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Abstract—Accurate recognition of circular marks is crucial for
calibration, object tracking, and three-dimensional reconstruction
in videogrammetry. However, most existing studies were designed
under single or relatively simple scenes. When the existing algo-
rithms are applied to more complex scenarios, it will result in
higher false detection and miss-detection rate. In this article, we
present a high-precision recognition method based on a novel deep
learning model, circular-MarkNet (CMNet) to solve this problem.
The proposed network consists of three main steps: first, circu-
lar marks are detected using the improved YOLOv4 model to
narrow the search region of the circular contour; the contour of
the circular marks is then extracted based on the saliency object
detection model BASNet; and finally, least square fitting is used
to calculate the central pixel coordinate of the identified contour
on the saliency map. The proposed method was tested under three
complex scenarios with different characteristics and disturbances.
The experimental results demonstrated that: the proposed CMNet
can effectively recognize of circular marks within complex scenes,
which reveals the superiority and generalization ability of the
proposed method; the improved YOLOv4 can significantly enhance
the detection accuracy of circular marks, which is crucial to the
subsequent saliency courter detection and circle center identifica-
tion; and CMNet achieved the best performance, with an RMSE of
0.0713 pixel, compared to the state-of-the-art methods.

Index Terms—Center positioning, circular mark, deep learning,
high-speed videogrammetry, saliency detection.

I. INTRODUCTION

H IGH-SPEED videogrammetry is an efficient and low-
cost engineering method that provides spatial informa-

tion of objects by image acquisition and processing. Owing
to its high-precision, noncontact, and nondamaging nature, it
has been widely applied in civil engineering [1]–[3], environ-
mental science [4], and industrial inspection [5]. For these
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applications, artificial marks posted on the measured object can
help obtain spatial trajectory variation information and have
yielded satisfactory precision. The most crucial factor is the au-
tomatic and high-precision recognition of artificial marks used to
indicate points of interest. This is a significant pre-processing for
subsequent high-precision camera calibration [6], displacement
monitoring, and three-dimensional (3-D) reconstruction [7].

Several artificial marks have been widely used in videogram-
metry. Owing to its exceptional properties of scale-, translation-,
and rotation-invariance, the circular mark is more popular than
others [8], [9]. Circular marks are divided into coded [10] and
noncoded [11], [12]. Irrespective of type, traditional recognition
methods consist of two steps: mark detection, which is used
to narrow the search area of the circular contour; and center
identification, which corresponds to the centroid positioning of
the circle. Localization methods are used to identify the center of
the circle in the detected area. In the past few decades, digital im-
age processing has been used for localization, including Hough
transform (HT)-based methods [13], centroid method [14]–[17],
point-fitting methods [18]–[21].

The crucial issue focuses on the detection of the circular
mark, which affects the precision of subsequent centroid po-
sitioning. Because coded information is readily identified, the
coded mark is easily and automatically detected in the image.
For non-coded marks, the detection relied on semiautomated
and ellipse detection. Semi-automated may require the operator
to box a search region for the locations of targets [2], [22],
[23]. The ellipse detection methods [24], [25] used circle edge
geometric features to complete the related detection tasks. In
addition, some scholars have researched the extraction of marked
regions. Guo et al. [26] used template matching to detect regions
of interest containing artificial targets, while Ok [27] applied
an region of interest (RoI) based method to focus on finding
a specific circle in an area. However, traditional methods use
shallow image information, including texture, edge, grayscale,
etc., which are easily affected by the background and lighting,
and indiscriminately misrecognize circular objects as circular
marks in the image.

