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Abstract—Multiscale ship detection in large-scene offshore syn-
thetic aperture radar (SAR) images is of great significance in civil
and military fields, such as maritime management and wartime re-
connaissance. Methods based on deep learning apply a deep neural
network to extract multiscale information from SAR images, which
improves detection performance. However, deep neural networks
are computationally complex, and even with GPU acceleration,
the timeliness of ship detection in large-scene SAR images is still
constrained. Methods based on threshold segmentation, in contrast,
are efficient and straightforward, but they are less robust and need
to be adjusted with complex and changing scenes. This article
combines two methods and proposes a lightweight framework
based on a threshold neural network (TNN) to achieve fast de-
tection. Specifically, the TNN is carefully designed to extract the
grayscale features of the SAR image, which predicts the optimal
detection threshold within the sliding window and separates the
targets adaptively. In addition, a false alarm rejection network
is used to discriminate candidate targets and improve detection
accuracy. Experiments are carried out on the public SSDD offshore
dataset and the FUSAR-Ship-Detection dataset. The results show
that the proposed framework performs 14.43% better than the
Multi-CFAR for the SSDD offshore dataset and 7.36 % better for the
FUSAR-Ship-Detection dataset when using F1 as the metric. Fur-
thermore, the floating point operations of the proposed framework
are only 1/240 of those of YOLO-v4 with comparable performance.

Index Terms—False alarm suppression network (FSN), FUSAR-
Ship-Detection dataset, lightweight ship detection framework,
synthetic aperture radar (SAR), threshold neural network (TNN).

I. INTRODUCTION

YNTHETIC aperture radar (SAR) has high application
S value in civil and military fields due to its all-day all-
weather imaging capability and superior penetrating ability. Ship
detection is an essential branch of SAR image interpretation,
as the ship is the critical target for maritime management and
wartime attacks. SAR ship detection has been widely researched,
and the detection performance has substantially improved with
methods ranging from traditional detectors to deep learning

Manuscript received 23 April 2022; revised 11 June 2022 and 5 July 2022;
accepted 15 July 2022. Date of publication 19 July 2022; date of current version
3 August 2022. This work was supported by the Natural Science Foundation of
Shanghai Project under Grant 22ZR1406700. (Corresponding author: Haipeng
Wang.)

The authors are with the Key Laboratory of Information Science of
Electromagnetic Waves, Fudan University, Shanghai 200433, China (e-mail:
20210720057 @fudan.edu.cn; hcjial 9 @fudan.edu.cn; hpwang @fudan.edu.cn;
fengxu@fudan.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3192455

, Student Member, IEEE, Hecheng Jia, Student Member, IEEE, Haipeng Wang
, Senior Member, IEEE

, Senior Member, IEEE,

target detection algorithms. However, the observation scene of
SAR images is generally large. It is still challenging to detect
multiscale ship targets fast with limited computing power in the
large-scene SAR images.

Many ship detection methods for high-resolution SAR images
have been proposed in recent years, which can be mainly divided
into methods based on threshold segmentation and methods
based on deep learning.

Threshold-based methods segment targets from the back-
ground by comparing gray values or other features with the
threshold. Among them, the constant false alarm rate (CFAR)
detector is one of the most prominent algorithms. The tradi-
tional CFAR detector focuses on the gray features of SAR
images, which adaptively calculates the detection threshold by
analyzing the distribution characteristics of sea clutter. The
improved CFAR detectors proposed in recent years mainly
include two aspects: more accurate clutter statistical models
and more intelligent clutter sample selection. Qin et al. [1]
introduced the generalized Gamma model into the SAR ocean
clutter parameter estimation. The model can degrade to many
common distributions in some cases, which improves the fitting
ability for different sea clutter. The good fitting performance of
the Fisher distribution and the generalized Gamma distribution
was demonstrated in [2] with different research cases. Both the
distributions are complementary and have some limitations, but
the robustness of the generalized Gamma distribution is often
preferable. To model SAR images, Leng et al. [3] proposed a
fast estimation method for complex generalized Gaussian distri-
bution, which efficiently estimated the shape parameter through
the complex signal kurtosis (CSK). Another challenge for tradi-
tional CFAR detectors is to select clutter sample adaptively and
exclude target interference inside the estimation window, espe-
cially for dense multiscale targets. Tao et al. [4] used truncation
to eliminate possible targets within the sliding window, and the
remaining clutter was modeled and computed by a truncated
statistical model. The outlier-robust CFAR detector proposed by
Ai et al. [5] used an adaptive threshold to exclude high-intensity
clutter outliers and select samples from the reference window,
followed by a truncated maximum-likelihood (ML) estimator to
calculate the sea parameters. In [6], an object proposal gener-
ator was introduced, and the fixed guard window was replaced
by the generated target proposal, thus realizing the variable
guard window. In addition, researchers have attempted to em-
ploy superpixel as the detection unit, segmenting targets using
the spatial relationships and statistical characteristics between
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pixels [7], [8]. In addition to the grayscale difference caused by
the scattering intensity, many other features are also extracted,
and targets are separated by the threshold in feature spaces, such
as the polarization cross-entropy in [9], the reflection symmetry
in [10], the CSK in [11], the variance weighted information
entropy in [12], and the modified Fisher metric (lognormal
p-metric) in [13]. These algorithms consider more physical
characteristics and show good performance in polarization SAR
data.

