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Hyperspectral Snapshot Compressive Imaging With
Dense Back-Projection Joint Attention Network

Yubao Sun , Junru Huang , Liling Zhao , and Kai Hu

Abstract—The hyperspectral snapshot compressive imaging
(SCI) system encodes three-dimensional hyperspectral images into
a single two-dimensional snapshot measurement and then decodes
the underlying 3-D hyperspectral images by solving the compres-
sive sensing reconstruction problem. Practical applications of SCI
imaging systems require fast and high-quality reconstruction. To
meet this requirement, we propose a novel encoder and decoder
network with dense back-projection joint attention for hyperspec-
tral SCI. The main contributions of our network lie in two aspects.
First, we propose a dense back-projection module and deploy it
in an encoder with five scales. It computes the back-projection
between each scale and all its preceding scales, thereby fusing
complementary information between different scales for efficient
reconstruction. Second, we design a spatial-spectral attention mod-
ule and deploy it in the decoder to boost reconstruction quality.
By exploiting a cascade of spatial-spectral attention, it can effi-
ciently capture spatial and spectral correlations in hyperspectral
images with a low volume of parameters. In addition, a compound
loss, including the reconstruction loss, and the spatial–spectral
total variation loss, is designed to guide network learning in an
end-to-end manner. Intensive experiments on simulation and real
data show that our method has obvious advantages over multiple
state-of-the-art methods, achieving a significant improvement in
reconstruction quality and a substantial reduction in running time.

Index Terms—Compound loss, compressive spectral imaging,
dense back-projection (DBP), lightweight network, spatial–
spectral attention (SSA).

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is a three-dimensional (3-
D) data cube, which contains a number of 2-D spectral

bands. The spectral bands in HSI are obtained by dense sampling
at small intervals within a certain wavelength range. Therefore,
each pixel represents a spectral signature, which can be used to
distinguish different types of objects in the scene. HSI has wide
application in land object classification, scientific experiments,
industry detection, and other fields [1]–[4].

Hyperspectral imaging is the first step before HSI-based ap-
plications. HSIs usually use 1- or 2-D detectors to collect the
reflectance of the scene with respect to different wavelengths
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based on Shannon sampling method. In order to cover all
three dimensions of HSI images, spatial or spectral scanning
is required over multiple exposure periods [5]. However, the
scanning operation increases the imaging time while requiring
the scene to be static during imaging to avoid inconsistencies
in scene content [6]. Unlike these Shannon-based acquisition
methods, snapshot compressive imaging (SCI) systems based
on compressed sensing theory [7] have been proposed to capture
dynamic objects and scenes. Among these systems, coded aper-
ture snapshot spectral imaging (CASSI) is a promising solution.
By introducing coded aperture [8], CASSI first encodes 3-D HSI
into a 2-D snapshot measurement in a single exposure without
scanning operations. Then, the underlying HSI is reconstructed
from the captured 2-D snapshot measurements by solving an op-
timization problem, termed hyperspectral snapshot compressive
reconstruction. Due to the underdetermined sampling mecha-
nism of the CASSI system, hyperspectral snapshot compressive
reconstruction is a highly ill-posed problem. In order to solve
this problem, earlier works modeled hyperspectral snapshot
compressive reconstruction as a prior regularized optimization
problem. Some priors, such as total variation (TV) [9], [10],
sparse representation [11], and nonlocal self-similarity [12] have
been designed to represent HSIs. However, these priors are gen-
erally manually designed based on simplified assumptions and
cannot effectively represent complex spatial–spectral structures
in HSIs. In addition, these prior regularization driven methods
require iterative optimization and are computationally complex.
Recently, deep networks [13] have been widely recognized
for outstanding feature representation capabilities. Many works
turned to deep learning driven methods and enabled hyperspec-
tral snapshot compressive reconstruction by learning an inverse
mapping from snapshot measurements to original HSIs. Some
representative methods include ISTA-Net [14], SSR-Net [15],
NSSR-Net [16], and so on [17]. Although these deep learning-
based methods can directly output reconstructions through one-
shot feed-forward network computations, their reconstruction
quality still needs to be further improved. Some other works are
devoted to developing more complex deep networks to improve
reconstruction quality, such as using nonlocal attention [16]
and 3-D convolution. However, employing complex networks
increases the reconstruction time inevitably.