Deep learning methods, which have the advantage of detecting
both shallow and deep features, have been widely used for image
classification [28]–[30], target detection [31], [32] and image
segmentation [33], [34]. For example, CSPDarknet53 combined
cross stage partial with residual structure to extract different
levels of features [35]. Path aggregation network (PANet) [36]
added bottom-up path based on feature pyramid network (FPN)
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[37] to better integrate shallow and deep features. Deep learning
methods have been shown to be more effective than traditional
methods. Therefore, they are the research focus for object de-
tection tasks. In general, deep learning-based object detection
can be divided into two categories: two-stage and one-stage
methods. Region-based convolutional neural network (R-CNN)
[38], fast R-CNN [39], and faster R-CNN [40] are the commonly
used two-stage methods. They first generate the candidate object
proposals and then the features from the proposals are extracted
using a CNN. One-stage methods include SSD [41], YOLO
series [42]–[45], and CenterNet [46]. They do not require the
candidate object proposals, but directly regress the class scores
and location coordinates of the object, so they have obvious
advantages in efficiency. Zhou et al. [47] proposed a motion-
blurred vision object recognition model based on a CNN. Shi
and Zhang [48] used a faster R-CNN to locate and recognize the
motion of a specially designed coded target in blurred images.
Kinaz et al. [49] proposed a new deep CNN for the automatic
detection and recognition of the coded target. However, these
studies tested their detection algorithms only within laboratory
conditions, utilizing a stable lighting environment. The perfor-
mance of these methods in complex backgrounds remains to be
explored.

Detected rectangular regions may accidentally contain inter-
ference information from the background, or noise, which will
affect the center positioning of the circular mark. Salient object
detection (SOD) methods can highlight the most prominent
objects in an image and filter irrelevant interference information.
Many studies have used SOD for auxiliary detection tasks. Han
and Fu [50] proposed a saliency-based method to extract circular
array objects from remote sensing images with high spatial
resolution. Zhang et al. [51] used a saliency-guided sampling
strategy to extract a representative set of patches from very
high-resolution (VHR) images. Li et al. [52] fused a heat map
with a saliency map to improve object detection performance.

From the above analysis, most existing methods are tested
under synthetic and simple background environments. However,
in actual high-speed videogrammetry, various complex environ-
ments exist, including indoor, outdoor, and circle-like interfer-
ence. Precisely recognition of circular marks within complex
scenes is still a challenging task due to the following reasons:
The low light environment of indoor leads to blurred imaging and
low contrast of the circular marks, which cannot be detected and
located well. Likewise, overexposure leads to unclear outlines
of some marks in outdoor scenes, making positioning more diffi-
cult. The background of the actual application is more complex,
and there are many classes of circle-like interference, increasing
the probability of false detection. These aforementioned factors
increase the difficulty of mark detection, which result in bias
and false detections by using existing algorithms. Therefore, it
is necessary to develop a more robust algorithm. The objective
of this article was to propose a high-precision circular mark
recognition method based on circular-MarkNet (CMNet) for
complex scenes. The proposed method adopted a coarse-to-fine
strategy, and an object detection model is used to detect the
circular mark in the image to narrow the search region of the
circular contour in the coarse stage. During the implementation

of the fine strategy, we used a visual attention mechanism (VAM)
to generate a saliency map of the detected rectangular region,
focusing on the extraction of the circular contour. The central
pixel coordinates of the identified contour are then calculated
using the least squares fitting (LSF) method [53] on the saliency
map. The main contributions of this article are as follows.

1) We propose a deep learning-based framework CMNet for
recognition of circular marks within complex scenes. The
network adopts a coarse-to-fine strategy and introduces
a VAM based on a SOD network, BASNet. The false
identification caused by background noise can be greatly
reduced and sub-pixel level accuracy can be achieved.

2) We propose an improved YOLOv4 model for circular
mark detection. The modified model used a large-scale
feature map optimization structure and attention mech-
anism blocks (AMBs) between the neck and head to
improve the accuracy of mark detection in the complex
environment.

3) We generate a circular Mark recognition (CMR) dataset.
The dataset contains three complex scenarios, such as
indoor, outdoor, and circle-like interference. The exper-
imental results reveal the superiority and generalization
ability of the proposed method.

The rest of the article is organized as follows: Section II intro-
duces the dataset. The details of the circular mark recognition
methodology are described in Section III. Section IV presents
and analyses a series of comparative experiments and Section V
concludes the article.

II. DATASET

The nonretroreflective targets used in this article were a simple
white circular mark on a black backing, which were labeled at
critical points on the measured object. The circular mark images
were collected at Tongji University, including experiments such
as the collapse of civil structures, butt joints, experimental
models of frame shakers, etc. Images were acquired using a
CamRecord CL600×2 high-speed camera (Optronis, German,
and 1280 × 1024 pixels image resolution) and a Basler ACA
2040–180 KM (Basler, German, and 2048 × 2048 pixels image
resolution). To verify the effectiveness of the proposed method
under various conditions, images were captured in three different
scenarios: indoor, outdoor, and circle-like inference scenes. The
camera was located1.0–8.5 m from the object, and images were
acquired under different illumination conditions, including high
and low light conditions. In this article, 1095 images of circular
marks, including different angles of circular marks on various
scales, were collected as the experimental dataset.