Methods based on deep learning are inherited from target
detection in optical images, which are mainly divided into net-
works based on anchor boxes and networks based on key points.
Anchor-based networks further include two-stage networks and
one-stage networks. Faster-RCNN [14] is one of the most repre-
sentative two-stage detection networks, where the anchor boxes
are first regressed by the region proposal network (RPN) to
generate region proposals, and then, more refined regression and
classification are performed for the final bounding boxes. After
that, the RPN [15] introduced the feature pyramid to fuse multi-
scale features, which increases the ability to characterize small
targets. Mask-RCNN [16] proposed the ROI Align to replace
ROI Pooling, using bilinear interpolation to reduce feature mis-
alignment, and a segmentation branch was added to the predic-
tion header. Without generating proposals, one-stage detection
networks remove the RPN and directly regress the anchor boxes.
YOLO [17], SSD [18], and RetinaNet [19] are typical one-stage
detection networks. Many target detection networks have re-
cently abandoned anchor boxes in favor of directly regressing
key points. For example, ConerNet [20] predicts the top-left
corners and bottom-right corners, ExtremNet [21] predicts four
extreme points and one center point, and CenterNet [22] predicts
the center point and the bounding box size without grouping
pairs of key points. In the field of SAR, Fu et al. [23] resolved the
problem of SAR-optical reciprocal translation with a cascaded-
residual adversarial network to assist SAR image interpretation.
Chen et al. [24] realized the SAR automatic target recognition
by all-convolutional networks with only sparsely connected
layers. To solve the multiscale ship detection in multiscene
SAR images, Jiao ef al. [25] introduced a densely connected
network with multiscale feature fusion and used the focal loss
to reduce the weight of easy examples in the loss function. Cui
et al. [26] refined the multiscale features in the FPN using the
convolutional block attention module, which highlights salient
information at the channel and spatial scales. Sun ef al. [27]
added the guidance vector to the classification branch of the
FCOS network, and the proposed category-position module
optimized the position regression. Yang et al. [28] improved
the RetinaNet to predict rotatable bounding boxes, employing
various strategies to solve the problems such as feature scale
mismatches, contradictions between different learning tasks,
and unbalanced distributions of positive samples in SAR ship
detection.

In SAR ocean images, ship targets are relatively dispersed
with multiple scales, and the background is complex and vari-
able. Ship detection in these scenes is primarily focused on
timeliness and achieving a good balance of precision and recall,
which necessitates a fast detection algorithm with a low missing
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rate and fewer false alarms. Deep neural networks, which are
computationally complex, are used in methods based on deep
learning to extract features of SAR images. As a result, the
requirements for the runtime environment are high, and the
timeliness is constrained. Threshold-based methods, in contrast,
frequently rely on certain assumptions and hyperparameters that
must be adjusted to fit complicated and varied SAR scenes. In
order to achieve fast detection for large-scene offshore SAR
images, we combine two methods and design a lightweight
framework based on threshold segmentation. First, a thresh-
old neural network (TNN) is proposed to predict the optimal
detection threshold within the sliding window and adaptively
segment ships. Then, a false alarm suppression network (FSN)
is adopted to discriminate candidate targets and improve the
detection accuracy.

The main contributions of this article are summarized as
follows.

1) A lightweight TNN with optimal segmentation ideas is
proposed, which achieves fast ship detection in large-
scene SAR images.

2) A pixel-level target segmentation metric is introduced
to calculate the optimal detection threshold according to
labeled bounding boxes, and the loss function of the TNN
is developed based on it.

The rest of this article is organized as follows. Section II
introduces the proposed lightweight framework with details
about the TNN and the FSN. In Section III, the experiments
on SSDD and FUSAR-Ship-Detection datasets are presented,
and the analysis of the results is exhibited. Finally, Section IV
concludes this article.

II. PROPOSED METHOD
A. Physical Background

The SAR imaging of sea surface and ships can be described as
a composite scattering problem of the target and rough surface.
The backscatter intensity of objects determines the gray values
of pixels in the SAR amplitude images.

When under low-sea state or the sea surface is relatively calm,
the sea is dominated by specular scattering, and the energy of
electromagnetic echo is small. When under poor sea conditions
or when the wind speed is high, the wave movements cause the
sea surface to be rough, and the sea is reflected mainly by diffuse
scattering. Compared with the natural distributed scenarios, such
as sea surface, man-made metallic ship targets consist of planes,
dihedral, and more complicated structures [29]. Hence, ships
have more complex scattering mechanisms than the background,
including direct reflection from areas perpendicular to the radar
beam, corner reflections, and multiple reflections from the ship
and the sea surface, resulting in ships appearing brighter in SAR
images. What cannot be ignored is that backscatter from ships
is also determined by construction material and characteristics
of the radar instrument, such as incidence angle, frequency,
polarization, and resolution [30].

From an electromagnetic perspective, a ship can be considered
as a dominant scatterer characterized by a strong and coherent
backscattered signal [30]. The difference in brightness between
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the ship targets and the background allows us to segment them
using a detection threshold, which is the reason why CFAR is
one of the most frequently used ship detection methods for SAR
images.

The proposed two-stage lightweight framework aims to real-
ize fully automatic threshold segmentation and discrimination.
As shown in Fig. 1, the algorithm consists of two stages: 1)
TNN and 2) FSN. The SAR image is first sent into the TNN,
which predicts the optimal detection threshold of each sliding
window in sequence. Then, the ship targets are segmented by
comparing the SAR image with the thresholds. After simple
morphological processing for the binary segmentation image,
the bounding boxes of the targets can be obtained, as shown

Flowchart of the lightweight framework. (1) Overall training flowchart. (2) Overall test flowchart.

in (2c). Finally, the FSN is applied to identify the candidate
targets and get the final detection result, as shown in (2e). When
training the TNN, SAR images are cropped into sliding windows
with the size of 300 x 300, and the optimal detection threshold
(gt_th) of each input window is calculated according to truth
rotated bounding boxes. Then, the ship and clutter samples
detected by the TNN are resized to 100 x 100 to train the
FSN.

The details of the two-stage lightweight framework are
introduced in the rest of this section. First, the loss func-
tion and the architecture of the TNN are described to show
how they work. Then, the structure of the FSN is briefly
introduced.
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B. Lightweight TNN

Inspired by the traditional CFAR detector, the TNN extracts
the multiscale features from the SAR image and predicts the
detection threshold adaptively.

