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Bayesian Subpixel Mapping of Hyperspectral
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Abstract—Although Bayesian methods have been very effective
for spatial–spectral analysis of hyperspectral imagery (HSI), they
had not been fully explored for enhanced subpixel mapping (SPM)
by simultaneously considering several key issues, i.e., endmember
variability, the discrete nature of subpixel class labels, and the
spatial information in HSI. Therefore, we propose a new Bayesian
SPM method based on the discrete endmember variability mix-
ture model (DEMM) and Markov random field (MRF), which
has three main characteristics. First, DEMM allows the advanced
SPM by completely accounting for the endmember–abundance
patterns of each pixel to accommodate the endmember variability,
the discrete hidden class label field of subpixels, while taking into
account the noise heterogeneity effect. Second, the discrete class
label fields modeled by MRF together with the DEMM, which can
be integrated into a novel Bayesian model to better exploit the
spatial contextual and spectral information. Third, the resulting
Bayesian model can be efficiently solved by a designed expectation–
maximization iteration, where E-step estimates the subpixel class
label field using a simulated annealing algorithm and M-step esti-
mates the endmembers for each pixel in HSI using the alternating
non-negative least squares approach. The experimental results
on three HSI datasets demonstrate that the proposed approach
outperforms previously available SPM techniques.

Index Terms—Bayesian subpixel mapping (SPM), discrete
endmember variability mixture model (DEMM), expectation–
maximization (EM) iteration, hyperspectral imagery (HSI),
Markov random field (MRF).
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I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) has been utilized in
various Earth observation applications, thanks to its rich

spectral information. However, owing to the influence of the
instantaneous field of view of the remote sensor as well as the
complexity and diversity of the land cover types, the measured
spectrum of each pixel in HSI is always a mixture of the
reflectance of multiple distinct materials [1]. To address the chal-
lenge of mixed pixels in HSI, numerous techniques have been
developed, such as soft classification [2] and spectral unmixing
[3]. Nevertheless, these approaches fail to locate the subpixels,
and therefore cannot estimate the class label of subpixels for
further applications [4], [5]. To deal with this issue, the subpixel
mapping (SPM) [6] method, which can classify HSI at the
subpixel level and obtain the optimal subpixel spatial distribution
according to spatial information and abundance fractions, is
typically considered to be an alternative solution.

There are many SPM algorithms that have been developed and
extensively used in a number of remote sensing applications [7],
[8], [9], [10], [11], including the pixel/subpixel spatial attraction
model (SAM) [12], the pixel-swapping approach (PSA) [5],
the Hopfield neural network [13], the Kriging and indicator
co-Kriging [14], [15], [16], the spatial–spectral interpolation
[17], [18], the class boundaries-based subpixel model [19], and
the super-resolution convolutional neural network [20]. These
algorithms usually contain the following two parts [18]. First,
the soft attribute values (between 0 and 1) of each subpixel is
estimated to generate initial class label of the subpixels. Second,
the initial subpixel class labels are updated according to the
land cover class fractions of mixed pixels and the soft attribute
values of subpixels. In general, the SPM models can be solved by
some optimization program, such as the genetic algorithms [21],
[22], particle swarm optimization [23], and simulating annealing
[24], [25]. For these algorithms, the estimate of abundance (i.e.,
land cover class fractions of mixed pixels) and endmember is
predefined and not allowed to be modified in second step, and
therefore the accuracy of SPM depends strongly on the accuracy
of predefined abundances and endmembers.

Several SPM algorithms are designed to allow better estimates
of the abundance and endmember, such as the Markov random
field (MRF)-based SPM algorithm [26], the spectral–spatial
integration SPM model [27], the adaptive MAP-based class
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determination SPM [28], and the genetic algorithm-based ap-
proach [29]. The objective function of these methods mainly
involves the likelihood term and the class label field prior
(i.e., spatial regularization terms) [30]. The class label prior
term makes it more likely that spatially close subpixels belong
to the same land cover class membership, and the likelihood
term assures that the number of subpixels within a coarse
pixel coincides with the predefined abundances of land cover
class.

However, the endmember variability issue is not investigated
in the aforementioned methods, which can therefore reduce the
accuracy of endmembers and their corresponding abundances,
thus leading to unsatisfactory SPM performances. Endmember
variability refers to a variation of the measured spectral signature
for a single material in HSI due to the variable illumination,
atmospheric, and temporal conditions [31], [32], [33]. As a
consequence, it is necessary to explore the impact of endmember
variability when performing the SPM method. For example,
the joint sparse SPM model takes into account the endmember
variability in SPM [34]. Nevertheless, the endmember variability
information in this algorithm requires to being manual-defined
as prior knowledge.

In this article, a novel Bayesian SPM for HSI is designed,
which integrates discrete endmember variability mixture model
(DEMM) and MRF into the Bayesian framework for improved
SPM result. The main contributions and innovations of this study
are introduced as follows.