Fig. 1 shows three scenarios of the CMR dataset. Indoor
scenes usually have low light intensities, and image quality
is significantly affected, making the edges of some circular
marks unclear [see Fig. 1(a)]. In outdoor scenes, owing to strong
illumination, some marks are overexposed, resulting in fuzzy
edges of the circular marks [see Fig. 1(b)]. The image in Fig. 1(c)
was taken under dark indoor conditions, and the background was
complex with many circle-like inferences, including holes, bolts,
light bulbs, etc. Table I gives a detailed description of the scenes.
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TABLE I
SCENE DESCRIPTIONS

Fig. 1. Three different scenes designed in the experiment. (a) Indoor. (b)
Outdoor. (c) Circle-like background.

For the object detection model training, the CMR dataset was
split into training and test sets in a ratio of 8:2. Subsequently,
LabelImg software was used to label the circular marks in the
image in the PASCAL VOC format. For saliency object detection
model training, 2020 images of the circular mark regions were
collected as the dataset. Labelme software was used to segment
the circle contour.

III. METHODOLOGY

The flowchart of the proposed high-precision recognition
method is shown in Fig. 2, which was constructed around the
neural network CMNet. The method consists principally of
three components, including circular mark detection, saliency
contour extraction and circle center identification. The circular
mark detection model was used to extract the region of the
circular mark from the images based on the improved YOLOv4
(I-YOLOv4). The boundary-aware saliency detection network,
BASNet [54], was used to generate the saliency map to focus on
circular contour, while avoiding background noise interference,
and the subpixel center coordinate was calculated on the saliency
map of the circular contour by LSF.

A. Detection of Circular Mark Based on the Improved
YOLOv4

The CMR dataset used in this article has more small-sized
objects; thus, YOLOv4’s [45] high-level detector head was
unable to predict small-sized circular marks. In addition, inter-
ference from the complex background, including circle-like ob-
jects (light bulbs, bolts, holes, etc.), low light, and overexposed
circle marks, caused errors using the original YOLOv4 model.
Therefore, we made two adjustments to the original network
structure. First, a larger-scale feature map optimization structure
was employed on YOLOv4’s neck and head to make the model
robust with small marks. Second, AMBs were embedded to pay

more attention to the channel and spatial feature information to
enhance the detection capability of circular marks in complex
environments.

1) Feature Map Optimization: The original YOLOv4 has
three output layers with down-sampling of 32, 16, and 8 times.
Generally, the receptive field refers to the region that maps back
to the input image. Thus, the larger receptive field is owned
by the deeper network layer. Larger receptive field feature map
is used to detect large marks. Low-level shallow feature maps
retain more spatial information; therefore, it is more suitable for
detecting minor circular marks. Consequently, it is necessary to
design a new network structure with finer feature maps to detect
small targets effectively. Fig. 4 shows the original structure and
three newly designed structures with different redirected necks
and heads. We tested different redirected necks and heads and
found that the 4-in and 3-out structure worked best. Therefore,
a larger-scale feature map optimization structure, with 4-in and
3-out, was adopted in this article.

The 16 × 16 feature map of the original YOLOv4 is re-
sponsible for detecting large objects, and feature maps with
resolutions of 32 × 32 and 64 × 64 are responsible for detecting
mid-sized and small targets, respectively. Because there are
more small targets in the CMR dataset, we made correspond-
ing improvements. In the neck network, we added four times
down-sampling with the original three-scale feature map from
the backbone for feature fusion. For the detector head, the 32
times down-sampling has too large a receptive field to regress
the predicted circular-mark-sized targets. Therefore, this was
deleted. Similar to the neck, we added 4 times down-sampling to
detect minor circular marks. This redirected structure displays as
4-in and 3-out of the neck network. The sizes of the three-scale
output layer of the detection network were changed from the
original 16 × 16, 32 × 32, and 64 × 64 to 32 × 32, 64 × 64, and
128 × 128 to improve the detection accuracy of circular marks
(see Fig. 3).