The workflows of the traditional CFAR detector and the TNN
are compared in Fig. 2. The CFAR detector relies on the given
false alarm probability (FPp) and the sea clutter distribution
model to determine the detection threshold. It can theoretically
obtain the threshold for a specific P, by estimating the param-
eters of the clutter. However, in SAR ship detection, the false
alarm rate is not the only metric considered, and the recall rate
should also be focused on. Missed detections, especially for
multiscale ship detection in large scenes, are often more fatal
than false alarms. Therefore, the TNN intends to segment ship
targets with the maximum harmonic average of precision and
recall.

As shown in Fig. 2, the whole SAR image is fed into the
trained TNN with no additional variables; then, the detection
threshold for each sliding window is predicted in sequence. In
high-resolution SAR images, assigning a detection threshold to
each pixel is unnecessary, which leads to repeated calculations
for homogeneous regions and low computational efficiency in
large scenes. Therefore, setting a uniform threshold within a
small window can often better balance the detection speed and
accuracy. Moreover, overlapping sliding windows are used in
the TNN to ensure the integrity of the detected targets.

1) Loss Function: It is assumed that pre_th is the detection
threshold predicted by the TNN, and gt_th is the optimal thresh-
old determined from the truth labels. Then, the simple mean
square error (MSE) is used to measure the loss between pre_th
and gt_th since the output of the TNN is only one parameter

Loss = MSE(pre_th, gt_th). (1

The target detection dataset commonly uses bounding boxes
as truth labels, so the optimal detection threshold (gt_th) should

Training

Comparison of the CFAR detector and the TNN. The left is the CFAR detector, and the right is the TNN.

be defined to train the TNN. From the labeled rotated bounding
boxes, the positions of the targets can be obtained, and the gt_th
should minimize the clutter pixels and reserve the most target
pixels. Therefore, a pixel-level F-score is introduced for target
segmentation, similar to the F-score metric in target detection.
The pixel-level F-score is defined as the harmonic average of
the pixel-level precision and the pixel-level recall, which ranges
from O to 1, and a higher value denotes better segmentation
performance.

As displayed in Fig. 3, the pixel-level F-score of a threshold
is calculated according to the truth rotated bounding boxes,
with intermediate variables of the pixel-level precision and the
pixel-level recall. The pixel-level precision is defined as the
ratio of correctly detected target pixels to all segmented pixels,
and the pixel-level recall is defined as the ratio of correctly
detected target pixels to all target pixels. The segmentation result
can be obtained by a threshold such as (b), and segmented
pixels can be classified into green and red pixels. The green
pixels inside the bounding boxes are correctly detected target
pixels, whereas the red pixels outside the bounding boxes are
false alarms. Thus, the theoretical calculation of the pixel-level
F-score of the threshold is as follows:

precision,, - recall,,

Fg, =(1+p5%)- . ! 2
g =145 (82 - precision,) + recall,, @
TP
precision,, = ﬁ 3)

N
n,=—272_ 4
recall, TP, + FN, “4)

where Fg is the pixel-level F-score, precison,, is the pixel-
level precision, and recall,, is the pixel-level recall. These can
be obtained by true positive pixels (TP,,), false negative pixels
(FN,,) and false positive pixels (I'P,,). As shownin Fig. 3(c), true
positive pixels are green pixels, and false negative pixels are red
pixels. The target pixels are simplified as the area of the rotated
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(©)

Calculation of the pixel-level F-score of a threshold. (a) Truth rotated bounding boxes of targets. (b) Segmentation result by a threshold. (c) Green pixels

within the boxes are detected ship targets, whereas red pixels outside the boxes are false alarms. The areas of green and red pixels are used to calculate the pixel-level

F-score.

Algorithm 1: Optimal Detection Threshold (gt_th).
Input:
SAR image I;
Truth rotated bounding boxes gtboxes;

m

1 X .
1 Ty < 57 > @4, o3 not in gtboxes

n .

// mean value of background;
gtship < Area(gtboxes)

// approximate number of truth ship pixels;
3 for T <+ T, to 255 do
4 TP, < Area(I > T in gtbozes);
5 FP, < Area(l > T not in gtbozes);
6
7
8

~

precision,, < TP,/(FP, + TP,);
recall, - TP, /gtship;
Fs, < (1 + B%) - (precision,, -
recall,)/ { (3% - precision,,) + recall,, };
end
Output:
Optimal detection threshold gt_th;
gt_th < argmax(Fz (T))

o

bounding boxes to facilitate the calculation. /3 is the harmonic
average factor, and when § = 1, precision,, and recall, have
equal weight. The larger 3 denotes the higher weight of recall,,.

The optimal detection threshold (gt_th) is obtained as
follows.

1) Compute the mean gray value of the background according

to the truth rotated bounding boxes.
2) Increase the detection threshold from the mean value to
255 to calculate Fg .

3) Asaresult, the threshold with the largest g is the gt_th.

It is clear that the gt_th and the loss of the TNN will be
affected by (. In addition, it was found that the threshold
segmentation generally results in more false alarm pixels than
missing pixels in SAR images, as the unavoidable sea clutter
highlights will be segmented. Thus, a smaller S with a higher
precison,, weight is more suitable for the TNN. Fg 4, is chosen
as the criterion of the optimal detection threshold, and the related
analysis will be introduced in the experiments section.

With the detection threshold increasing, as demonstrated
in Fig. 4(a)—(c), recall, and precison, exhibit the trend of

()

Fig. 4. Calculation of the gt_th and the corresponding segmentation results.
(a)—~(c) demonstrate the variation of the recally,, precison,, and Fo 4, with
different thresholds. (d) is the testing SAR image from the SSDD offshore
dataset. (e) is the segmentation result using the gt_th. (f) can be obtained by
morphological operations such as dilation, region filling, and removing small
objects.

monotonic decrease and monotonic increase, respectively. In
contrast, the optimal threshold criterion F 4, grows first and
subsequently decreases, with a highest peak in the middle. As
illustrated in Fig. 4(d)—(f), the calculated g¢_th can minimize
the false alarm pixels while retaining the targets integrally. It
should be noticed that some tiny background highlights will
be segmented as target pixels, which can be eliminated by the
subsequent FSN.

