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Abstract—Hyperspectral images (HSIs) have always played an
important role in remote sensing applications. Anomaly detection
has become a hot spot in HSI processing in recent years. The
popular detecting method is to accurately segment anomalies from
the background. Informative bands are very important for the
accuracy improvement of the detection technology. However, most
of the abnormal targets segmentation methods focus on the usage
of all the spectral features, thus are easily affected by redundant
bands or feature noise. A hyperspectral anomaly detection algo-
rithm based on subfeature ensemble is proposed in this article. The
proposed method consists of the following steps. First, the bands of
the original HSI are normalized and randomly divided into several
subfeature sets according to different proportions. Second, six
methods including the prior-based tensor approximation algorithm
(PTA), Reed–Xiaoli method, a low-rank and sparse representation
method, a low-rank and sparse matrix decomposition-based Maha-
lanobis distance method, the graph and total variation regularized
low-rank representation-based method, and a method based on
tensor principal component analysis are applied to detect anomalies
on the original HSI, and the method with the best performance
is used to obtain an enhanced feature set. Then, the enhanced
features and the subfeatures are ensembled iteratively to construct
a new dataset. Finally, the PTA method is operated on the dataset
with ensemble features to get the final abnormal target results. Six
hyperspectral datasets are used in the experiment. Seven methods
are employed as comparisons. The results are analyzed from both
qualitative and quantitative perspectives. Extensive experimental
results illustrate that the proposed method performs best on all
datasets.
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs) can provide rich spec-
tral and spatial information [1] and are highly valued by

remote sensing scholars and scientists around the world [2].
Compared with the traditional remote sensing data, HSIs have
strong practicability and can be used in many aspects such as
public safety [3], [4], environmental detection [5], [6], image
classification [7], [8], city planning [9], food hygiene [10], and
identification of geological rocks and mines [11]. Anomaly
detection [12]–[14] in HSI is an essential technique to find out
the anomalies in the region of interests (ROI), especially in the
case that anomalies are weak [15].

Anomaly detection is considered as a binary classifier, which
aims to label pixels as anomalous or background based on
their spectral characteristics [16]. Generally speaking, target
detection [17]–[19] can be divided into two categories, super-
vised and unsupervised, according to the existence of prior
object information. Unsupervised target detection is also called
anomaly detection and works without prior object information
[20]. However, in the presence of prior object information,
supervised target detection often achieves better performance
than anomaly detection. But in practical situations, there is
often not enough prior information, so anomaly detection has
more research value than target detection. Over the past years,
abundant anomaly detection algorithms have been proposed.
One of the classical anomaly detection methods is Reed–Xiaoli
(RX) [21]. The core idea of RX is to calculate the Mahalanobis
distance of each pixel between the target and the background
[22]. In order to obtain the distance, the covariance matrix and
the mean vector of the background are inferred. Depending on
the pixel range, the classic RX is divided into two categories,
global-RX detection (GRXD) and local-RX detection (LRXD)
[23]. GRXD estimates the background with all pixels in the
HSI, while LRXD with neighbor pixels. However, in the real
world, the image background usually contains complex objects.
And RX is established on the basis of setting the background as
a multivariate normal Gaussian distribution [24]. The Gaussian
distribution cannot realistically simulate the complex features of
the HSI [25]. In addition, some anomalies and noises cannot be
eliminated, which may contaminate the background and reduce
its detection performance [26]. Therefore, the false alarm rate
of RX is relatively high.
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To remedy this defect, some variants of the RXD have been
proposed. For example, the weighted RXD method is proposed
to reduce the effect of anomalies on the covariance matrix
when estimating the background [27]. The kernel-RXD [28]
aims to change the dimension of all pixels through mapping
pixels into high-dimensional feature space based on the kernel
theory. This has a positive effect on distinguishing anomalous
and background pixels. In addition, an improved version of KRX
with a higher computational efficiency is proposed by Khazai
and Mojaradi [29]. Unlike the kernel-RXD, the clustering-based
anomaly detection (CBAD) method [30] detects anomalies by
segmenting the HSI into several clusters. In order to reduce the
influence of background elements on extracting anomalies, Zhao
and Zhang [31] proposed to use k-means clustering method to
segment HSI . And the principal component analysis (PCA)
method is adopted to preprocess the HSI to suppress the influ-
ence of noise. However, although these methods are proven to
be effective in improving the RX performance, the core problem
is not solved. The distribution model of their background is not
changed. To avoid modeling, the distribution of the background,
some anomaly detection methods for real-environment HSIs are
proposed.