1) The novel DEMM is proposed to enhance the perfor-
mance of SPM by fully taking into account the patterns
of endmember–abundance in HSI for accommodating the
endmember variability and the discrete hidden subpixel
class label information in each coarse pixel while consid-
ering the heterogeneous noise effect. Instead of estimating
a group of endmembers for all given pixels, the proposed
method estimates a group of endmembers for each pixel. In
such a case, by considering a group of endmembers within
a pixel using the linear mixed model (LMM), DEMM is
capable of accommodating endmember variability when
performing SPM.

2) A discrete hidden class label field modeled by MRF to-
gether with the DEMM, which can be seamlessly inte-
grated into the newly developed Bayesian model to effec-
tively utilize the spatial contextual and spectral reflectance
information contained in HSI. By accommodating the
discrete class label information of the subpixels, DEMM
attempts to link SPM with LMM and allows the use of
MRF to exploit the spatial information in the discrete class
label field.

3) The resulting Bayesian model can be efficiently solved
by a designed expectation–maximization (EM) iteration,
which treats the subpixel class label field as missing
observations and iteratively alternates the estimation of
subpixel class labels based on the endmembers and the
update of the endmembers given the subpixel class labels.
In this EM optimization, the E-step intends to estimate the
subpixel class label field using a simulated annealing (SA)
algorithm, and M-step is able to estimate the endmembers

for each pixel in HSI using the alternating non-negative
least squares (ANLS) approach.

The rest of this article is organized as follows. The proposed
Bayesian framework for SPM taking into account the endmem-
ber variability is described in Section II. Section III provides the
model optimization of the proposed method in detail. Section IV
conducts the experimental analysis on both synthetic and real
HSI imageries. Finally, Section V concludes this article.

II. BAYESIAN SPM ALGORITHM

A. Discrete Endmember Variability Mixture Model

This article presents a novel generative model, named
DEMM, which describes how the observed hyperspectral pixels
are associated with the discrete hidden class labels of subpixels,
the endmember variability of each coarse pixel, and the hetero-
geneous noise effect across spectral channels in the HSI.

Let I (for I = 1, 2, . . . , N ) denote the positions of coarse
pixels within the hyperspectral image. Each coarse pixel xi is
encoded in a P × 1-dimensional vector, where P is the number
of spectral channels. In the following, a collection of positions
of the subpixel in coarse pixel is expressed as J . Let the scale
factor of the SPM be d, then including d2 subpixels within each
pixel. The li,j represents the class label of the subpixel at jth
spatial position in the ith coarse pixel. For the entire HSI, the
image is described as X = {xi|i ∈ I}, and the hidden subpixel
class labels field can be described as L = {li,j |i ∈ I, j ∈ J}.
We assume that the HSI shares K common endmembers, then
ski (for k = 1, 2, . . . ,K) denotes the abundance coefficient of
kth land cover class at the ith coarse pixel.

Traditionally, the LMM does not account for the endmember
variability issue and assumes that different pixels in the image
have the same set of endmembers [35]. According to the LMM,
a given spectrum of the ith pixel, i.e., xi, can be obtained as a
linear combination of the group of endmembers {ak} for the
whole image weighted by the abundance coefficients ski , plus
the Gaussian noise n.

xi =

K∑
k=1

akski + n (1)

where ak is the same for all pixels in X , and therefore (1) is
not expected to effectively tackle the problem of endmember
variability.

However, due to the environmental, atmospheric, and tempo-
ral factors, each coarse mixed pixel xi (for i = 1, 2, . . . , N ) has
its own specific group of endmembers aki ; they fluctuate within a
range in HSI [33]. By considering that aki varies for different xi
(endmember variability), the endmember can be better captured
and more accurately estimated. Therefore, estimatingaki for each
pixel xi is supposed to facilitate the SPM implementation.

Here, our newly proposed DEMM model takes into consid-
eration both the discrete nature of the subpixel class labels and
noise variance heterogeneity. The observed pixel spectrum xi in
DEMM can be formulated as a linear combination of K end-
members with spectral variability {aki }weighted by the discrete
version of the fractional abundance ski , plus the band-dependent
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noise term n resulting from the varying physical properties.

xi =

K∑
k=1

aki

∑d2

j=1 δ(li,j , k)

d2
+ n (2)

where an additive noisen is assumed to be Gaussian-distributed,
and the probability density can thus be formulated as

p(n) =
1√

(2π)P | Λ |exp

{
−1

2

(
xi −

K∑
k=1

aki

∑d2

j=1 δ(li,j , k)

d2

)T

Λ−1
(
xi −

K∑
k=1

aki

∑d2

j=1 δ(li,j , k)

d2

)⎫⎬
⎭
(3)

where Λ is described as a noise covariance matrix. The pro-
posed DEMM model defined by (2) and (3) has the following
characteristics.