2) Architecture: The TNN differs from traditional target de-
tection networks in that the output is the detection threshold
rather than the bounding boxes, and the information extracted
is limited to gray features without other complex features. As
a result, the structure of the TNN can be greatly simplified,
and better segmentation results can be obtained with fewer
computing resources.

The lightweight TNN is built on the improved DenseNet,
containing three dense blocks. As shown in Fig. 5, each layer in
the dense block gets its input from all preceding layers by chan-
nel concatenation. In this way, the DenseNet achieves feature
reuse, which allows maximal information transmission in each
block and improves the effectiveness of the learned features.
Since each layer in the block contains the information of all
previous layers, the training purpose of each layer is to learn
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separable convolution in generating the same output dimension
are as follows:
N_std=C; x K x K x C, )
. N_separable = N_depthwise + N_pointwise
=Ci;xKxKx1+0C;x1x1x0C, (6)
N_separable  C; x (K x K + C,) @
N std ~ C;xKxKxC,
(a) (b) where C; is the input channel, K is the kernel size, H and W
are output feature sizes, and C, is the output channel. Depthwise
Fig. 6. (a) 3 x 3 standard convolution; each element has a receptive field of 3

x 3. (b) 3 x 3 2-dilated convolution [31]; each element has a receptive field of
7 x 7.

more features to add to the global features, which drastically
reduces the parameters of the TNN.

The nonlinear transformation of each layer in the origi-
nal dense block consists of batch normalization (BN), ReL.U,
Conv(1 x 1), BN, ReLU, and Conv(3 x 3) in sequence. Conv(1
x 1) reduces the output dimension of the previous layer, prevent-
ing network parameters from spiking due to the considerable
increase in feature dimension during channel concatenation.
Considering the practical requirements of target segmentation in
SAR images, the transfer connection is optimized by removing
the BN layer and replacing the Conv(3 x 3) with depthwise
separable dilated Conv(3 x 3). Thus, the nonlinear transfor-
mation of each layer in the improved block is ReLU—-Conv(1
X 1)-DropOut—ReLU-Depthwise Separable Dilated Conv(3 x
3)-DropQut.

Since the TNN only extracts gray features from SAR im-
ages, the BN is removed in hopes of extracting more specific
information on the limited gray values. As a result, the hidden
layer is not normalized to maintain its diversity, increasing the
predicted threshold’s sensitivity to gray characteristics in the
input window.

As shown in Fig. 6, the 3 x 3 2-dilated convolution is utilized
to replace the standard convolution, resulting in a receptive field
expansion from 3 x 3 to 7 x 7 with the same parameters. Thus,
the gray characteristics of the farther background can be fused in
space. Meanwhile, the dilated convolution is operated by a sep-
arable form, with depthwise convolution for each channel first
and then pointwise convolution to fuse the information between
channels. Parameters of standard convolution and depthwise

convolution can be perceived as standard convolution with an
output channel of 1, while pointwise convolution is actually
standard convolution with a kernel of 1 x 1. Compared with the
standard convolution, the computation of depthwise separable
dilated convolution is much lower when having the same large
receptive field and the same output dimension.

3) Morphological Processing: The TNN aims to segment
targets and obtain bounding boxes adaptively, where some mor-
phological operations are critical for extracting bounding boxes
from the binary segmentation. The flowchart of morphological
processing in the TNN is shown in Fig. 7, which contains
dilation, closing, hole filling, connected component labeling,
and removing small objects.

1) Dilation: Use a structure element (SE) to stride the binary
segmentation, replacing the original pixel with the maxi-
mum value in the SE. It enlarges the overall contour of the
target and fills in holes smaller than the SE.

Closing: Dilation first and then erosion (the inverse of
dilation). It can fill in the holes and cracks of the target.
Hole filling: Use the SE to continuously dilate the binary
segmentation until convergence, with the complement of
the original image as a mask to limit the boundary of the
target from expanding. It fills in all the holes inside the
objects.
Connected component labeling: Different connected com-
ponents are extracted by marking all the neighboring
foreground pixels with the same value, which can be
achieved by constrained dilation in the connected regions
until convergence. The minimum enclosing rectangles of
the connected regions are the bounding boxes we need.
5) Removing small objects: Bach connected region is re-
garded as a target, and some tiny clutter bright spots
are substantially smaller than the actual ships. Therefore,

2)

3)

4)
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these objects can be eliminated by setting the value of the
connected regions to O to reduce the false alarms.

C. False Alarm Suppression Network

The unique phenomena in SAR images, such as speckle and
Doppler range ambiguity, and the presence of natural phenom-
ena, such as atmospheric fronts and changes in ocean backscat-
tering [32], are all very likely to result in clutter highlights,
making it challenging to distinguish from ships relying solely on
the detection threshold. Compared with clutter, ships have dis-
tinct outlines and specific component structures, which are more
evident in high-resolution SAR images. Therefore, a binary
classification network is designed to discriminate the candidate
targets segmented by the TNN.

Specifically, as shown in Fig. 1, the candidate targets seg-
mented by the TNN can be cropped according to their bound-
ing boxes. These samples will be classified into ships and
clutter by the FSN, with the help of deeper features, such
as texture and structure, adaptively extracted by the neural
network.

To reduce the network parameters, AlexNet is selected as
the backbone of the lightweight FSN. AlexNet consists of five
convolutional layers and three fully connected layers with ReLU
as the activation function. The Dropout layer deactivates some
neurons with a certain probability during each iteration, gener-
ating different network structures to reduce overfitting. These
structures share weights, thus reducing the complex coadapta-
tion relationships of neurons in the fully connected layer. The
architecture of the FSN is shown in Fig. 8.