To cope with the abovementioned issue, this work aims to in-
vestigate a lightweight network capable of fast and high-quality
reconstruction. Specifically, we propose a novel dense back-
projection (DBP) joint attention network (dubbed as DBPA-Net)
to learn the parametric reconstruction mapping. First, we design
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Fig. 1. Running time and PSNR metrics comparison between the proposed
DBPA-Net and multiple state-of-the-art methods.

a DBP module to perform DBP operations between each scale
and all its preceding scales. The DBP between the current scale
and its preceding scales can fuse the high-resolution feature
maps into the current scale, thereby compensating for the loss of
information in the down-sampling operation. The fused features
are then transmitted to the decoder for improving reconstruction
quality. Second, we design a spatial–spectral attention (SSA)
module to capture the spatial–spectral correlations in HSIs. This
attention module is lightweight and can bring reconstruction
performance improvement. As shown in Fig. 1, compared with
the state-of-the-art methods, the proposed DBPA-Net has the
best reconstruction quality with the lowest running time. Our
main contributions can be summarized as follows.

1) The proposed DBP module links each scale and all its pre-
ceding scales, and fuses complementary features between
different scales through back-projection. Therefore, it can
effectively compensate for the lost high-resolution spatial
feature information at each scale to improve reconstruc-
tion performance.

2) We design an attention module to capture the spatial–
spectral correlation of HSI for reconstruction. This module
is lightweight and effective by employing the cascade of
spatial and spectral attention.

3) We further exploit the efficiency of these two modules
for reconstruction in a multiscale manner by deploying
them into an encoder and decoder architecture. The experi-
mental results verify that DBPA-Net has made significant
progress in both reconstruction time and reconstruction
quality.

The rest of this article is organized as follows. Section II re-
views the related works. Section III describes the forward model
of single disperser CASSI. Section IV presents the proposed
method. The experimental results are provided in Section V.
Finally, Section VI concludes this article.

II. RELATED WORK

Hyperspectral SCI systems encode the spatial and spectral
information as 2-D snapshot measurements and the desired
3-D HSI can only be obtained by conducting a reconstruction

algorithm. Many algorithms have been proposed to solve this
problem, mainly including prior-driven and network-driven two
categories.

A. Prior-Driven Reconstruction

Due to the inherent underdetermined sampling, the recon-
struction algorithm is an ill-posed inverse problem. Prior-driven
reconstruction methods mainly exploit different HSI priors to
regularize this inverse problem. Typically, this category of meth-
ods formulates the reconstruction problem as a convex optimiza-
tion with a prior regularization and fidelity term, and then the
optimal solution is found by iterative optimization. Therefore,
designing an appropriate prior plays a key role in prior-driven
methods.

Sparse prior is widely used for hyperspectral SCI recon-
struction, and the gradient projection sparse reconstruction
(GPSR) [18] is a representative method using sparse prior.
Specifically, GPSR imposed sparse constraints on the whole 3-D
HSI. By constraining the sparsity in the image gradient domain,
TV [9] prior was used to eliminate noise in the reconstruction
image. TwIST [19] also used TV prior as the regularization term
and realized compressive sensing reconstruction by a two-step
iterative shrinkage thresholding algorithm. GAP-TV [20] used
the generalized alternating projection (GAP) algorithm to opti-
mize the reconstruction of HSIs. TVAL3 further solved the TV
regularized least squares problem alternating direction method
of multipliers [21], [22]. Liu et al. [23] proposed the DeSCI
method, which uses the weighted nuclear norm to characterize
the low rank prior of a group of matched patches. At the same
time, an alternating minimization algorithm was developed to
solve such problems.

However, this category of reconstruction methods needs many
iterations to solve the inverse problem, which brings high time
complexity [24]. In addition, the image prior and regularization
parameters involved in the algorithm need to be carefully set
manually, and the reconstruction quality needs to be improved.

B. Network-Driven Reconstruction

The network-driven methods use the powerful learning ability
of the deep network to realize reconstruction [25]. This category
of methods is mainly based on supervised learning and learns
the explicit reconstruction mapping directly from the snapshot
measurement to HSI by training the network on a large number
of training samples. Different from the iterative optimization
method, the network-driven method can reconstruct HSI by only
performing a feedforward calculation on the learned network.
Therefore, the key to improving the reconstruction performance
of such methods is how to design an effective network.