2) Attention Mechanism Block: The AMB consists of some
particular convolution layers. It does not change the size of the
feature map but can enhance target feature expression to increase
detection ability. Therefore, an AMB can be easily inserted into
the current object detection model. Fig. 3 shows the structure
of the I-YOLOv4 model, where three AMBs are embedded after
the three-scale output layer.

Given an intermediate feature map F ∈ RH × W × C as
input, AMB sequentially assigns a channel attention mapMC ∈
R1 × 1 × C and a spatial attention map MS ∈ RH × W × C .
The channel and spatial attention mechanism process can be
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Fig. 2. Flowchart of CMNet, consisting of three components, including circular mark detection, saliency contour extraction and circle center identification. The
center of each circular mark shown in the image has been marked with a red plus (+).

Fig. 3. Structure of the I-YOLOv4.

summarized as follows:

F′ = F ⊗MC (F )

F′′ = F′ ⊗MS (F ′) (1)

where ⊗ represents the element-wise multiplication and F′′

denotes the final adjusted output. Fig. 3 shows the specific
calculation process of the AMB attention map.

The channel attention module (CAM) in the AMB is arranged
before the spatial attention module (SAM). The squeeze and
excitation (SE) [55] block is a CAM that applies attention to
objects from the perspective of channel features. It can suppress

background information and highlights foreground characteris-
tics by adaptively re-weighting channel-wise features. In this
article, the SE block was used as a CAM to decrease the error
detection of circular marks. Specifically, the feature map of each
channel was transformed into a matrix of size 1 × 1 × C by
average pooling, and the channel attention MC was obtained
after two 1 × 1 convolutional layers. The calculation process
for MC can be expressed as follows:

MC = σ
(
C1×1

r =1/16

(
CM1×1

r = 16 (AvgPool (F))
))

(2)

where CM1×1
r denotes the convolution operation before the

Mish activation function, with 1 × 1 representing the size of the
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Fig. 4. Different detection layer structures. (a) Structure 1: Original YOLOv4
model. (b) Structure 2: Remove the 32 times down-sampling detector head. (c)
Structure 3: A new detection scale is added to the original YOLOv4. (d) Structure
4: This structure is same as (c), except that the 32 times down-sampling detector
head is removed. (a) Structure 1, 3-in, and 3-out. (b) Structure 2, 3-in, and 2-out.
(c) Structure 3, 4-in, and 4-out. (d) Structure 4, 4-in, and 3-out.

convolution kernel, and r representing the reduction ratio. C1×1
r

is the convolution operation, which has the same superscript and
subscript as CM1×1

r . σ denotes the sigmoid function.
SAM pays attention to objects at the spatial scale. Generally,

the foreground occupies much fewer pixel than the background.
Therefore, more attention should be paid to the foreground
region. This article used a mask of the same size and depth
as the input feature map to generate a spatial attention map
MS. Specifically, the mask used to generate spatial attention
is produced by 1 × 1 convolution layer. The calculation process
for MS can be expressed as follows:

MS = σ
(
CB1×1

r = 1 (F
′)
)

(3)

where F′ denotes the intermediate feature map of the CAM,
CB1×1

r represents the convolution operation before the batch
normalization operation, and has the same superscript and sub-
script as CM1×1

r .

B. Extraction of Saliency Circular Mark Contour Based on
BASNet

For identification of the circular mark center, the pre-
processing consists of two steps, namely, image binarization,
and edge detection from binary on the contour. Binarization is
performed by converting grayscale image pixel to zero or one
using the adaptive local threshold method [20], [56]. However,
as shown in Fig. 5(b), the detected rectangular region usually
contains background noise other than circular mark, which will
subsequently affect the location of the center of the circular
marks. In this article, we adopt a SOD model, BASNet, as a VAM
to filter out the background noise while retaining the circular
sub-pixel contour information.