1) Endmember Variability Mixture Model: Comparing with
ak in (1), the aki in (2) is specific to the ith pixel, and
therefore it allows each pixel to have its own group of end-
members. Therefore, in (2), instead of estimating a group
of endmembersA = {ak|k ∈ K} for the whole imageX ,
it estimates a group of endmembersAi = {aki |k ∈ K, i ∈
I} for a single pixel xi. Although ignoring the endmember
variability in HSI may compromise the SPM performance,
most existing SPM methods cannot well cope with this
problem. By estimating the group of endmembers Ai for
each pixel, DEMM is expected to achieve favorable SPM
result by addressing endmember variability.

2) Discrete Hidden Class Label Field: According to the
generative model defined by (2) and (3), the number of
subpixels belonging to the kth land cover class within the
ith coarse spectral pixel can be given by ski as follows:

ski =

∑d2

j=1 δ(li,j , k)

d2
(4)

where δ(·) denotes the Kronecker delta function, with
δ(a, b) is equal to 1 when a = b, otherwise, δ(a, b) can
be set as 0. From (4), ski is generally treated as a discrete
version of the fractional contribution of the kth land cover
class aki , and it also reflects the discrete nature of the
subpixel class labels. In this sense, the discrete class label
field allows the use of some spatial models, such as MRF,
to capture the spatial information in HSI.

3) Spatial Correlation Effect: Through an MRF prior dis-
tribution, the hidden class label field of subpixels can be
seamlessly integrated into the DEMM model. It enables
DEMM to use spatial contextual information of subpixel
class labels, i.e., adjacent subpixels in HSI are supposed
to have the same class label.

4) Band-Weighted Noise Model: Due to the model and mea-
surement errors, the different physical properties of the
varying spectral channels as well as the presence of junk
bands, each spectral band tends to have different noise
levels in the HSI [36]. Therefore, it is important to con-
sider the noise heterogeneity effect for better suppress the

impact of noise when performing SPM. It is worth noting
that the noise distribution is characterized byΛ, which can
be expressed as the following diagonal matrix [37]:

Λ =

⎡
⎢⎣
σ2
1 · · · 0
...

. . .
...

0 · · · σ2
P

⎤
⎥⎦ (5)

where σ2
j (for j = 1, 2, . . . , P ) in Λ represents the noise

variance of the jth band. Using such a band-dependent
noise model has great capability to handle the heteroge-
neous noise problem in the spectral domain for enhanced
SPM results.

Consequently, the novel developed DEMM model can im-
prove SPM results by better characterize endmember variability,
discrete nature of the subpixel class labels, and spatial correla-
tion effect.

B. Bayesian SPM Formulation

Under SPM, we intend to achieve the subpixel class labels
li,j of the jth subpixel within the ith coarse pixel given the
observations {xi}. From the point of view of the Bayesian the-
orem, the subpixel class labels can be estimated by maximizing
the posteriori probability of {li,j} in the presence of {xi} as
follows:

p({li,j}|{xi}) ∝ p({xi}|{li,j})p({li,j}) (6)

where p({xi}|{li,j}) denotes the data likelihood term that de-
scribes the probability density of observed spectrum {xi} con-
ditioned on {li,j}, which indicates the modeling of the error in
the observation model defined in (2), and p({li,j}) represents
the a priori probability of subpixel class labels, which models
the spatial contextual information for the estimation of subpixel
class labels.

C. Data Likelihood

According to the proposed DEMM, the data likelihood term
p({xi}|{li,j}) in (6) can be reformulated as

p({xi}|{li,j}) = 1

z
exp

{
−1

2
‖Λ−0.5xi

−Λ−0.5
(

K∑
k=1

aki

∑d2

j=1 δ(li,j , k)

d2

)
‖22
}

(7)

where z represents a scaling parameter and‖ · ‖22 is the Euclidean
measure.

Note that, the best assignment of the {li,j}, that is, supposed
to produce the shortest Euclidean distance measure between xi
and the endmember–abundance reconstruction, will result in the
highest probabilistic value of p({xi}|{li,j}).

D. MRF-Based Class Label Prior

Assuming that the discrete class label field has MRF property,
the land cover class occupying adjacent subpixels has a greater
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chance of belonging to the same land cover class membership
[26]. In this sense, in order to encourage the fact that the subpixel
li,j and its neighborhood tend to have the same class label, the
MRF-based multilevel logistic (MLL) prior can be adopted to
model the spatial context information, which can be expressed
as

p({li,j}) = 1

v
exp

⎧⎨
⎩
∑

t∈Ni,j

(δ(li,j , li,t)− 1)

⎫⎬
⎭ (8)

where v denotes a constant for normalization andNi,j represents
the neighborhood centered at the subpixel li,j . p({li,j}) encour-
ages the neighboring subpixels to belong to the same class labels.
In this way, resort to MLL in (8) that promotes the subpixel class
label homogeneity of the local neighborhood, since p({li,j})
is expected to be maximized if li,j = li,t for t ∈ Ni,j . Thus,
p({li,j}) demonstrates the fact that adjacent subpixels tend to
have the same class labels.