III. EXPERIMENTS

In this section, experiments are set up to evaluate the perfor-
mance of the proposed lightweight ship detection framework.
First, the experimental datasets and settings are introduced.
Then, the proposed method is compared with the Multi-CFAR
detector and three deep learning detection networks on two
datasets to verify its effectiveness. Next, the validity of the
backbone and the optimal threshold criterion of the TNN is
evaluated. Finally, the proposed method is combined with the
sea—land segmentation module to achieve an end-to-end ship
detection method in large-scene SAR images.

A. Experiment Dataset and Settings

Two datasets from offshore SAR images and large-scene SAR
images are chosen for evaluation. The details are as follows.

1) SSDD Offshore [33]: The public SSDD dataset was con-
structed by Li et al. [33], which consists of images from mul-
tiple SAR satellites, including RadarSat-2, TerraSAR-X, and
Sentinel-1. In 2021, the SSDD dataset was officially revised
as three annotation types [34] with standardized training and
test sets that include offshore and inshore scenarios. The SSDD
offshore dataset is composed of 476 images with 1520 targets
in the training set and 186 images with 374 targets in the test
set. Since gt_th is calculated by truth rotated bounding boxes,
the RBox-SSDD offshore training dataset is selected to train the
TNN. Moreover, the proposed framework is applied to multi-
scale ship detection in offshore scenarios, and the detection re-
sults are minimum enclosing rectangles. Thus, the BBox-SSDD
offshore test dataset is selected to evaluate the performance.
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TABLE I
INFORMATION OF THE EXPERIMENT DATASETS
SSDD offshore train SSDD offshore test FUSAR-Ship-Detection

Number 476 186 105
Mean size 483x332 477x330 5000%5000
Ship num 1520 374 1094

2) FUSAR-Ship-Detection: The FUSAR-Ship proposed
in [35] is a SAR ship identification dataset containing slices
of key ship targets and various false alarms. In this article, a
FUSAR-Ship Detection dataset for ship detection is constructed
to validate the algorithm’s robustness, which contains 105
SAR images with 1094 ship targets. First, 70 GF-3 images
with 1.2-m resolution in both azimuth and range resolutions
are downsampled to 4.6 m and cut into large-scene images of
5000 x 5000 pixel size (compared to the average 481 x 331 of
SSDD). Then, the offshore scenes are selected and labeled.

Table I shows the information of the datasets used in this
article. The distribution of ship areas in two datasets is shown in
Fig. 9, using pixels as the statistical unit. Small-scale targets
account for the vast majority in the SSDD offshore training
and SSDD offshore test datasets, and there are extreme values
with distributing nonuniformly. In contrast, the vast majority
of the targets in the FUSAR-Ship-Detection dataset are small
and medium sized, and the target area distribution is relatively
uniform.

With an input window size of 300 x 300 pixels, the TNN is
trained on 3504 image slices cropped from 476 SAR images in
the SSDD offshore training dataset. For a total of 20k training
steps, we set a 32-batch training size and a le-5 initial learning
rate. At 12k and 16k steps, the learning rate drops by tenfold.

The positive and negative samples from the SSDD offshore
training dataset segmented by the TNN are used to train the
FSN with an input size of 100 x 100. In order to improve
the discrimination performance, seven transformations are uti-
lized to augment the samples: rotated 90°, rotated 180°, rotate
270°, added salt-pepper noise, added Gaussian noise, increased
brightness, and decreased brightness. Then, all the samples are
randomly divided into the training set and the validation setin the
ratio of 9:1. The training batch size is 32, and the initial learning
rate is le-5. When the loss of the validation set decreases for

Distribution of ship area in two datasets. (a) SSDD offshore training set. (b) SSDD offshore test set. (c) FUSAR-Ship-Detection dataset.

five consecutive epochs, the learning rate drops to 1/10 of the
previous, and the training ends when the loss of the validation
set does not decrease for ten consecutive epochs.

Specifically, the TNN and the FSN are implemented in the
TensorFlow framework, and three deep learning networks in the
PyTorch framework. All the experiments are performed on a
NVIDIA Corporation GP102 GPU card with CUDA 10.1.

B. Evaluation Criteria

The proposed framework is evaluated quantitatively in terms
of both accuracy and timeliness. Accuracy criteria used in this
article are precision, recall, AP, and F1, which are as follows:

ecision = L (8)
precision = TP + FP
TP
l= ——— 9
e = TP I FN ©)

Fl— 2 - precision - recall

precision + recall (10)
where TP is the correctly detected ship, FP is the clutter mis-
takenly detected as a ship, and NP is the missing ship. AP is
the average precision, which is calculated by the area under the
precision—recall curve.

The floating point operations (FLOPs) of a CNN model rep-
resent the amount of computation required for forward propaga-
tion, which is often used to measure the complexity of the neural
network, for example, for the convolution operation. When
containing the bias, its FLOPs can be calculated as follows:

(11)

where C; is the input channel, K is the kernel size, H and W
are output feature sizes, and C, is the output channel. We use
GFLOPs in the subsequent subsection, and 1 GFLOPs = 109
FLOPs.

FLOPScomy=2 x C; x K2 x Hx W x C,

C. Comparisons With Other Methods

In this subsection, the Multi-CFAR detector and three deep
learning methods are used to compare with the proposed frame-
work. Experiments are conducted on the SSDD offshore test
dataset and the FUSAR-Ship-Detection dataset to verify the
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TABLE II
DETECTION PERFORMANCE OF SSDD OFFSHORE TEST DATASET COMPARISON BETWEEN DIFFERENT METHODS

Detection Method  Runtime (s) FLOPs (G) Recall Precision AP F1
Multi-CFAR 7.386 - 0.9011 0.7539 0.7328 0.8210
RetinaNet 28.875 48.96 0.9492 0.9621 0.9483  0.9556
YOLO-v3 13.905 32.76 0.9786 0.9786 0.9772  0.9786
YOLO-v4 16.867 33.15 0.9866 0.9685 0.9845 0.9775
Multi-CFAR+FSN 15.722 - 0.8930 0.9598 0.8897  0.9252
TNN 6.053 0.127 0.9866 0.6685 0.7205  0.7970
TNN+FSN (Ours) 13.469 0.138 0.9679 0.9628 0.9620 0.9653