The network structure of BASNet is shown in Fig. 6, which
consists of a prediction module (PM) and a residual refinement
module (RRM). The U-Net [57] structure is employed in the PM.
The encoder extracts the feature map through the basic resblocks
adopted from ResNet-34 [58]. Both encoder and decoder have

Fig. 5. Circular mark images. (a) Original circular mark region detected by the
I-YOLOv4. (b) Binary image is obtained by adaptive local threshold method.
(c) Saliency map of circular mark is generated by BASNet. (a) Circular mark
region. (b) Binary image. (c) Saliency map.

six levels. Each level feature map of the encoder is concatenated
with the up-sampling output from the previous level and its
corresponding level in the encoder. The output from the PM
is a coarse map, in which the boundary of the mark is rough.
The RRM then refines the saliency map of the PM by learning
the residuals between the predicted saliency map and the ground
truth. As same as the PM, it also has encoder and decoder phases.
Unlike the PM, both the encoder and decoder have four levels.
The final output is a refined saliency map that preserves the
sub-pixel contour of the circular mark and removes background
noise [see Fig. 5(c)].

C. Identification of Circular Mark Center Based on Least
Squares

The circle edge points can be recognized quickly and accu-
rately on the saliency map using Canny operator. In this article,
the LSF is used to fit the center of the ellipse to achieve sub-pixel
positioning. The general expression for the ellipse equation is
as follows:

f (α,X) = αX = Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0
(4)

where A, B, C, D, E , and F are the five elliptical pa-
rameters and α represents(A, B, C, D, E, F ) , and Xi =
(x2

i , xiyi, y
2
i , xi, yi, 1) . According to the principle of least

squares, the curve-fitting problem can be solved by minimizing
the sum of the squared algebraic distances

f (A,B,C,D,E, F )

=
∑
i=1

(
Ax2

i +Bxiyi + Cy2i +Dxi + Eyi + F
)2
. (5)

The five elliptic parameters of A, B, C, D, E and F in (5)
can be obtained by calculating the first-order partial derivative
and setting it to 0. If the center coordinate of the ellipse is
P (x0, y0), the calculation formula can be expressed as{

x0 = (2BC −AD) /
(
A2 − 4B

)
y0 = (2D −AD) /

(
A2 − 4B

)
.

(6)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Design and Environment

The training process was carried out on an NVDIA GeForce
GTX 1080ti GPU with 12 GB of memory, an AMD Ryzen 7
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Fig. 6. BASNet network structure.

2700 eight-core processor, and a memory size of 48 GB. The
I-YOLOv4 algorithm was implemented in Darknet. During the
training process, batch size was set to 64. The initial learning
rate was set to 0.013, momentum was set to 0.949, and decay
was set to 0.0005. BASNet was trained using the derived target
binary images. During the training phase, images in the training
set were resized to 256× 256 pixels. The initial learning rate was
set to 0.01, and batch size was set to 8. The training converges
after 60 000 iterations.

B. Comparison of Circular Mark Detection Network

First, comparison experiments of the four structures based
on the YOLOv4 network are introduced in this section. We
then compared the performance of each strategy of the best
structure with that of YOLOv4. Finally, the improved network
model was compared with various detection models to verify
the effectiveness of object detection in circular mark images.
AP, precision, recall and detection efficiency (detection time /
number of images) are evaluation metrics.

1) Structure: We compared the four structures of the neck
and the head. Structure1 was the original YOLOv4 model, called
3-in and 3-out (see Fig. 4(a)]. In structure 2 [see Fig. 4(b)],
we removed the 32 times down-sampling feature maps, and
only used 16 and 8 times to detect circular marks. To use a
high-resolution feature map to detect small targets, structure
3 [see Fig. 4(c)] extracts a 4 times down-sampling into the
neck. Synchronously, we added detector 4 for receiving the
same size feature map from the neck. Structure 4 [see Fig. 4(d)]
was similar to structure3, which was 4-in, but only used three
higher-resolution feature maps. Comparison experiments were
conducted in the same environment. The detection accuracies of
these four structures are given in Table II.