III. MODEL OPTIMIZATION

A. MAP Model Estimation

The MAP framework has been proven to be an effective way
to efficiently address the ill-posed SPM problem. It can achieve
an optimal discrete class label field of the subpixels {li,j} by
maximizing the posteriori probability of L on the basis of the
observed HSI imagery X as follows:

L̂ = argmax
L
{p(L|X,Θ)} (9)

whereΘ = {Λ, {aki }, L} is the model parameter, which includes
the group of endmembers for each pixel aki , the noise covariance
matrix Λ, and the subpixel class label field L. The equation
p(L|X,Θ) can be split by the multiplication of the data likeli-
hood function in (7) and the MRF-based MLL class label prior
in (8), and is simply denoted as

p(L|X,Θ) ∝
N∏
i=1

1

Z
exp

{
−1

2
‖Λ−0.5xi − Λ−0.5

(
K∑

k=1

aki

×
∑d2

j=1 δ(li,j , k)

d2

)
‖22
}

×
N∏
i=1

d2∏
j=1

1

v
exp

⎧⎨
⎩
∑

t∈Ni,j

(δ(li,j , li,t)− 1)

⎫⎬
⎭ .

(10)

Maximizing the MAP objective of p(L|X,Θ) is equivalent to
taking the negative symbol on its minimum logarithm likelihood
function, i.e.,

L̂ = argmin
L

F = argmin
L
{−ln p(L|X,Θ)}. (11)

Then, the objective function can also be simplified by elimi-
nating the normalizing coefficient of class label prior and adding

an extra coefficient η as follows:

F =
1− η
ω

N∑
i=1

‖Λ−0.5xi−Λ−0.5
(

K∑
k=1

aki

∑d2

j=1 δ(li,j , k)

d2

)
‖22

+ η

N∑
i=1

d2∑
j=1

∑
t∈Ni,j

(1− δ(li,j , li,t)) (12)

where η and ω are the two important weighing coefficients,
which can be used for determining the relative weights between
the class label prior and the likelihood term.

As we can see, unknown parameters in Θ include the set
of endelements aki of each pixel, the noise distribution matrix
Λ, and the class label field L of subpixels. Since the number
of unknown quantities in Θ of the equation is bigger than
the number of observations, and as such, offering a plausible
estimation of Θ can be seen as an ill-posed issue, which is
typically addressed by the EM optimization strategy.

B. EM Optimization

The EM optimization is an extensively utilized technique for
dealing with the incomplete data issue by treating some potential
parameters as missing observations and iteratively alternates
between two-stage optimization process (i.e., the estimation of
the model parameters based on missing observations and the
updates of missing observations given the model parameters)
until convergence to yield optimal estimates [38]. Accordingly,
the proposed algorithm treats the class label field {li,j} as the
missing observations and Λ and {aki } as the model quantities to
derive iterative estimation of all unknown parameters. Then, we
finally provide the main steps of estimating {li,j}, Λ, and {aki }
using the designed EM approach as follows.

1) Initialization: We set the initial value for {aki } and {ski }
by using the ANLS. Once the initial values {aki } and {ski }
are obtained, the Λ is calculated by (13).

2) E-step: Given {aki }, {ski }, and Λ, the class labels {li,j}
can be derived by using the SA algorithm in Section III-D.

3) M-step: Based onL,{aki } and{ski } are estimated using the
ANLS, as detailed in Section III-C. When the optimized
{aki } and {ski } are obtained, the variance Λ is estimated
by

Λ = var

({
xi −

K∑
k=1

aki s
k
i

})
(13)

where var(·) denotes the bandwise variance function,
which calculates the variances of the reconstruction error
for measured pixels.

C. {aki } Estimation in M-step

To simplify the estimation, we decompose {aki } into some
reference endmembers ak0 , they are pixel-independent, and some
pixel-dependent scale factorsψk

i can be adopted for endmember
variability[33] as follows:

aki = ψk
i a

k
0 . (14)
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Algorithm 1: Finding a Local Minimum of (15) Using the
ANLS Approach.

Input: spectral stack X , endmembers A0, and iteration
numbers Kiter
Output: Âi, Ŝi, Ψ̂i

Initialization: Ψi, Si and choose λs

While t ≤Kiter do
A

(t)
i ← (xiS

T
i + λsA0Ψi)(SiS

T
i + λsIK)−1

S
(t)
i ← (AT

i Ai)
−1(AT

i xi)

Ψ
(t)
i ← (AT

0 A0)
−1(AT

0 Ai)
end while
Note: IK is a K ×K identity matrix

According to (14), a criterion (minimization of energy) can be
designed to perform spectral unmixing using (2) and to achieve
the aki as

J(Ai, Si,Ψi) =
1

2

N∑
i=1

(‖xi −AiSi‖22 + λs‖Ai −A0Ψi‖22)
(15)

where Ψi ∈ RK×K represents a diagonal matrix with elements
ψk
i ≥ 0, A0 denotes the reference endmember matrix that can

be predefined, whose columns are the ak0 , Ai ∈ RP×K is the
collection of pixel-dependent endmember matrices with values
aki , and Si ∈ RK×1 are the abundance vectors for pixel xi. The
parameter λs determines the relative weight of two terms in
(15). In this article, we use the ANLS method to estimate the
(15), which is summarized in Algorithm 1. Note that, here λs is
defined as 0.5, the iteration numbersKiter is set to 100, the initial
abundance maps used are those of scaled version of non-negative
constrained least squares unmixing (SCLSU) [39] and the initial
endmember variability scale factors will be set to 1.