Here, we introduce some representative HSI reconstruction
networks. Xiong et al. [26] designed a convolution neural net-
work to learn the hyperspectral compressive reconstruction. This
work first up-sampled the measurement to make it have the
same dimension as the original HSI, and then the reconstruction
was enhanced by using a convolution neural network to learn
incremental residuals. Choi et al. designed an autoencoder to
obtain the nonlinear spectral representation of HSIs and used it
as a spectral prior to the variational models [27]. Miao et al. [28]
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proposed a λ-Net network to learn the compressive sensing re-
construction of HSIs and videos generated in two stages against
the network. Wang et al. [29] designed a HyperRecon-Net to
learn the reconstruction of HSIs, cascading spatial networks
and inter spectral networks to predict the spectral information in
HSIs. In the first stage of reconstruction, U-Net including a self-
attention mechanism was used, and in the second stage, another
U-Net was used to improve the reconstruction quality. Meng et
al. [30] proposed TSA-Net and captured spatial–spectral corre-
lation by independent similarity computation inside each dimen-
sion. TSA-Net had a reasonable computation cost. In general,
the core requirement of network-driven reconstruction is to
achieve both high-quality and low-cost reconstruction. Although
these deep learning methods can reduce the reconstruction time,
the reconstruction quality still needs to be improved.

C. Attention Mechanism

In order to better capture the correlation between spatial pixels
and spectral bands in HSI, the network-driven methods began
to introduce attention mechanisms to various tasks of HSIs
[31]–[33]. Hu et al. proposed squeeze-and-excitation (SE) atten-
tion to adjust the weights of different feature map channels by
learning the relationship between channels, therefore improving
the expressive ability of the network [34]. Woo et al. [35]
proposed the convolutional block attention module (CBAM) to
concatenate channel attention and spatial attention. Zhang et al.
proposed an efficient shuffle attention (SA) module, which uses
shuffle units to effectively combine the two attention mech-
anisms. For hyperspectral snapshot compressive reconstruc-
tion [36], Meng et al. [30] used the spatial–spectral self-attention
(TSA) to process the feature information from the channel di-
mension and the spatial dimension, respectively. Yang et al. [16]
employed a nonlocal spatial attention module to capture the
long-range dependencies in space, achieving high-quality re-
construction. In recent years, the attention mechanism has been
proved to offer great potential in improving the performance
of deep convolutional neural networks (CNNs). However, most
existing methods focus on developing more complex attention
modules for a better performance. This increases the complexity
of the network model inevitably.

The proposed SSA module in this article is also related to
the attention mechanism, but it is designed for lightweight
CNNs. We design a joint network with a spatial residual atten-
tion block and a lightweight spectral attention block to extract
spectral-spatial features. This attention mechanism is used to
emphasize meaningful features along with the two blocks. Our
proposed SSA module only involves a handful of parameters
while bringing clear performance gain.

III. CASSI FORWARD MODEL

The CASSI systems mainly contain two categories. The first
category encodes in the spatial domain, such as SD-CASSI [37].
The second category encodes in both spatial and spectral do-
mains, including SS-CASSI [38], DD-CASSI [39]. Before de-
tailing the proposed reconstruction network, we first briefly
introduce the forward model of the SD-CASSI system, that

Fig. 2. Diagram of SD-CASSI system. It sequentially encodes, shifts, and
integrates the 3-D incident scene, and finally obtains the 2-D snapshot measure-
ments.

is, the mathematical formula that describes the acquisition of
snapshot measurements.

Fig. 2 shows the diagram of the SD-CASSI system. The
scene is projected onto the coded aperture as spatial modulation.
Then, the encoded scene passes through the prism and shifts
the spectral bands. Last, the shifted version of the encoded
scene is integrated along the spectral dimension by the detector,
which results in the 2-D snapshot measurements. LetX(h,w, λ)
indicates the 3-D spatial–spectral cube corresponding to the
incoming scene, where 1 ≤ h ≤ H and 1 ≤ w ≤W denote the
spatial dimensions and 1 ≤ λ ≤ Λ represents the spectral di-
mension. The spatial modulation operation determined by coded
aperture is described as the transmission function F (h,w), and
the dispersion function of the prism ψ(λ) takes wavelength
as its parameter. Mathematically, the captured 2-D snapshot
measurements Y ∈ RH×(W+Λ−1) is formulated as

Y(h,w) =

Λ∑
λ=1

F (h,w + ψ (λ))�X (h,w + ψ (λ) , λ) (1)

where � represents the element-wise multiplication. In (1), the
shifting is along the w-axis.