The four different structures obtained feature maps of differ-
ent scales from the same backbone network (CSPDarknet53)
for feature fusion. As given in Table II, structure4 yielded the
best result, with an AP of 97.22%. The accuracy of structures
2, 3, and 4 were improved by 2.26%, 0.57%, and 2.67%,

TABLE II
DETECTION ACCURACY FOR FOUR NECK-HEAD STRUCTURES

TABLE III
ABLATION EXPERIMENT FOR MARK DETECTION

respectively, compared to structure 1. The reason for this im-
provement was that the high-resolution feature map added by
structure4 contained richer spatial information. After fusion
with the feature maps of the other three scales, circular marks
were detected under various conditions. Structure1 and struc-
ture 3 both had a low-resolution detection layer. Owing to the
lack of sufficient spatial information, it does not perform well
on detection of small circular marks, leading to precisions of
only 94.96% and 94.55%, respectively. Because structure 2
had two detection layers and lacked the ability to detect small
targets, recall was the lowest (92.89%) of the four structures
(see Table II).

2) Ablation: Table III gives comparisons among each strat-
egy and the best neck-head structure (YOLOv4 with structure4)
before adding. Compared with YOLOv4 with structure 4, the
accuracy is improved 0.45% and 1.03% by adding SAM and
CAM, respectively. After inserting AMB (CAM + SAM), the
detection accuracy was improved by 1.38%. This indicated
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Fig. 7. Comparison of circular mark detection results for different deep learning object detection models within complex environments. The detection confidence
threshold is uniformly set to 0.5. The green color represents the ground truth of the circular mark. The blue, red, yellow, orange, and purple color rectangles indicate
corresponding detection results for Faster R-CNN, SSD, YOLOv3, CenterNet, and the I-YOLOv4. Blue circles and yellow triangles denote the false alarms and
missing marks, respectively. (a) Indoor scenes. (b) Outdoor scenes. (c) Circle-like scenes.

that the channel attention and spatial attention mechanisms
introduced more semantic and spatial information. In summary,
the I-YOLOv4 improved accuracy by 3.64% compared to the
original YOLOv4.

3) Performance Comparison With Other Detection Models:
A qualitative and quantitative representation was provided for
the Faster R-CNN [40], SSD [41], YOLOv3 [44], CenterNet
[46] and the I-YOLOv4.

Fig. 7 shows the validation of the mark detection results
for different deep learning detection models under complex
scenes, including indoor and outdoor scenes and circle-like

background scenes. Faster R-CNN and SSD did not reliably
detect multiscale marks in the images, missing large targets in the
vicinity. Faster R-CNN, SSD, CenterNet, and YOLOv3 missed
detections of occluded and oblique marks. Faster R-CNN and the
I-YOLOv4 incorrectly detected the background as a mark. For
the outdoor scenes in Fig. 7, the detection results of most models
were good, except for SSD. Some problems were apparent
with YOLOv3 and CenterNet. YOLOv3 missed the overex-
posed and occluded marks, and CenterNet incorrectly detected
circle-like cables as marks. Faster R-CNN, SSD, CenterNet, and
YOLOv3 detected complex backgrounds as marks, including
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TABLE IV
CIRCULAR MARK DETECTION FOR DIFFERENT OBJECT DETECTION MODELS

light bulbs and pipes [see Fig. 7(c)]. In contrast, the I-YOLOv4
exhibited good detection performance under our experimental
conditions.

Table IV gives the comparison of the AP, precision, recall,
and detection efficiency for the five models employed in this
article. Our improved method achieved the highest AP of 98.60%
and the I-YOLOv4, which used a new neck-head structure
(4-in and 3-out), exhibited excellent feature abstraction and
feature fusion capabilities to deal with the detection of small
circular marks (see Table IV). The modified YOLOv4 with
AMB accurately detected circular marks in complex scenarios.
CenterNet exhibited good detection accuracy (AP of 96.64%),
but detection required 54.9ms per image, and recall was 3.96%
lower than that of the I-YOLOv4. CenterNet employs keypoint
estimation to find the center point and regresses it to other
attributes. The centers of dense circular marks overlap after
feature map down-sampling, resulting in CenterNet failing to
detect dense and occluded circular marks in images. YOLOv3
uses FPN for feature fusion and the backbone network for feature
extraction, whose feature abstraction ability is weaker than that
of PANet [36] and CSPDarknet53. In addition, the structure
of YOLOv3 is similar to that of the original YOLOv4. Thus,
the AP was 4.16% lower than that of the I-YOLOv4. Faster
R-CNN and SSD use only a single feature layer for object
prediction, which cannot cope with the detection of multiscale
scenes in the CMR dataset. Furthermore, because there is no
feature fusion of multiple hierarchical feature maps, low-level
features lack sufficient semantic information, and high-level
features lack sufficient spatial information, making it difficult
to accurately detect and locate circular marks in some complex
backgrounds.