Because the background pixels are similar, the abnormal pix-
els are different, scholars assume that a few atoms in a sparse dic-
tionary can represent background pixels well [16]. Thus, sparse
representation (SR) [32] is proposed. The advantage of SR-based
methods is that no assumptions need to be established for the
statistical data distribution of the HSI dataset [33]. Inspired by
SR, low-rank and sparse matrix decomposition (LSDM) [34]
is proposed based on the concept that there are so few pixel
categories in HSI scenes. In 2016, an anomaly detection method
based on the low-rank sparse matrix factorization technique
was proposed by Zhang et al. [26]. The theory decomposes
the HSI matrix into three parts: low-rank matrix, sparse matrix,
and noise matrix, which are processed separately to obtain
detection results. In 2019, in order not to destroy the spatial
structure of the HSI, Cheng and Wang proposed an anomaly
detection method based on graph and total variation regularized
low-rank representation (GTVLRR) [35]. HSI is a 3-D data cube,
which can be regarded as a third-order tensor in essence: one
spectral dimension and two spatial dimensions. Most anomaly
detection methods ignore this point. Therefore, tensors are
introduced to maintain all dimensional structures, which has
been applied in many ways [36]–[38]. Tensor decomposition-
based anomaly detection (TDAD) [39], [40] and tensor prin-
cipal component analysis anomaly detection (TPCA) [41]
become research hotspots.

In recent years, generative adversarial networks are applied
to anomaly detection [42], [43], which has shown great advan-
tages in unsupervised application scenarios with complex data
distribution. Li et al. proposed an unsupervised generative adver-
sarial network with background spatial feature enhancement and
redundancy pooling to solve the problem of redundant informa-
tion interference [44].

Although these methods have demonstrated their positive
effect on anomaly detection in related studies, they focus on
the usage of all the spectral features when spatial information is

Fig. 1. Tensor explanation for HSI data.

Fig. 2. Two band images of the Airport-1 dataset. (a) Noisy band. (b) Clean
band.

not involved. This may affect the detection performance. First, as
the number of spectra increases, too much information becomes
redundant [45], and the time of processing the information
increases. Second, the detection map is easily affected by feature
noise [46]. In addition, the interference of noise will reduce the
signal-to-noise ratio of the image [47]. Therefore, it is necessary
to minimize the influence of noise and enhance the utilization
of features. Wu and Liu [48] proposed an anomaly detection
algorithm based on learning causal temporal relationships and
feature discrimination. The causal temporal relationship (CTR)
module is applied to capture local-scale temporal dependencies
among features to enhance features. Zhao et al. [49] proposed an
anomaly detection method based on stacked denoising autoen-
coders, and a spectral feature model was constructed to verify
the effectiveness of the proposed algorithm.

Different from the aforementioned detectors, we proposed
an anomaly detection algorithm based on subfeature ensemble
(SED) that improves the detection accuracy by effectively using
high-quality features, enhancing the difference between the
abnormal part and the background. The contributions of the
proposed algorithm are shown as follows.

1) The original spectral features of the HSI data are randomly
selected to reduce the computation complexity of the
proposed algorithm and reduce image noise.

2) Several diversity algorithms are employed to obtain the
enhanced spectral features for the accuracy improvement
of the detection algorithm.