Let vec(·) denotes the operation of concatenating all the
columns of a matrix as one single vector. Denote y = vec(Y),
x̂λ = vec(X(:, :, λ)), and x = vec((x̂1, . . . , x̂Λ)). According to
the CASSI imaging principle, the snapshot measurement matrix
Ψ ∈ RH(W+Λ−1)×HWΛ is determined by the coded aperture
pattern F (h,w), and the captured snapshot measurement can be
written as

y = Ψx+ ε (2)

where y ∈ RH(W+Λ−1) and x ∈ RHWΛ are the vectorized rep-
resentation of the snapshot measurementY and the original HSI
X, and ε is noise.

The dimension of y is usually much lower than the dimension
of x. The obtained 2-D snapshot measurements are used to
reconstruct the original HSIs by a reconstruction algorithm
based on compressive sensing theory.

IV. DBP JOINT ATTENTION NETWORK

In this section, we present a detailed illustration of the pro-
posed network, which consists of a DBP encoder and SSA
boosted decoder. As shown in Fig. 3, the proposed network takes
the snapshot measurement as input and reconstructs the under-
lying HSI. It can be regarded as a function mapping from the
snapshot measurement to the reconstruction. Encoder–decoder
architecture is commonly used for representation learning, and
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Fig. 3. Overall framework of the proposed DBPA-Net. DBPA-Net takes the coded aperture and snapshot measurement as the input and output the reconstruction.
Four DBP modules are introduced into the encoder stage to enrich the information in each scale. Three SSA modules are introduced into the decoder to make full
use of spatial–spectral correlation.

TABLE I
CONFIGURATION DETAILS OF THE PROPOSED DBPA-NET

Fn denotes DBP module, HSpe(·) and HSpa(·) denote attention module.

the encoder usually adopts the down-sampling operation to ex-
tract multiscale features. However, the down-sampling operation
will cause the loss of detailed information, which is not con-
ducive to the reconstruction task. To tackle this issue, the DBP
encoder sets up dense connections between the current scale and
its all preceding scales and fuses the complementary information
of preceding to enhance the current scale by back-projection
operation [40]. These fused features are then transmitted to
the decoder for high-quality reconstruction. Furthermore, we
leverage a lightweight self-attention module to jointly capture
spatial-spectral correlations in HSIs and enhance the decoder to

reconstruct more details. Table I lists the configuration details
of the proposed network.

A. DBP Encoder

The DBP encoder takes the snapshot measurement as input
and has five scales to extract hierarchical features. In the first
scale, a 1× 1 convolution is used to process the input snapshot
measurement and generates a feature map x0 with 32 channels.
x0 is the initial reconstruction, which can be regarded as the
0th scale. Then, x0 is processed by a conv block and a pooling
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Fig. 4. Diagram of the nth scale DBP module. It contains n pairs of up-
sampling and down-sampling operations to fuse complementary features (green
box in the figure).

operation [41]. The two to five scales are configured with a
DBP module, a convolution block, a residual block, a pooling
operation, and a conv layer. Fig. 4 shows the internal diagram
of the nth scale DBP module. The main function of this module
is to fuse the complementary information between the nth scale
and all its preceding scales and transmit the fused feature to
the nth scale of the decoder to enrich reconstruction details. The
function mapping Fn of this module is defined as

xn = Fn (tn, {x0,x1, . . . ,xn−1}) (3)

where tn is the input feature maps, xn is the output of the nth
scale DBP module, and {x1, . . . ,xn−1} are the outputs of DBP
module of 1th to (n−1)th scales.

Specifically,Fn first calculates the differentiated featuresΔxi

between tn and all its preceding scales {x0,x1, . . . ,xn−1},
which is defined as

Δxi = upn−i (tn)− xi. (4)

As in [40], upn−i denotes the projection operator which up-
samples the input feature tn to have the same dimension as
xi, and i = 0, 1, . . . , n− 1. Then, all differentiated features and
tn are added to get the enhanced features of nth scale. Before
performing the addition operation, Δxi is downsampled to have
the same dimension as tn. The formulation of these operations
is defined as

xn =

n−1∑
i=0

downn−i (Δxi) + tn (5)

where downn−i denotes the projection operator and n− i rep-
resents the factor of the downsampling operation. Finally, we
get the enhanced features xn as the output of the nth scale DBP
module.