In addition, we also compared the receiver operation charac-
teristics (ROC) of different models. ROC is an important metric
that can be used to evaluate the detection effect under the same
false positive [59], [60]. ROC The higher the true positive rate
(TPR), the better the detection effect. ROC curves are acquired
using Monte-Carlo simulations [61], [62], which is done on the
CMR dataset. As given in Table IV and Fig. 8, the recall of SSD
is only 46.23%, but the precision is 92.46%. SSD has both low
FP and TP, causing the ROC curve to be close to the x-axis.
CenterNet and YOLOv3 exhibit similar performance on ROC
curves. The I-YOLOv4 works best by having lower number of
FP and higher TPR.

Fig. 8. ROC curves of different detection models in the CMR dataset. The
blue solid, the red solid, the yellow solid, the orange solid, the purple solid are
the ROC curves of faster R-CNN, SSD, YOLOv3, CenterNet, and I-YOLOv4
with a threshold of 0.5, respectively.

C. Comparison of Center Identification

1) Evaluation Metrics: We used high-precision total station
(SOKKIA NET05AX) to obtain the 3-D coordinates of the
center. According to the camera calibration parameters and
exterior orientation elements, the collinear equation is used to
obtain the image pixel coordinates of the circular mark centers as
the ground truth values. On the one hand, we use mean absolute
error (MAE) and root-mean-square error (RMSE) to measure
the accuracy of mark center localization. On the other hand,
precision, recall and F-measure are used to verify algorithms’
ability to recognize circular marks in real images, and they are
defined as

Precision =
TPs

TPs + FPs
(7)

Recall =
TPs

TPs + FNs
(8)

F−measure =
2× Precision × Recall

Precision + Recall
(9)
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TABLE V
RECOGNITION RESULTS

where TPs, FPs, and FNs are numbers of true positives, false
positives, and false negatives, respectively. We define points with
RMSE less than 0.5 pixel as TP.

2) Compared Methods: We compared the performance of
the proposed method with three state-of-the-art methods, which
are the centroid search algorithm [17], Arc-Support [24] and
arc adjacency matrix-based ellipse detector (AAMED) [25].
The centroid search algorithm integrated into the PhotoMod-
eler Scanner software can achieve high-precision positioning
of marks, which is currently widely used in videogrammetry
[2], [22], [23]. Arc-Support utilized rich geometric features and
arc-support line segments to complete the ellipse detection tasks.
AAMED detected ellipse robustly by constructed a digraph-
based arc adjacency matrix (AAM) for arc pairing. In addition,
the role of the VAM is also explored by comparing with our
method without the VAM.

3) Accuracy Comparison of Center Identification: First, we
compare mark recognition rate of aforementioned methods.
Since centroid search algorithm requires manual selection of
marks, we did not include it in the recognition comparison
experiment. Then, we compare the accuracy of methods for
locating the center of the circle.

As given in the Table V, the recall of Arc-Support and
AAMED are 93.21% and 95.86%, respectively. Both methods
misrecognize many circle-like objects, such as light bulbs, pipes,
auto wheels, etc., and the precision is only 83.30% and 86.28%,
respectively. The ellipse detection methods cannot distinguish
between circular marks and general circle-like objects. Due to
the background noise interference after binarization, the preci-
sion of our method without VAM is only 79.69%. From point10
of Fig. 10(a), point12 of Fig. 10(b), and point14 of Fig. 10(c),
it can be seen that the proposed method without VAM has
deviations and false alarms in the positioning of the circular
mark. After introducing the VAM, our proposed method can
effectively recognize most of the circular marks in the image, and
the precision and recall reach 98.77% and 99.37%, respectively.
This proves that VAM has improved the recognition rate of the
circular marks.