This article is organized as follows. Section II introduces the
PTA [50] algorithm and the symbols used in this article. Sec-
tion III describes in detail the proposed methodology. Section IV
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Fig. 3. ROC curves obtained by PTA, RX, LSMAD, LRASR, TPCA,
GTVLRR, and the proposed method SED on six datasets. (a) San Diego.
(b) Airport-1. (c) Airport-4 . (d) Beach-4. (e) Urban-3. (f) Urban-5.

lists the results of the experiments and the discussion. Finally,
Section V concludes this article.

II. RELATED WORK

PTA is a tensor-based anomaly detection method. Low-order,
sparse, and segment-smooth prior information is added to its
processing, which is helpful for the detection of objects of
different sizes and has a wider application. In addition, the tensor

approximation allows both spectral and spatial dimensions to
be considered, improving the detection accuracy. Assuming an
original HSI Y 1 with H rows, W columns, and D spectral
bands is denoted by Y ∈ RH×W×D.

Y can be divided into two parts: the background tensor X
and the anomaly tensor S. The PTA method consists of the
following steps. First,X is expanded along the spatial dimension
to get X1 and X2, respectively, then linear total variation norm
regularization is applied to them. Second, X is expanded along
the spectral dimension to form the matrix X3. Then, a novel
truncated nuclear norm regularization is combined with X3.
Third, the anomaly tensor is expanded as S3 along its spectral
dimension. An l2,1-norm regularization is applied onS3. Finally,
PTA is calculated by the following equation:

argmin
X ,S

1

2

(
‖DHX1‖2F +‖DWX2‖2F

)
+α ‖X3‖r+β ‖S3‖2,1

(1)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y = X + S
X1 = unfold1(X )

X2 = unfold2(X )

X3 = unfold3(X )

S3 = unfold3(S)

(2)

where DH ∈ R(H−1)×H and DW ∈ R(W−1)×W are defined
as

DH =

⎡
⎢⎢⎢⎢⎣

1 −1

1 −1
. . .

. . .

1 −1

⎤
⎥⎥⎥⎥⎦

(3)

DW =

⎡
⎢⎢⎢⎢⎣

1 −1

1 −1
. . .

. . .

1 −1

⎤
⎥⎥⎥⎥⎦
. (4)

III. PROPOSED METHOD

SED is dedicated to enhancing the characteristics of abnormal
parts of the HSI to improve the detection accuracy. The proposed
method consists of three steps. First, the bands of the original
HSI are randomly selected to obtain several subfeature sets.
Second, six methods are applied to detect anomalies on the
original HSI, and the best-performing algorithm is selected to
obtain an enhanced feature set. Two feature sets are ensembled
to construct the new dataset. Third, the PTA is applied with the
new dataset to get the final abnormal target results. The algorithm
flow is summarized in Algorithm 1.

A. Feature Selection

HSIs can provide rich spectral information for abnormal tar-
gets. However, feature redundancy and noise [51] of the original
data (see Fig. 2) may lead to negative effects for the target
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Fig. 4. Pseudocolor images (first column) and ground truth (second column). Detection results of PTA, RX, LSMAD, LRASR, TPCA, GTVLRR, and the
proposed method SED, respectively on six datasets. (a) San Diego. (b) Airport-1. (c) Airport-4. (d) Beach-4. (e) Urban-3. (f) Urban-5.
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Fig. 5. Influence of parameters on the AUC scores on six datasets. The
parameter γ is shown in (a), α is shown in (b), β is shown in (c), μ is shown in
(d), and τ is shown in (e). (a) γ. (b) α. (c) β. (d) μ. (e) τ .

detection algorithm. In order to deal with the aforementioned
problem, feature selection and enhancement are adopted to
improve the detection accuracy.