D. {li,j} Estimation in E-step

The SA technique [40] has been developed to estimate the
class label {li,j}, which is called the state of the system. More-
over, the new state, i.e., Lnew, in the designed SA algorithm can
be achieved by randomly choosing and updating the subpixel
class label fields, and whether the new state of Lnew is accepted
depends on the acceptance probability prob(enew, e, T ) defined
in (16). It should be noted that the optimal state Lbest with the
lowest energy over all iterative steps will be obtained as the final
output when a predefined maximum number of iteration (i.e.,
Mmax) is reached.

prob(enew, e, T ) = exp(−(enew − e)/T ) (16)

where enew and e represent the energies of Lnew and L, re-
spectively, and the parameter T denotes the current system
temperature. Note that here, if a value randomly produced by
a uniform distribution within the range of [0,1] is not larger
than the prob(enew, e, T ) in the SA approach, then the new
state of Lnew is recorded. Otherwise, the current system still
favors L. Moreover, the possibility of acceptance is expected to
increase with the cooling of system temperature T according to

Algorithm 2: Proposed Method.
Input: spectral stack X , endmembers A0, the number of
endmembers K, the number of iterations Kiter, the
smoothness parameter η, and the scale coefficient d

Output: SPM L̂
Initialization: t = 1, Si = SCLUS(X,A0),
A

(0)
i , S

(0)
i ← ANLS(X,Si, A0, {Ψi}),

Λ(0) = var({xi −A(0)
i S

(0)
i })

While t ≤Kiter do
E-step: L(t) ← SA(X, {A(t−1)

i },Λ(t−1), L(t−1)) in
Section III-D
M-step: Estimate Si using (4)

A
(t)
i , S

(t)
i ← ANLS(X,Si, A0, {Ψi}) in

Algorithm 1
Λ(t) = var({xi −A(t)

i S
(t)
i })

end while

the following:

Tm = 0.9× Tm−1 (17)

where m and m− 1 are the current and the last iteration, re-
spectively. More specific, T0 is assigned to 3. The SA algorithm
has been detailed in our previous article [41]; it is worth noting
that we use a distinct endmember set for each pixel in the
designed SA algorithm to account for the endmember variability
in this article, rather than a single endmember set for whole HSI
imagery discussed in [41].

E. Complete Algorithm

The newly developed SPM framework based on DEMM and
MRF is summarized in Algorithm 2.

IV. EXPERIMENT AND ANALYSIS

The proposed algorithm is evaluated on three HSIs, in com-
parison with several popular SPM methods, including the sub-
pixel/pixel SAM [12], PSA [5], the spectral and spatial integra-
tion SPM model (SPMLM) [27],the MRF-based SPM model
(MRFSPM) [26], as well as the genetic algorithm-based ap-
proach (GAAI) [29]. For all experimental data, we use the
SCLSU to obtain the initial abundance maps for all SPM meth-
ods in this article. To determine the best relative weight of η
value in this approach, we perform the hyperparameter searching
with interval of 0.1 within the range of 0.1–0.9. In addition,
we present a detailed quantitative evaluation using the kappa
coefficient and the overall accuracy (OA).

A. Experiment 1: Simulated HSI

The simulated HSI is generated by using the (2) with some
Gaussian noise. Six reference endmembers, which has 188
spectral bands ranging from visible to near-infrared, are ran-
domly picked from the U.S. geological survey digital spectral
library, as shown in Fig. 1(a). The simulated class label for
the subpixel with size 144× 144 is designed, as shown in
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Fig. 1. (a) Six reference endmembers are randomly selected from the U.S.
geological survey digital spectral library. (b) Simulated class label map for the
subpixel.

Fig. 2. To simulate the endmember variability, a total of six endmember
variability scale factor maps [{ψk

i } in the (14)] are generated. Each map is
associated with one endmember, because the pixels in the map have different
values, and therefore different pixels tend to have different endmembers.

Fig. 1(b). To simulated endmember variability, we generated
endmember variability scale factors maps for each endmember,
using mixtures of Gaussian with the range from 0.75 to 1.25, as
shown in Fig. 2.