Both centroid search and our proposed method can identify
the center of the circular mark very well (see Fig. 10). In scene 1,
arc-support, AAMED and the proposed method without VAM
cannot identify the overexposed circular marks from the location
of the yellow triangle. In scene 2, from the position of the blue
circle, the white background was recognized as the center of the
circle without VAM. In scene 3, the proposed method was not

Fig. 9. Comparison of the RMSE results. (a) Scene 1. (b) Scene 2.
(c) Scene 3.

influenced by the light bulb. However, owing to the absence of
VAM and the small size of the circular mark, there was a large
deviation in the identification of the method without VAM, as
revealed by the location of the blue circle (see Fig. 10). Arc-
support and AAMED missed some points due to the smaller
size of the circular mark and noise in Fig. 10 scene 3.

Fig. 9 and Table VI show that the proposed method achieved
the best result, with a mean RMSE of 0.0796 pixel. Without
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Fig. 10. Comparison of the identification results of the circle mark center for three recognition methods under different scenarios. The three columns of images on
the right show the identification results in the green box area in the images in the first column. The blue, purple, green, orange and red “+” indicate corresponding
identification results for Centroid Search, Arc-Support, AAMED, Proposed without VAM and our proposed method. Blue circles and yellow triangles represent
the false alarms and missing marks, respectively. (a) Scene 1, outdoor scenes. (b) Scene 2, indoor scenes. (c) Scene 3, complex background scene.

TABLE VI
MEAN OF MAE AND RMSE RESULTS

VAM, there were many false and error identifications at some
points [such as point7 and point10 in Fig. 10(a) and point 5,
point14 in Fig. 10(c)]. After adding the VAM, the RMSE of the
proposed method was reduced by 0.3942 pixel. In particular, in
a complex background scene (scene 3), the RMSE was reduced
from 1.0188 pixel to 0.0713 pixel. The RMSE of Arc-Support
and AAMED is 0.2790 pixel and 0.2676 pixel, respectively.
However, these methods cannot directly identify circular marks
from the entire image, and need to use a sliding window to tra-
verse the image, which reduces the efficiency of detection. Our
proposed method was comparable to centroid search method,
which manual selection is required. In summary, the proposed
method achieved the best performance under all three complex
scenarios.

4) Efficiency Comparison of Different Methods: As given
in Table VII, the centroid search algorithm takes an average
of 125.20 s per image to identify all circular marks. This is
because the centroid search algorithm requires manual indi-
cation of search area, leading to low recognition efficiency.
The recognition time of arc-support and AAMED is 2.29 and
3.91 s, respectively. I-YOLOv4 is a one-stage detector that can
quickly extract and fuse deep and shallow features, making the
recognition time of CMNet without VAM only 0.89 s. VAM
performs boundary-aware detection on each circular mark re-
gion in the image, making the salient contour extraction stage
more time-consuming. So, adding the VAM resulted in an
increase in detection time per image of 3.36 s, taking 4.25 s
to recognize.
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TABLE VII
TIME COST COMPARISON ON THE CMD DATASET

V. CONCLUSION

In this article, a high-precision recognition method based
on a novel deep learning model, CMNet, is presented. First,
circular marks were detected based on the I-YOLOv4 model to
narrow the search region of the circular contour. The contours
of the circular marks were then extracted based on the saliency
object detection model BASNet, and LSF is used to calculate the
central pixel coordinate of the identified contour on the saliency
map. Two major improvements were made based on the original
YOLOv4 model. The first improvement was a large-scale feature
map optimization structure, which was displayed as a 4-in and
3-out structure. The second modification was to insert AMBs
between the neck and head to improve the accuracy of mark
detection in a complex environment.

Three complex scenes with different characteristics and dis-
turbances were used to evaluate the effectiveness and robustness
of the method. These three scenes were indoor with low light,
outdoor with extremely strong light and over-exposure, and a
densely scene with multiple circle-like objects. The experimen-
tal results demonstrated the following.

1) The improved YOLOv4 significantly enhanced the detec-
tion accuracy of circular marks, which is crucial to the
subsequent saliency courter detection and circle center
positioning.

2) CMNet achieved the best performance with an RMSE of
0.0713 pixel, comparable to the precision of the commer-
cial software PhotoModeler.

3) The precision, recall, and F-measure of center identifi-
cation of our proposed method is 98.77%, 99.37%, and
99.07%, respectively.

The results indicate that our method exhibited a good ability
for circular mark recognition in complex environments. In the
future, we will try to propose an end-to-end circular mark
recognition network with shared weights to realize the real-time
circle center identification.
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