Assuming that Z = RH×W×D is an HSI, it is stratified along
the spectrum dimension as follows:

Z =
(
BH×W

1 , BH×W
2 , ..., BH×W

D

)
(5)

where BH×W
i represents the ith HSI layer with H rows and

W columns.
Because there is often noise in collected hyperspectral data,

if it is processed directly, the results will be affected.
In this article, some of the bands are selected to remain, and

other bands that may contain noise are discarded. It has been
illustrated that normalization is a necessary step to properly
preprocess the dataset, which helps reduce unnecessary data bias
and improves the accuracy of the analysis [52]. So, all D bands
are normalized as follows:

BH×W
i =

P − Pmin

Pmax − Pmin
(6)

where P represents the pixel value, Pmax represents the
maximum pixel value, and Pmin represents the minimum pixel
value.

In order to randomly divide the HSI into several subfeature
sets according to different proportions, an array a containing
random numbers is created. We set the length of the array a
to be n, that is, a contains n random numbers. Because the
numbers of bands included in various HSIs are different, and
the proportions are also not the same, n changes accordingly.
a(k) represents the value of the kth element. In this article, the
bands labeled a(k) are selected as the subfeature set, denoted
as ZO.

ZO =
(
BH×W

a(1) , BH×W
a(2) , ..., BH×W

a(n)

)
. (7)

B. Feature Enhancement

To highlight the characteristics of the abnormal part, we
especially add some results of anomaly detection. In this article,
six algorithms including various detection principles are applied
to perform anomaly detection on the original HSI. They are
the classic method RX, a tensor representation method TPCA,
and three LRASR methods (LRASR [25], LSMAD [26], and
GTVLRR). Then, we can get six detection results. It is explained
here that SED aims to propose a new framework to improve the
detection accuracy of existing algorithms. And it can be extended
by applying new algorithms, which can be done in future work.
After analysis, the method with the best performance is retained.
It is possible that two algorithms perform almost the same, then
both of them will be selected. To accentuate the anomaly and
reduce background influence, the number of the result layer is
stacked to the tens to function.

The result layer is denoted as R1. The enhanced feature set is
denoted as ZR, shown as follows:

ZR =
(
RH×W

1 , ..., RH×W
1

)
. (8)

Each ZR contains dozens of R1.
If we get two methods, the second result layer is denoted as

R2. Then, ZR is set as follows:

ZR =
(
RH×W

1 , ..., RH×W
1 , RH×W

2 , ..., RH×W
2

)
. (9)

C. Feature Ensemble

Ensemble learning can synthesize the advantages of each
subset, and obtain results that are better than the individual [53].
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Algorithm 1: Subfeature ensemble-based hyperspectral
anomaly detection algorithm (SED).

Input: An HSI: Z , the number of rows: H , the number of
columns: W , and the number of spectral bands: D.

Process:
1: The HSI is normalized and stratified along the spectrum
dimension: BH×W

i = P−Pmin
Pmax−Pmin

,

Z = (BH×W
1 , BH×W

2 , ..., BH×W
D ).

2: n bands are randomly selected as the sub-feature set
ZO = (BH×W

a(1) , BH×W
a(2) , ..., BH×W

a(n) ).
3: Six algorithms including PTA, RX, LRASR, LSMAD,
GTVLRR, and TPCA are applied to detect anomalies on
the original HSI.

4: The method with the best performance is used to obtain
an enhanced feature set ZR = (RH×W

1 , ..., RH×W
1 ).

5: Two kinds of features are ensembled as Z∗ = ZO + ZR.
6: PTA is applied to detect Z∗ to get the final abnormal
map T .

Output:
An anomaly detection map T .

TABLE I
RATIO BETWEEN ZO AND ZR IS 3:1

The best performers of all results are bolded.

The original HSI has the basic information of anomalies, and
the enhanced feature set can highlight the anomalies and reduce
the influence of the background. In order to obtain both effects
at the same time, ZO and ZR are ensembled to obtain the new
feature set, denoted as Z∗.

Z∗ = ZO + ZR. (10)

Because the PTA method has outstanding results in detection
and the principle has been described previously. Z∗ is processed
by the PTA, and the final result is obtained. In this article, PTA is
applied twice. For the first time, the PTA is used to generate the
result in the “feature enhancement” section like other algorithms.
To clearly illustrate the algorithm flow, the overall description
of the SED is shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Datasets

Six sets of HSIs are applied to test the performance of the
proposed algorithm.