In addition, the pixel-dependent endmember instances can
be acquired through multiplying the selected reference end-
members by their corresponding endmember variability scale
factors, then the pixel-dependent endmember combined with
the class label field map are used to reconstruct a fine-resolution
image. Moreover, by averaging the original image with higher
resolution, the coarse resolution imagery with downsampling
scale coefficients of 2, 3, and 4 can be achieved, respectively.
In this sense, the reconstruction scale factor is set to 2, 3,
and 4, respectively. Consequently, the simulated HSI data are
degraded using the zero-mean Gaussian. To simulate the noise
heterogeneity effect, we assign different SNR values to different
bands. The band-dependent SNR values used for simulation are
estimated from the benchmark Indian Pines image. Suppose that
the estimated SNR vector q has been centralized and normalized;
then the simulated SNR r can be obtained according to the
following rule:

r = αq + c (18)

where α is the amplitude that determines the magnitude of
fluctuation of band-dependent SNR and c is the center value
that defines the overall SNR of all bands. In this article, the SNR
r is calculated with α = 9 and c = 25.

In this experiment, the reference endmembers in each coarse
pixel directly use the selected endmembers for data simulation.
Fig. 3 shows the SPM outcomes obtained using distinct ap-
proaches over various scale factors. As can be seen, the proposed
SPM method outperforms the other referenced algorithms across
all downsampling scales and produces more consistent SPM re-
sults that closely match the ground truth map shown in Fig. 1(b).
We can see that there exist numerous noise artifacts in the SAM
and PSA results. Although the GAAI, MRFSPM, and SPMLM
methods achieve smoother result, some details are also lost. The
proposed method not only can resist the noise influence, but also
well preserve the details (see the details within the red rectangles
in Fig. 3), since it takes full account of endmember variability
and band-dependent noise.

Table I presents the quantitative results of the proposed algo-
rithm and the baseline methods, which indicate the consistent
results with the abovementioned visual comparison. Overall,
it is obvious that the proposed algorithm achieves the best
performance among all the SPM methods, with the highest
numerical evaluation indexes of OA and kappa coefficients over
different scale factors. Specifically, compared with the GAAI,
the accuracy of the proposed algorithm increased dramatically,
with the OA rising by 2.95%, 8.26%, and 7.93% for scale factors
of 2, 3, and 4, respectively. The OA values of the proposed
algorithm are 1.19%, 3.24%, and 4.61% higher than those of
SPMLM for scale factors of 2, 3, and 4, respectively. The OA
values of the proposed algorithm are 1.37%, 2.35%, and 2.64%
higher than those of MRFSPM for scale factors of 2, 3, and 4,
respectively.

B. Experiment 2: Jasper Ridge Imagery

Jasper Ridge imagery with a size of 512× 614 pixels was
acquired by the AVIRIS sensor in central California, USA. Each
pixel contains 224 spectral channels. Due to the original Jasper
Ridge datasets are too complicated to collect the ground truth
map, we achieve a subimage composed of 100× 100 pixels,
sampled on 198 wavelengths by removing the bands severely af-
fected by the dense water vapor and ever-changing atmospheric
effects. The 2× 2 and 4× 4 mean filters are applied to the fine
imagery to obtain coarse resolution imagery with the size of
25× 25 and 50× 50. Remove one row and one column to get
an imagery with the size of 99× 99 pixels. The 3× 3 mean
average is applied to this imagery to obtain coarse resolution
imagery with the size of 33× 33. Therefore, the reconstruction
scales are assigned to 2, 3, and 4. The fine and coarse resolution
imagery with the scale factor of 2, 3, and 4, are depicted in
Fig. 4(a)–(d), respectively. The study region contains four land
cover classes of interest: 1) road; 2) soil; 3) water; and 4) tree.
Note that, the reference endmembers of the four land covers used
in the experiment came from the previous publication in [42],
as shown in Fig. 4(f). The ground truth is also produced by [42],
as shown in Fig. 4(e).
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Fig. 3. SPM results achieved by different methods on the simulated HSI with different scale factors d = 2, 3, 4. As we can see, the proposed method can resist
the noise impact and better preserve the details in the subpixel class label field.

TABLE I
SPM ACCURACY FOR THE SIMULATED HSI

Note: Best results are in bold.

TABLE II
SPM ACCURACY FOR THE JASPER RIDGE IMAGERY

Note: Best results are in bold.

Fig. 5 shows the SPM results obtained by different approaches
on the Jasper Ridge imagery with the scale factor of 2, 3, and 4; it
also indicates that the proposed approach can better estimate the
subpixel class label field with rich detail information with less
noise influence (see the details within red rectangles in Fig. 5).
It can be seen that SAM and PSA contain the noise artifacts in
the results. Although GAAI, SPMLM, and MRFSPM can better
resist the noise impact, they cannot recover detail very well,
due to the lack of consideration of endmember variability and
heterogeneous noise effect.