TABLE III

DETECTION PERFORMANCE OF FUSAR-SHIP-DETECTION DATASET COMPARISON BETWEEN DIFFERENT METHODS

Detection Method  Runtime (s) FLOPs (G) Recall  Precision AP F1
Multi-CFAR 421.82 - 0.9644 0.7891 0.8430 0.8680
RetinaNet 671.83 48.96 0.9397 0.6461 0.8363  0.7657
YOLO-v3 481.12 32.76 0.9689 0.7157 0.8589  0.8233
YOLO-v4 510.63 33.15 0.9655 0.7727 0.8671 0.8584
Multi-CFAR+FSN 579.38 - 0.9489 0.8764 0.9297 09112
TNN 134.86 0.127 0.9963 0.6012 0.7833  0.7499
TNN+FSN (Ours) 290.73 0.138 0.9653 0.9191 0.9516 0.9416

effectiveness of our method. Furthermore, the proposed frame-
work and the deep learning methods are trained on the SSDD
offshore training dataset and then transferred to the FUSAR-
Ship-Detection dataset without any fine-tuning.

The Multi-CFAR proposed in [36] includes global CFAR,
large-scale CFAR, and small-scale sliding CFAR. Their estima-
tion regions are the whole SAR image, the sliding windows, and
the neighborhood of the candidate targets, respectively. Then,
eigenellipse discrimination and ML discrimination are carried
out in Multi-CFAR to reduce false alarms. RetinaNet [19],
YOLO-v3 [37], and YOLO-v4 [38] are all one-stage target
detection networks with high inference speeds. RetinaNet dy-
namically increases the weight of the hard examples by focal
loss, surpassing the two-stage detection networks both in speed
and accuracy for the first time. YOLO-v3 contains excellent
structures, such as Darknet-53 and FPN, which balance detection
speed and accuracy and improve the detection performance of
small targets. Some latest tricks, such as Mosaic augmentation,
SPP module, Mish activation, CIOU Loss, and DIOU-NMS,
are used in YOLO-v4 to provide more efficient detection. The
detection performance of different methods is shown in Tables 11
and III.

As shown in Table II, the Multi-CFAR detector can guarantee
a low missed detection rate for the SSDD offshore test dataset,
but it results in more false alarms. With a neural network and
multiscale feature extraction, the detection performance of three
deep learning methods is considerably improved compared to the
traditional detector. The RetinaNet performs more poorly than
the YOLO, while the YOLO-v3 and the YOLO-v4 dominate in
precision and recall, respectively. The highest recall rate can
be obtained when employing the proposed TNN to segment
the ship targets, but the false alarms are increased at the same
time. After applying the FSN, the precision of both the TNN
and the Multi-CFAR improves substantially. However, the final

recall of Multi-CFAR+FSN is 7.49% lower than TNN+FSN
(ours), which demonstrates the superiority of the TNN over
the traditional CFAR. The TNN+FSN outperforms the Reti-
naNet and achieves comparable performance to the YOLO. In
addition, deep learning methods use more complex models to
generate prior regions and regress targets, resulting in much
larger FLOPs than ours. The FLOPs of the TNN+FSN represent
the amount of computation required for forward propagation in
two neural networks. However, we cannot directly equate the
FLOPs with the detection runtime. The remarkable thing is that
each candidate target detected by the TNN requests a forward
propagation of the FSN, which means that more targets result
in a longer discrimination time. Even though the detection time
of our method varies with the number of targets, it is still a fast
ship detection method.

The detection results of the Multi-CFAR detector, YOLO-v4,
Multi-CFAR+FSN, and the proposed framework for the SSDD
offshore test dataset are displayed in Fig. 10 from left to right. We
compared the detection results with the manually labeled true
ships and counted the correct detection ships (TP), false alarms
(FP), and missing ships (NP) in each image. Many clutter high-
lights are presented in the poorly focused SAR images, such as
Fig. 10(1a)—(1d), and the Multi-CFAR detector generates many
false alarms since it relies solely on gray information. Since
both the YOLO-v4 and the FSN in our framework extract more
characteristics, such as texture and structure, the false alarms can
be reduced substantially. The difference in brightness between
the target and clutter is relatively small in Fig. 10(2a)—(2d) and
Fig. 10(3a)—(3d), and both the Multi-CFAR detector and the
YOLO-v3 have more missed detections than our method. In
addition, our framework also obtains the best performance in
SAR images with dense targets, such as Fig. 10(5a)—(5d).

Given sufficient data, deep learning methods outperform tra-
ditional CFAR and the proposed framework. However, when
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(la) TP:1 FP:10 FN:0 (1b) TP:1 FP:0 FN:0 (1c) TP:1 FP:0 FN:0 (1d) TP:1 FP:0 FN:0

(2a) TP:0 FP:0 FN:1 (2b) TP:1 FP:0 FN:0 (2¢) TP:0 FP:0 FN:1 (2d) TP:1 FP:0 FN:0

(3a) TP:5 FP:0 FN:0 (3b) TP:4 FP:0 FN:1 (3c) TP:4 FP:0 FN:0 (3d) TP:4 FP:0 FN:0

(4a) TP:6 FP:0 FN:3 (4b) TP:9 FP:0 FN:0 (4d) TP:9 FP:0 FN:0

(5a) TP:15 FP:0 FN:4 (5b) TP:19 FP:1 FN:0 (5¢) TP:15 FP:0 FN:4 (5d) TP:19 FP:0 FN:0

Fig. 10. Comparison results of Multi-CFAR, YOLO-v4, Multi-CFAR+FSN, and proposed framework for the SSDD offshore test dataset. (a)—(d) are results of
Multi-CFAR, YOLO-v4, Multi-CFAR+FSN, and our method, respectively. The green rectangles are correctly detected targets (TP), the red rectangles are false
alarms (FP), and the orange rectangles are missed targets (FN).

