 5,
with the help of FFL, the most basic ConvLSTM and TrajGRU
models can also predict clear and more detailed images like
PredRNN and MIM. Furthermore, with the help of FFL, it
can make PredRNN, MIM, and MotionRNN learn more details
and have a stronger predictive ability even when the prediction
results of PredRNN, MIM, and MotionRNN are already good
enough.

VI. CONCLUSION

In this article, given that current mainstream RNN models for
short-term precipitation prediction produce blurry images when
making long-term predictions, we propose FFL to focus on those
frames that are not easy to be predicted. The design inspiration
of FFL comes from FL, which is designed for the problem of
different sample classification difficulties in the object detection
task. We extend FL to radar sequence prediction tasks and
propose FF-MSE and FF-MAE by combining MSE and MAE.
We have done exhaustive experiments for FFL with five popular
models on two large-scale radar echo datasets. It exhibits good
characteristics that FFL greatly improves the performance of
common RNN models without introducing additional training
overhead.

Our proposed loss function alleviates the prediction blur
problem to some certain extent, but the last predicted frame still
has a huge gap with the real frame. Recent works are using gener-
ative adversarial networks (GANs) and variational autoencoder
networks (VAEs) for video prediction, which model future un-
certainty by introducing random factors into the training process.
Using these models as base models rather than RNN models may
further improve prediction performance. In addition to focusing
on the improvement of the model structure level, we should
also take into account the influencing factors at the data level.
Actually, precipitation is a complex microphysical process that
is affected by many factors such as humidity, temperature, and
topography in the environment. It is unreasonable to consider
only a single radar mode without considering changes of other
elements in the atmospheric system. Therefore, the precipitation
prediction model based on multimodal data fusion deserves
further research in the future.
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