These enhanced features are gradually integrated into the
down-sampling process, which can make up for the missing
high-resolution feature information. This enables our network
to extract the underlying features of the HSI more accurately. At
the same time, the decoder can also directly use these enriched
feature information to improve the quality of HSI reconstruction.
The ablation studies shown in Section V verify the effectiveness
of the proposed DBP module.

Fig. 5. Diagram of the SSA module, which consists of a spatial residual
attention block and a lightweight spectral attention block. “+′′ and “×′′ denote
element-wise addition and element-wise product, respectively.

B. SSA Boosted Decoder

Corresponding to the encoder, the SSA boosted decoder also
has five scales. All the scales of the decoder have the configu-
ration of deconvolution block and residual block. For the two to
zero scales, they are additionally configured with SSA modules.
At the end of the decoder, a 1× 1 convolutional layer with
sigmoid activation function is used to make the output of the
network the same channel as the original HSI and normalize the
range of each item in the output to [0, 1].

The SSA module is designed to capture the coupled spatial–
spectral correlation for reconstruction. As shown in Fig. 5, the
SSA module concatenates the spatial residual attention block
and the lightweight spectral attention block and captures the
spatial and spectral correlations serially. We denote the input
feature maps of the SSA module as T ∈ Rc×h×w. The compu-
tation process of the SSA module can be expressed as

S = HSpe (HSpa (T)) (6)

where S ∈ Rc×h×w is the output feature map, HSpa(·) is the
function mapping of the spatial residual attention block and
HSpe(·) is the function mapping of the lightweight spectral
attention block.

Spatial residual attention block uses the convolution operation
and residual connection to calculate spatial attention map and
highlight important spatial features. This block takes the feature
maps T as input and calculates the output SSpa ∈ Rc×h×w as

SSpa = HSpa (T) = T+T� Sigmoid (Conv (T)) (7)

where� is the element-wise multiplication.Conv represents the
convolution block. In this block, we first use there 3× 3 con-
volutions and one 1× 1 convolution to extract spatial features
and obtain the spatial attention map after a sigmoid operation.
The spatial attention map and input features are then multiplied
and added element-wise to get the output of SSpa. The spatial
residual attention block can well extract the informative spatial
features of HSIs.

Lightweight spectral attention block employs a local cross-
channel interaction strategy to capture correlations between
spectral bands. This block takes the SSpa ∈ Rc×h×w as input.
SSpa is then processed by channel-wise global average pooling
to obtain feature Y′ ∈ Rc×1×1. As in [42], we employ 1-D
convolutions with kernel size k to capture local cross-channel
interaction information. The kernel size k of 1-D convolution is
much smaller than c, so our spectral attention block has much
fewer parameters than commonly used fully connected layers.
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Fig. 6. Ten testing scenes used in simulation.

Fig. 7. Left side is a spectral band visualization of different ablation experi-
ments of three scenes. On the right side is the space attention map. From top to
bottom correspond to scenes 1, 5, and 7.

With this fast 1-D convolution, we can get the channel weight
vector Φc ∈ Rc×1.

Specifically, the 1-D convolution of Y′ is determined by the
learnable weight matrix Wc ∈ Rc×(c+k−1) and Wc is denoted
as ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1
1 · · · wk

1 0 0 · · · · · · 0

0 w2
2 · · · w2+k−1

2 0 · · · · · · 0

: :
. . . · · · . . . : : :

: : 0 wi
i · · · wi+k−1

i 0 :

: : : :
. . . · · · . . . :

0 · · · 0 · · · 0 wc
c · · · wc+k−1

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

wherewi
i, . . . , w

i+k−1
i indicates the convolution kernel weight

corresponding to k entry of Y′. Obviously, matrix Wc is a
sparse matrix and only k × c entries are nonzeros. The volume
of weight parameters is much less than many spectral attention
modules [28], [30], [43]. The weight φi corresponding to the
ith feature channel is calculated as

φi = Sigmoid

⎛
⎝

k−1∑
j=0

wi+j
i Y′

i+j−(k−1)/2

⎞
⎠ . (8)

To avoid information loss at the boundary of Y′, (k − 1)/2
zeros are padded at the beginning and end of Y′, respec-
tively. The channel weight vector Φc is expressed as Φc =
[φ1, φ2, . . . , φc]

T .
Thus, the spectral attention module can be rewritten as

S = HSpe (SSpa) = Φc � SSpa (9)

where � represents the element-wise multiplication.