The first HSI dataset is the San Diego dataset [25]. It was
captured by an AVIRIS sensor in the San Diego Airport area
in California, USA. The image consists of 100× 100 pixels
including 189 spectral channels. The spatial resolution is 3.5 m.

TABLE II
RATIO BETWEEN ZO AND ZR IS 3:2

The best performers of all results are bolded.

TABLE III
RATIO BETWEEN ZO AND ZR IS 1:1

The best performers of all results are bolded.

Three planes in the image are considered anomalous. The sec-
ond and third datasets are from the airport-beach-urban (ABU)
scenes, named Airport-1 and Airport-4 [54]. Airport datasets
consist of 100× 100 pixels. Airport-1 data contain 205 spectral
channels and Airport-4 contains 191 bands, which were cap-
tured by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor. Multiple aircraft in the dataset are considered
anomalies. The fourth is beach data from the ABU scenes,
named Beach-4. Beach-4 image consists of 150× 150 pixels
including 102 spectral channels, which were captured by the
Reflective Optics System Imaging Spectrometer (ROSIS-03)
sensor. The anomalous targets are vehicles. The fifth and sixth
datasets are Urban-3 and Urban-5 of the ABU scenes [54].
Urban datasets consist of 100× 100 pixels. Urban-3 contains
191 spectral channels, and Urban-5 consists of 205 bands.

B. Evaluation Metrics

Two well-known methods, receiver operating characteristic
(ROC) and area under curve value (AUC), are used to evaluate
the performance of the anomaly detection algorithms. ROC [55]
can reflect the relationship between detection rate (true positive
rate, TPR) and false-positive rate (FPR), thus can comprehen-
sively evaluate the effectiveness of the algorithm. The higher the
curve, the better the algorithm performance. Moreover, the ROC
curve could also analyze the performance of the algorithm from
a qualitative point of view. AUC [56], the area under the ROC
curve, can intuitively evaluate the pros and cons of the algorithm
from a quantitative perspective. The larger the AUC value, the
better, and the ideal value is 1.

C. Parameter Settings

First, about dictionary learning of LRASR and GTVLRR, the
number of clusters K is 15 and the number of atoms in each
cluster is 20. λ and β are set in range of 0.01–1. In GTVLRR,
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TABLE IV
AUC VALUES AND CALCULATING TIME OF DIFFERENT METHODS ON SIX DATASETS

The best performers of all results are bolded.

the hyperparameter λ = 0.05, β = 0.2, and γ = 0.02. In PTA,
α and τ are set to 1 and β = 0.01. To simplify the algorithm, we
set the ratio of the number of bands with the best results to the
second-best algorithm to 2:1. The parameter settings of the six
algorithms refer to [50].

Second, to improve the calculation efficiency, the number of
ZO does not exceed half of the number of original HSI bands. In
this article, the number of ZO is set to 20, 40, 60, 80, and 100.
And three sets of ratio settings 3:1, 3:2, and 1:1 between ZO

and ZR are applied. The AUC values of SED on all datasets are
shown in the Tables I–III . It is confirmed that the best results can
be achieved even when the number ofZR is the least. Therefore,
through feature selection, the number of features is reduced,
which has a great gain in computational efficiency.

D. Results and Analysis

The AUC scores of all the methods are shown in Table IV.
Each AUC is the best result obtained after ten runs of the
program. The best grades have been kept and highlighted in
the Tables I–III. It can be seen that SED obtains the highest
scores for all six datasets. We can see that as the number of
bands increases, the value of AUC may become higher or lower.
This is related to the feature importance of the input. In the
case that the number of ZO is the same, if ZR is important, the
AUC will become higher as the number of ZO increases. But
if the added ZR is sufficient, increasing the number of ZR has
no positive effect on the AUC. In the case that the number of
ZR is the same, if the selected ZO is not enough, increasing its
input will make the AUC higher. But if ZO is enough to identify
anomalies, adding more original features will only increase the
interference, affect the recognition results.