TABLE IV
DETECTION PERFORMANCE OF FUSAR-SHIP-DETECTION DATASET COMPARISON BETWEEN DIFFERENT BACKBONES IN THE TNN

Backbone RunTime (s) FLOPs (G) Recall Precision AP F1
ResNet18 271.04 6.81 0.9840 0.6740 0.7341  0.8000
MobileNet-v2 213.45 1.32 0.9813 0.6360 0.6696 0.7718
DenseNet 146.15 0.23 0.9854 0.3506 0.5855 0.5172
DenseNet-Dconv 134.86 0.12 0.9963 0.6012 0.7833  0.7499
TABLE V

DETECTION PERFORMANCE OF THE MULTI-CFAR AND THE PROPOSED FRAMEWORK

Algorithm Time Detected targets Truth False alarms Missing ships  Recall  Precision F1

Multi-CFAR 56s 205 188 30 13 0.9309  0.8537  0.8906
TNN+FSN (Ours) 5s 206 188 25 7 0.9628  0.8786  0.9188
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(la) TP:7 FP:11 FN:0 (1b) TP:5 FP:3 FN:2 (1c) TP:7 FP:0 FN:0

(2a) TP:22 FP:3 FN:0 (2b) TP:22 FP:10 EN:0 (2c) TP:22 FP:0 FN:0

(3a) TP:63 FP:3 FN:2 (3b) TP:62 FP:14 FN:1 (3¢c) TP:65 FP:0 FN:0

(4a) TP:14 FP:6 FN:0 (4b) TP:14 FP:2 FN:0 (4c) TP:14 FP:0 FN:0

(5a) TP:8 FP:2 FN:0 (5b) TP:6 FP:2 FN:2 (5¢) TP:8 FP:1 FN:0

Fig. 11. Comparison results of Multi-CFAR, YOLO-v3 and the proposed framework for FUSAR-Ship-Detection dataset. (a)—(c) are results of Multi-CFAR,
YOLO-v3, and our method, respectively. The green rectangles are correct detected targets (TP), the red rectangles are false alarms (FP), and the orange rectangles
are missed targets (FN). These are all counted manually by comparing with ground truth.
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(1d) DenseNet-Dconv

(2c) DenseNet (2d) DenseNet-Dconv

(3a) ResNet18

(5a) ResNet18

Fig. 12.

(3¢) DenseNet (3d) DenseNet-Dconv

X wl WIS Y

(5¢) DenseNet (5d) DenseNet-Dconv

Comparison results of the TNN with different backbones for the SSDD offshore dataset. (a)—(d) are results of TNN with ResNet18, MobileNet-v2,

DenseNet, and DenseNet-Dconv, respectively. The green rectangles are correctly detected targets (TP), the red rectangles are false alarms (FP), and the orange
rectangles are missed targets (FN). These are all counted manually by comparing with the ground truth.

applying to new scenes with large differences, the drawbacks
of deep neural networks will become apparent. Their gener-
alization ability is limited, and the detection speed will be
greatly reduced. In contrast, the proposed framework can better
balance detection accuracy and speed in the absence of super-
vision. In order to validate this inference, we constructed the
FUSAR-Ship-Detection dataset and used the models trained on
the SSDD offshore training dataset to perform detection without
any fine-tuning.

Table III shows the detection performance of the FUSAR-
Ship-Detection dataset by different methods. The Multi-CFAR
detector can obtain a high recall rate due to the large bright-
ness difference between the targets and the background in the
FUSAR-Ship-Detection dataset. In contrast, the detection per-
formance of three deep learning methods on the untrained new

dataset is degraded, with no considerable improvement com-
pared to the Multi-CFAR detector. For example, the precision
of the YOLO-v3 and the YOLO-v4 are reduced by 26.29% and
19.58%. The proposed TNN can nearly detect all the targets in
the FUSAR-Ship-Detection dataset, and the precision improves
significantly after adding the FSN. In the meantime, our frame-
work obtains the highest Fl-score and AP with a little lower
recall than the YOLO-v3 and the YOLO-v4. And the recall and
precision are reduced by only 0.26% and 4.37% compared to
the SSDD dataset. Moreover, the TNN+FSN has the quickest
detection speed of these methods except the TNN, and the
FLOPs are substantially smaller than those of the deep learning
methods. These results show that the proposed framework can
achieve more stable performance with little runtime in new SAR
scenarios.
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Fig. 13.
blue curve is the segmentation results of the SSDD offshore test dataset.

Undeniably, the performance of the deep learning methods
will be enhanced when using transfer learning techniques to
fine-tune the models. However, in some scenarios where training
is not possible, such as on-satellite processing and deployed
embedded devices, the advantages of the proposed method can
be well represented.

Fig. 11 shows the detection results of the FUSAR-Ship-
Detection dataset by three methods. The green rectangles are
correctly detected targets (TP), the red rectangles are false alarms
(FP), and the orange rectangles are missed targets (FN). These
are all counted manually by comparing with the ground truth.
The Multi-CFAR detector and the YOLO-v3 detection network
produce more false alarms than our method in the large-scene
SAR images. Furthermore, the Multi-CFAR detector and the
YOLO-v3 detection network tend to miss dense targets, such as
Fig. 11(3a)—(3c). In addition, the YOLO-v3 detection network
is most prone to missed detection in multiscale target scenarios,
such as Fig. 11(5a)—(5c).

D. Comparisons With Different Lightweight Backbones in the
TNN

In this subsection, different lightweight backbones are applied
in the proposed TNN to segment ships from the FUSAR-Ship-
Detection dataset, and models of the TNN with different back-
bones are still trained on the SSDD offshore training dataset.

ResNetl8, MobileNet-v2, and DenseNet are selected
as backbones of the TNN. ResNet solves the degradation

0 0.5 1 15 2

0.2

0 0.5 1 L5 2
B

Segmentation results obtained by gt_th with different values of 5. The red curve is the segmentation results of the SSDD offshore training dataset. The

problem of the deep networks by residual learning for the first
time, where ResNetl8 has the smallest depth. Mobilenet-v2
introduces the inverted residuals, linear bottlenecks, and
depthwise separable convolutions to compress the network.
The DenseNet we use contains only three dense blocks, and
the feature dimension is maintained at a small value to ensure
fewer parameters.