Fig. 8. Example of image reconstruction by six algorithms for scene 3.
The four spectral bands are at wavelengths 462.1 nm, 551.4 nm, 594.4 nm,
and 636.3 nm from top to bottom. From the left column to the right-
most column correspond to Ground truth, TwIST (PSNR21.14/SSIM0.764),
GAP-TV(23.19/0.757), DeSCI(26.56/0.877), λ-Net (29.42/0.916), TSA-
Net(30.03/0.921), and ours (31.34/0.938).

Fig. 9. Example of image reconstruction by six algorithms for scene 5.
The four spectral bands are at wavelengths 462.1 nm, 551.4 nm, 594.4 nm,
and 636.3 nm from top to bottom. From the left column to the rightmost
column correspond to Ground truth, TwIST (PSNR21.68/SSIM0.688),
GAP-TV(222.31/0.674), DeSCI(24.80/0.778), λ-Net (27.84/0.866),
TSA-Net(28.89/0.878), and ours (30.02/0.924).

The SSA module combines a spatial residual attention block
and a lightweight spectral attention block, which can effectively
represent the coupled spatial–spectral correlation. Compared
with other attention modules, our method achieves good recon-
struction quality with minimal parameters. The ablation studies
shown in Section V verify the effectiveness of the proposed SSA
module.

C. Loss Function

To effectively guide our network learning, we design a com-
pound loss function consisting of the reconstruction loss and the
spatial–spectral total variation loss (SSTV), which is defined as

Ltotal (Θ) = Lrec (Θ, I) + αLSSTV (Θ, I) (10)

where Θ refers the parameter set of our network GNet, and α
is the parameter that tweaks the weights of these two terms. I
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Fig. 10. Snapshot measures of scene 3 and reconstructs the spectral features. (a) Spectral band of Scene 3 and its snapshot measurement. (b) Patches 1 and 2
show the reconstructed spectral curves of two regions in the scene indicated by the rectangle.

TABLE II
ABLATION STUDY OF DBP MODULE, SSA MODULE AND SSTV LOSS AS WELL

AS ABLATION STUDY OF OTHER ATTENTION MODULES UNDER THE OVERALL

NETWORK STRUCTURE

The significance of bold entities indicate best values.

is the training set with HSI pairs (Igt,Ymea), in which Ymea is
the snapshot measurement of Igt.

Specifically, Lrec loss calculates the mean squared error
between the ground truths and the reconstructed HSIs, and it is
formulated as

Lrec (Θ) =
N∑

n=1

‖Ingt −GNet (Y
n
mea,Θ) ‖22 (11)

where GNet(Y
n
mea,Θ) is the nth reconstructed HSI by our

network GNet. N denotes the number of images in one training
batch.

Taking into account the spatial–spectral correlation among
spectral bands, we impose the SSTV loss LSSTV [44] on the
output Innet and define it as

LSSTV (Θ)=
1

N

N∑
n=1

(‖∇cI
n
net‖1 + ‖∇hI

n
net‖1+‖∇wI

n
net‖1)

(12)
where ∇c,∇h, and ∇w are functions to compute the gradient of
Innet along spectral dimension, horizontal, and vertical direction
of spatial dimensions, respectively. With these two terms, the

compound loss function (10) can constrain the reconstructed
HSIs to approximate the ground truth with spatial–spectral
consistency.

V. EXPERIMENTS

To evaluate the performance of the proposed DBPA-Net, we
have conducted a series of experiments in this section, including
ablation experiments and comparison experiments with several
start-of-the-art algorithms, namely TwIST [19], GAP-TV [20],
DeSCI [23], U-Net [45], λ-Net [28], and TSA-Net [30]. The first
three are prior-driven methods, and the last three are network-
driven methods. In addition to testing on the simulation dataset,
we also test the proposed method on real data captured in the
real world.