Table II gives that the proposed method for scale factor 2, 3,
and 4 achieve OA of 88.29%, 86.54% and 84.90%, respectively.
The OA values achieved by the proposed algorithm are 2.77%,
4.71%, and 7.21%higher than that of GAAI for scale factors of 2,
3, and 4, respectively. The OA values of the proposed algorithm
are 1.00%, 1.20%, and 1.46% higher than those of SPMLM
for scale factors of 2, 3, and 4, respectively. Compared with
the proposed algorithm, the value of OA decreases by 0.88%,
0.84%, and 1.06% when it comes to MRFSPM for scale factors
of 2, 3, and 4, respectively.
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Fig. 4. (a) RGB true color composite of the original Jasper Ridge imagery.
(b)–(d) RGB true color composite of coarse Jasper Ridge imagery with the scale
factor of 2, 3, and 4. (e) Ground truth label map for the subpixels. (f) Reference
endmembers of the four land covers.

C. Experiment 3: Urban Dataset Imagery

Fig. 6(a) shows the Urban dataset (300× 300 pixels), which
was recorded by the hyperspectral digital imagery collection
experiment in 1995 over an urban area at Copperas Cove, TX,
U.S [42]. The Urban hyperspectral data contain six land covers
of: 1) asphalt; 2) grass; 3) tree; 4) roof; 5) dirt; and 6) metal,
and its ground truth map are generated by [42], as shown in
Fig. 6(e). Each original pixel is observed at 210 bands. There
are 162 spectral reflectance bands are collected in this study after
excluding the channels that are severely influenced by the water
vapor and the atmospheric conditions. The coarse resolution
imagery of 150× 150, 100× 100, and 75× 75 can be obtained
by applying the 2× 2, 3× 3, and 4× 4 mean filters operation,
respectively, as shown in Fig. 6(b)–(d), then the reconstruction
scale is set to 2, 3, and 4, respectively. It is worth noting that the
reference endmembers of the six land cover classes used in the
experiment came from the previous publication in [42], as can
be seen in Fig. 6(f).

Fig. 7 shows the SPM results produced by different
approaches on the Urban dataset imagery with different scale
factors d = 2, 3, 4. Overall, it shows the consistent results with
the experiments 1 and 2, which reveal that the proposed method
can yield higher accuracy outcomes than that of the other five
popular SPM algorithms. Specifically, the GAAI, SPMLM, and
MRFSPM can eliminate certain unmixing errors and generate
smoother subpixel spatial distribution than the PSA and SAM,
especially on the homogeneous regions. Moreover, we also
noticed that it is difficult for GAAI, SPMLM, and MRFSPM
to reconstruct some subpixel distribution details information
compared with the proposed method. For example, the proposed
method is able to recover more details of the dirt at different
scales within the red rectangles in Fig. 7, which is more consis-
tent with the ground truth label map displayed in Fig. 6(e).

Table III lists the OA and kappa indexes of the different
SPM algorithms for quantitative evaluation; it indicates the
consistent results with Fig. 7. As can be seen from Table III,
the proposed method provides the greatest performance among
the methods, the accuracies of the proposed method for scale
factors of 2, 3, and 4 are equal to 82.38%, 79.05%, and 76.19%,
respectively, which is an improvement in the SPM accuracies
of about 2.80%, 3.73%, and 3.93% when compared with the
SPMLM, 2.30%, 7.76%, and 6.54% when compared with the
GAAI, and 2.31%, 1.53%, and 0.83% when compared with
the MRFSPM. With the increase of scale factors, the accuracy
of all methods becomes lower, because the spatial distribution
of mixed pixels in large scale is more complicated. These
experimental results demonstrate that the proposed algorithm
outperforms the other popular methods for the Urban dataset.

D. Sensitivity Analysis of η

η is a very important parameter that controls the contribution
weights of the likelihood and the class label prior (the spatial
regularization term). The large value of η, indicating that the
spatial regularization term plays a dominant role in the objective
function, will result in the oversmooth of the results of SPM.
In addition, the small value of η, indicating that the likelihood
occupies the dominant role in the objective function, will lead
to the SPM results affected by the unmixing error and the
existence of noise. To determine the optimal value of η in the
proposed approach, we perform the hyperparameter searching
ranging from 0 to 0.9 with a step of 0.1 in the abovementioned
experiments. Meanwhile, to investigate the robustness of the
algorithm under different η values, we repeated the experiment
of each η value for ten times and calculated its mean and variance
values. The statistical summary results of each experiment are
shown in Fig. 8.

Fig. 8 shows the sensitivity analysis of the η value using
three different datasets; it indicates that with the increase of
η value, the accuracy of the algorithm increases and then grad-
ually decreases, which is in-line with our expectation that the
η value somewhere between 0 and 0.9 finds the best balance
point between the spatial regularization term and the likelihood.
Moreover, we can also conclude that the accuracy fluctuation
of the algorithm is not obvious in the experiment of selecting
the value of η, indicating that our method exhibits a satisfactory
robustness.