As shown in Table 1V, the recall rate in the FUSAR-Ship-
Detection dataset maintains above 0.98 as backbone parameters
decrease, indicating that the TNN can effectively segment the
targets with a lightweight backbone. The MobileNet-v2 has
fewer parameters than ResNet18, and the AP and F1 are slightly
lower. The Original DenseNet has not learned enough informa-
tion due to the sharp reduction of parameters, and its precision
rate is only half that of ResNet18, implying that a small receptive
field with few feature dimensions will result in improper
predicted thresholds. In contrast to this, the dilated convolution
of the improved DenseNet can increase the receptive field and
considerably improve the detection performance, and the depth-
wise separable convolution can further reduce the parameters
of the model. Furthermore, the FLOPs of DenseNet-Dconv are
only 1/57 of ResNetl8, and the recall rate and AP achieve the
highest, while the precision rate and F1 are slightly lower than
the highest. In conclusion, the DenseNet-Dconv is chosen as the
backbone of the TNN. The detection results of the TNN with
different backbones for the SSDD offshore dataset are shown in
Fig. 12.
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Fig. 14.

(d)

Comparison results of the Multi-CFAR and the proposed framework for the ALOS-2 SAR image. (a) ALOS-2 SAR image. (b) Refined land-sea

segmentation using the method proposed in [36]. (c) Ship detection result of the Multi-CFAR proposed in [36]. (d) Ship detection result of our method.

E. Variants of Optimal Threshold (gt_th) Criterion

In this subsection, experiments are performed on the SSDD
offshore dataset using the calculated optimal detection thresh-
old (gt_th) with 8 taken as 0.2, 0.3, 0.4, 0.5, 0.6, 1, and 2,
respectively. It should be noted that the minimum ship area
is taken as 30 pixels, and the smaller detected targets are
removed.

As demonstrated in Fig. 13, the recall of both the training
and test sets can be maintained close to 1 when [ ranges

from 0.2 to 2. While the precision remains large values as
B < 0.5 with the highest peak at 0.4, it decreases rapidly as
[ increases. Furthermore, both the AP and the F1-score exhibit
similar trends to the precision. In order to ensure a larger recall
with a larger precision, Fg4, is chosen as the criterion of
gt_th.

When using gt_th calculated by Fo 4, to detect the SSDD
dataset, the AP and the F1-score achieve their maximum with
the largest precision in both the training and test sets, and the
recall is slightly lower than the highest value.
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(la) (1b)

(2a) (2b)

(3a) (3b)

Fig. 15. Three areas of ship detection results of the Multi-CFAR and the proposed framework for the ALOS-2 SAR image. Detected ships are marked by green
ellipses, missing ships are marked by yellow ellipses, and detected targets in red rectangles are false alarms. (1a)—(3a) are the results of the Multi-CFAR, (1b)—(3b)
are the results of our method.
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F. End-to-End Ship Detection in Large-Scale SAR Images

The proposed framework can be integrated with the sea—land
segmentation module to construct an end-to-end ship detection
method. In this subsection, experiments are performed using the
refined sea—land segmentation module in [36]. The test data is the
L-band HH-polarimetric ALOS-2 SAR image of the Zhoushan
Islands in Zhejiang Province, China, as shown in Fig. 14(a). The
image is 4844 x 4180 pixels in size, with range and azimuth
resolutions of 5.722 and 5.562 m, respectively. The refined sea—
land segmentation algorithm is first used to obtain the pixel-level
sea—land mask, as shown in Fig. 14(b). On this basis, the Multi-
CFAR detector in [36] and the proposed framework are applied
to achieve the detection results, as shown in Fig. 14(c) and (d).

As exhibited in Table V, the number of false alarms and
missing ships detected by two methods are manually counted.
The proposed framework detects almost the same number of
ships as the Multi-CFAR detector but fewer false alarms and
missing detections.

Three regions are intercepted in this SAR image to compare
the detection results of the two methods in a more intuitive way.
As shownin Fig. 15, detected ships and missing ships are marked
by green ellipses and yellow ellipses, and the targets in red
rectangles are false alarms. The Multi-CFAR detector results in
more missed detections, while the proposed framework performs
better in scenarios where the target scattering intensity is weak
and densely distributed. Moreover, even with a refined sea—land
mask, some land areas remain, and these land highlights affect
the parameter estimation of the sea clutter. Consequently, the
Multi-CFAR results in more false alarms in the sea—land mask
boundary region. In comparison to the eigenellipse discrimina-
tion and ML discrimination [36] used in the Multi-CFAR, the
FSN in our method can reduce more false alarms by extracting
the deep features of candidate targets.

IV. CONCLUSION

In this article, a lightweight TNN with optimal segmentation
ideas was proposed for multiscale ship detection in large-scene
offshore SAR images. First, the framework focused on ship
segmentation, predicted the detection threshold using the TNN,
and performed fast detection for the whole image by sliding
windows. Then, the FSN was designed to reduce false alarms
with a lightweight model.

Experiments were conducted on the public SSDD offshore
dataset and the FUSAR-Ship-Detection dataset. Compared with
the Multi-CFAR detector and several deep learning detection
networks, the proposed framework can achieve better results
with a faster detection speed. Meanwhile, an end-to-end fast
detection method was built combined with the sea—land seg-
mentation module for ship detection in a large-scale ALOS-2
SAR image.

The proposed lightweight framework is particularly effective
for fast ship detection in large-scene offshore SAR images. Our
method obtains the detection threshold by a neural network,
which has higher detection accuracy and stronger robustness
than other traditional threshold-based detectors. Compared with
deep learning detection networks, the lightweight model of
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the proposed framework can achieve a good balance between
detection efficiency and performance. As a result, our method is
more suitable for engineering integration.
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