For the San Diego dataset, compared with PTA and GTVLRR,
the AUC of SED is increased by 0.009 and 0.01, respectively.
SED is ensembled by PTA and GTVLRR to produce higher
accuracy, which proves the reliability and superiority of the SED
algorithm. For Airport-1 dataset, only the PTA obtains a better
score, so it is the only algorithm to be ensembled. The proposed
method obtains 0.9450, compared with PTA, the AUC of SED
is increased by 0.02. And it is much higher than other methods.

This set of data proves to a great extent that the algorithm can ef-
fectively improve the detection accuracy by ensembling features.
For Airport-4 dataset, unlike the aforementioned datasets, the
PTA and LSMAD obtain better scores, so they are ensembled.

Detection maps of different anomaly detection methods on six
datasets are shown in Fig. 4. By comparing the detection maps
of compared methods, we can see that the proposed method
can effectively detect abnormalities. For the San Diego dataset,
planes in the map of SED are clearer than in other detection
images. Especially, when compared with the PTA, the map of
SED protrudes abnormal objects and penalizes the background
part. Without being confused with the background, we can know
where the anomalous object is more clearly, especially on the
Beach-4 dataset. Moreover, regardless of whether the number
of abnormal targets is large or small, and the background is
simple or complex, the detection map of SED is clearer than
the maps of the comparison algorithms. And the ROC curves
of all the methods are compared quantitatively for all datasets.
As is shown in Fig. 3, the proposed method is superior to the
comparison algorithms in most situations. Especially for the San
Diego and Airport-4 datasets, the SED curve is always higher
than other curves. For the other two datasets, when the false
alarm rate is bigger than 0.01, the probability of detection of the
proposed method is higher than other methods.

The computing time of all methods on six datasets is listed in
Table IV. The experiments are carried out on the same computer.
It can be seen that the computation time of the SED is the sum
of the running time of all the algorithms plus the time of the
PTA to process Z∗. Additionally, the time at which the HSI is
stratified is ignored. In fact, the time that Z∗ is detected by PTA
is very short, only a few seconds. The total running time of SED
can be reduced by integrating algorithms with good detection
results and abandoning long-running algorithms.

To evaluate the influence of different parameter settings on
PTA, we take experimental datasets as examples. We test the
effect of γ on AUC in the range of 0–10. As is shown in Fig. 5(a),
for all HSI datasets, the best values of γ are less than 4. However,
the optimal value of γ still needs to be determined separately.

There are five hyperparameters in PTA. The parameters of
the aforementioned six datasets are shown in Fig. 5. And we test
the influence of one parameter on AUC under the condition of
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fixing the other four parameters. The hyperparameters are set in
the range of 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, and 104.
Obviously, according to the performance of AUC, it is observed
that the parameters β and τ are more sensitive than γ, α, and μ.
In order to simplify the algorithm, the best parameters are set
between 0.01 and 10.

V. CONCLUSION

In this article, a hyperspectral anomaly detection algorithm
based on subfeature ensemble is proposed. In order to reduce the
influence of noise and improve the detection efficiency, the band
selection is performed on the HSI to obtain a subfeature set ZR.
To highlight the abnormal features and reduce the interference of
the background, six algorithms are applied to detect the abnor-
mality of the original HSI, and the best algorithm is selected to
obtain the enhanced feature set ZO. The two sets of features are
ensembled to obtain the final detection results. The experimental
results show that the method proposed in this article performs
well on multiple evaluation indicators and is superior to the
ensembled algorithms. The proposed algorithm can improve the
probability of identifying anomalies and significantly reduce the
influence of background. This fully demonstrates the effective-
ness of ensemble subfeatures, which can be extended to other
similar applications. In addition, although the SED operation
time is long, the time for Z∗ to be processed by the PTA is
short. We can optimize the efficiency of SED by adding feature
importance selection, choosing ensemble algorithms with short
running time, etc., in future work.
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