A. Experimental Setting

We employ Pytorch to implement the proposed network and
train it from scratch by minimizing the loss function (10) with
the Adam optimizer [46]. The hyper parameters of our network
are set as learning rate lr = 0.0004, batchsize = 4, k = 3, and
α = 3e− 1. The competing methods use the code published by
their authors. Our method and the competing methods all run on
an NVIDIA GTX 2080Ti GPU.

The dataset we use can be downloaded from [30] and con-
tains 28 channels with a wavelength range of 450–650nm. The
wavelength of each spectral band is 453.3, 457.6, 462.1, 466.8,
471.6, 476.5, 481.6, 486.9, 492.4, 498.0, 503.9, 509.9, 516.2,
522.7, 529.5, 536.5, 543.8, 551.4, 558.6, 567.5, 575.3, 584.3,
594.4, 604.2, 614.4, 625.1, 636.3, 648.1 nm. The training dataset
contains 205 HSIs with a size of 1024× 1024× 28. During
network training each epoch, 5000 data cubes with a size of
256× 256× 28 are cut out from these training datasets for data
augmentation randomly. Following the experimental strategy
used in [30], this article also uses the same test set. The test
data contains ten HSIs with a size of 256× 256× 28, and the
corresponding RGB image is shown in Fig. 6. These test HSIs
after mask modulation move horizontally with an accumulative
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TABLE III
COMPARISON OF QUANTITATIVE PSNR AND SSIM VALUES OF SEVEN METHODS UPON TEN TEST HSIS

The significance of bold entities indicate best values.

two-pixel step and are integrated across the spectral dimen-
sion. Then, we get measurement data with size 256× 310 and
combine the mask as the network input. In order to evaluate
the quality of reconstructed HSIs, three evaluation metrics are
used, including peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and spectral angle mapper (SAM). Larger
PSNR and SSIM values and smaller SAM values indicate better
reconstruction quality.

B. Ablation Studies

We primarily designed two groups of ablation studies. For
the first group of ablation studies, three ablation experiments
are designed to verify the effectiveness of the DBP module,
SSA module, and SSTV loss, respectively. The contribution of
the corresponding modules to the performance of the network is
tested by removing the corresponding modules from the overall
network. Table II shows the results of the ablation experiments,
in which “ ↓′′ and “ ↑′′ highlights the indicator trends, respec-
tively. Using the DBP module and the SSA module can improve
the PSNR values by 0.63 and 1.02 dB, the SSIM values by
0.017 and 0.017, and reduce the SAM value by 0.011 and 0.026,
respectively. This fully illustrates the effectiveness of the DBP
module and the SSA module. Furthermore, keeping the network
architecture unchanged, we test the influence of the SSTV loss
term on network learning. As shown in Table II, the SSTV loss
term can also boost the reconstruction performance. The left
side of Fig. 7 shows the visualization results of the ablation
experiment for three scenes. On the right is a visualization of
the 256× 256 spatial attention maps in the third SSA module
of three scenes. By incorporating DBP module, SSA module,
and SSTV loss, DBPA-Net can reconstruct more structures and
details. The second group of ablation studies keeps the overall
network structure unchanged and replaces the SSA module with
TSA, SE, CBAM, and SA attention modules. As shown in
Table II, our SSA module enables the overall network to obtain
the best performance, which further verifies the effectiveness of
our SSA module.

C. Simulation Data Results

In the simulation experiment, the coded aperture is the same
as [30], which is from the real CASSI system and is used to
generate snapshot measurements. Table III shows the PSNR and

TABLE IV
SAM VALUES OF FOUR NETWORK-DRIVEN METHODS

The significance of bold entities indicate best values.

SSIM values of seven methods on ten test HISs. As shown in
Table III, our proposed DBPA-Net is superior to other algorithms
in all ten scenes. On average, the performance of DBPA-Net is
5.67 dB higher than the state-of-the-art iterative algorithm De-
SCI. Meanwhile, DBPA-Net performs 4.73 dB higher in PSNR
over U-Net, 2.28 dB higher over λ-Net, and 1.38 dB higher over
TSA-Net. Figs. 8 and 9 show visualization results of four spectral
bands of two scenes. Obviously, spatial structures reconstructed
by deep neural networks are significantly clearer than iterative
algorithms. Compared with λ-Net and TSA-Net methods, our
method can reconstruct better details. Figs. 10 and 11 provide
the snapshot measurements corresponding to the two scenes,
as well as the reconstructed spectral signatures in the patches
that are indicated by the rectangles. Compared with competing
methods, the correlation coefficients in the legend indicate that
our method can reconstruct spectral features more accurately.
The spectral signature fidelity of network-driven methods is
much better than prior-driven methods. Table IV gives the SAM
values of the four network-driven methods. It can be seen that
our method can obtain better reconstructed spectral similarity
compared to competing methods.