E. Further Discussion

In this article, we propose a Bayesian SPM of HSI via DEMM
and MRF, which establishes a Bayesian formula based on the
DEMM and MRF and adopts iterative optimization by the EM
algorithm. The E-step estimates the discrete subpixel class label
modeled by MRF, and M-step estimates the endmembers for
each pixel by ANLS. We compare with other methods in the three
datasets. The advancement and effectiveness of the proposed
method are verified from the SPM results, the local amplification
map, and the index table. We assume that the better performance
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Fig. 5. SPM results achieved by different methods on the Jasper Ridge imagery with the scale factors of 2, 3, and 4. As we can see, the proposed method can
better estimate the subpixel class label field with rich detail information but less noise.

Fig. 6. (a) RGB true color composite of the original Urban dataset imagery. (b)–(d) RGB true color composite of the coarse Urban dataset imagery with scale
factor of 2, 3, and 4, respectively. (e) Ground truth label map of subpixels. (f) Reference endmembers of the six land covers.

TABLE III
SPM ACCURACY FOR THE URBAN DATASET IMAGERY

Note: Best results are in bold.

of the proposed approach over the other approaches is mainly
due to the following.

1) First, the designed DEMM model enables the pro-
posed SPM to consider endmember variability, dis-
crete hidden label fields of subpixels, and noise
heterogeneity.

2) Second, the DEMM and the discrete label fields modeled
by the MRF are integrated into a new Bayesian model with
better use of both spatial and spectral information.

3) Third, the efficiency of the new optimization approach for
updating endmembers for each pixel and the abundance
iteratively.

In the comparison method of this article, the PSA and SAM
methods should first unmixing the mixed pixel, and then make
the SPM after obtaining the abundance of each pixel. These
two methods strictly adhere to abundance constraints, where
the numbers of subpixels of each land cover class within the
mixed pixel corresponds to the input abundance map. However,
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Fig. 7. SPM results achieved by different methods on the Urban dataset imagery with different scale factors d = 2, 3, 4. As we can see, the proposed method
can better recover the detail information in subpixel class label map with less noise.

Fig. 8. Sensitivity analysis for the η value using three different datasets, i.e., simulated HSI, Jasper Ridge imagery, and the Urban dataset imagery.

since the spectral unmixing is still an open problem, the obtained
abundance map does not necessarily accurately predict the true
proportion of land cover classes within the mixed pixel, so there
are a lot of noise artifacts in the SPM results, which affect the per-
formance of SPM techniques. The GAAI, SPMLM, MRFSPM,
and the proposed methods are all based on the linear spectral
unmixing models and perform SPM in the form of constructing
objective functions. Their objective functions both contain the
following two parts, one part is the spectral term, so that the SPM
satisfies the constraints of the linear spectral unmixing model,
and the other part is the spatial term, so that the discrete subpixel
class label field produces the maximum spatial dependence and
tends to smooth. These two parts are combined according to a
certain weighing coefficient to achieve a best balance, relaxing
the constraints on abundance, and eliminates the uncertainty
caused by spectral unmixing. However, the spectral terms of the
GAAI and SPMLM methods do not consider endmember vari-
ability and noise heterogeneity, while the MRFSPM method only

considers noise heterogeneity, not endmember variability, while
the spectral terms of the proposed method are considered both,
such as (12). Therefore, the proposed method is more suitable
for the original spectral information in spectral reconstruction,
and then in the iterative optimization of abundance information
estimation is more accurate, thus more accurate to estimate the
details of the subpixel label field (such as the red rectangles
part of the three experimental results), obtained the high-quality
SPM results.

V. CONCLUSION

In this article, we have proposed a Bayesian SPM for HSI
by integrating DEMM and MRF to address the SPM prob-
lems. First, the DEMM framework that allows the enhanced
SPM performances by fully taking into account the patterns
of endmember–abundance within each pixel for accommodat-
ing the endmember variability as well as the discrete subpixel
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hidden class label field while considering the noise heterogeneity
effects. Consequently, the novel SPM model was less susceptible
to the impact of endmember variability and band-dependent
noise present in HSI. Second, we used MRF to model the
discrete class label field, and then combined MRF with DEMM
in a novel Bayesian model to efficiently investigate the spatial
contextual and spectral information. By accommodating the
discrete class label information of the subpixels, DEMM links
SPM with LMM and allows the use of MRF to exploit the
spatial information in the discrete class label field. Third, we
designed a new EM approach that solve the resulting Bayesian
model, where E-step estimates the abundance using the SA
algorithm and M-step estimates the endmembers for each pixel
in HSI using the ANLS approach. The visual and quantitative
assessments on three different HSIs demonstrate that the pro-
posed algorithm is an efficient SPM method. The analysis η of
parameters indicates the robustness of the proposed algorithms.
Future research directions include the fusion of a more accurate
spatial regularization term into the Bayesian framework and the
improvement of the efficiency and practicability of the algorithm
and its application to large-scale images.
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