D. Real Data Results

The real data used in our experiment is captured by a hy-
perspectral imaging camera [30]. The original real data has a
spatial size of 660× 660 and 28 spectral bands. We select two
real HSIs for the performance evaluation. Our proposed method



SUN et al.: HYPERSPECTRAL SNAPSHOT COMPRESSIVE IMAGING WITH DENSE BACK-PROJECTION JOINT ATTENTION NETWORK 6107

Fig. 11. Snapshot measures of scene 5 and reconstructs the spectral features. (a) Spectral band of scene 5 and its snapshot measurement. (b) Patches 1 and 2
show the reconstructed spectral curves of two regions in the scene indicated by the rectangle.

Fig. 12. Leftmost column is the snapshot measurement and coding matrix of two real data scenes (656× 656× 28). On the right is the visualization of
the reconstruction of each method. From the left column to the right column corresponds to TwIST, GAP-TV, DeSCI, TSA-Net, and the proposed DBPA-Net.
Wavelengths from top to bottom are 486.9, 575.3, 584.3, and 636.3 nm.

was compared with TwIST, GAP-TV, DeSCI, and TSA-Net.
Fig. 12 visualizes the reconstruction of four spectral bands of two
scenes. As can be seen from Fig. 12, the reconstruction of TwIST
and GAP-TV contains a lot of noise. Although DeSCI suppresses
some noise, the reconstruction lacks texture details. The reason is

that the hardware design of the real data system is complex, so the
hyperspectral data snapshot measurement is easy to be disturbed
by noise. This is one of the reasons why it is more difficult to
reconstruct real data. Our proposed DBPA-Net can make full use
of multiscale information, and retain as much high-resolution
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TABLE V
AVERAGE RUN TIME FOR THE RECONSTRUCTION OF A HSI AND THE

PARAMETERS VOLUME OF THREE NETWORK-DRIVEN METHODS

The significance of bold entities indicate best values.

spatial information as possible for reconstruction, so as to better
reconstruct the detailed information. Our method achieves the
best visual effect, compared with the three prior-driven methods.
Compared with TSA-Net, our model provides better brightness
and detail, especially strawberry leaves and Legoman’s “head.”

E. Time Complexity and Parameter Quantity Analysis

In addition to the quantitative evaluation of reconstruction
quality, we further analyze the time complexity and the volume
of parameters of the six methods. For time complexity, we com-
pare the running time (in seconds) consumed by each method in
reconstructing a single HSI with a size 256× 256× 28. TwIST,
GAP-TV, and DeSCI run on the CPU, and the other methods
are trained on GPU. At the same time, we also measure the
volume of parameters of the network-driven methods. Table V
shows the running time results of each method and the number
of parameters of partial methods. As shown in Table V, the re-
construction speed of the network-driven methods is faster than
the prior-driven methods. The reason is that the network-driven
methods do not require iterative optimization. The proposed
DBPA-Net not only has the shortest reconstruction time, but
also the least parameter volume. The DBPA-Net embodies the
advantages of high reconstruction efficiency and lightweight.

VI. CONCLUSION

We propose a new lightweight DBPA-Net that can quickly
reconstruct HSI from a single snapshot measurement. First, we
design a DBP module to fuse complementary information be-
tween different scales for efficient reconstruction. Then, spatial
and spectral correlations in HSIs are captured concisely, by
employing 1-D local cross-channel connections. Furthermore,
the composite loss is designed to guide network training and
can reconstruct better details. Experimental results show that
DBPA-Net not only exhibits better reconstruction quality than
the current state-of-the-art methods, but also has the shortest
reconstruction time and the least parameter volume. For the
video-rate 3-D hyperspectral imaging system, it is expected that
CASSI cameras combined with DBPA-Net end-to-end architec-
ture will enjoy the benefits of rapid and high quality at the same
time.
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