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Abstract—Generative adversarial networks (GANs) have
achieved many excellent results in hyperspectral image (HSI) clas-
sification in recent years, as GANs can effectively solve the dilemma
of limited training samples in HSI classification. However, due to
the class imbalance problem of HSI data, GANs always associate
minority-class samples with fake label. To address this issue, we
first propose a semisupervised generative adversarial network in-
corporating a transformer, called HyperViTGAN. The proposed
HyperViTGAN is designed with an external semisupervised classi-
fier to avoid self-contradiction when the discriminator performs
both classification and discrimination tasks. The generator and
discriminator with skip connection are utilized to generate HSI
patches by adversarial learning. The proposed HyperViTGAN
captures semantic context and low-level textures to reduce the loss
of critical information. In addition, the generalization ability of the
HyperViTGAN is improved through the use of data augmentation.
Experimental results on three well-known HSI datasets, Houston
2013, Indian Pines 2010, and Xuzhou, show that the proposed model
achieves competitive HSI classification performance in comparison
with the current state-of-the-art classification models.

Index Terms—Generative adversarial network (GAN),
hyperspectral image (HSI) classification, semisupervised learning,
transformer.
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I. INTRODUCTION

AHYPERSPECTRAL sensor captures both spectral and
spatial information of the observed target. Hyperspectral

images (HSIs) are widely used in agriculture, mineralogy, urban
development, scene interpretation, resource management, and
other fields. HSI classification is a vibrant topic in the field of
remote sensing [1], [2]: because HSIs have rich spectral bands
and complex spatial structure with high-dimensional features
and a limited number of labeled samples, HSI classification
remains a challenging task [3].

HSI classification methods are broadly classified as unsuper-
vised and supervised. Unsupervised methods group similar pix-
els together according to feature information that represents the
characteristics of the pixels. Supervised methods use annotated
hyperspectral pixels to learn the intrinsic association between
pixel features and categories to classify unannotated pixels and
determine pixel classes. Supervised hyperspectral classification
methods are further grouped into methods based on spectral
information and methods based on spectral-spatial information.

Over the past decades, numerous supervised machine learning
algorithms have been used for HSI classification, such as support
vector machines (SVMs) [4], [5], random forests [6], K nearest
neighbors (KNN) [7], logistic regression [8], and neural net-
work [9]. To date, many excellent traditional machine learning
methods have been proposed from time to time in the field
of hyperspectral image processing and have shown excellent
classification performance [10]–[15].

Deep models have proven to be a powerful tool for data mining
and analysis, especially in remote sensing, which is typically a
data-intensive discipline; these models have become an indis-
pensable tool for remote sensing data processing. For example,
a novel recurrent network (RNN) that can efficiently analyze HSI
pixels as sequence data was first proposed by Mou et al. [16]
and has yielded competitive results. In [17], a semisupervised
Siamese network integrating an autoencoder and a Siamese
network was proposed. This network was trained simultaneously
on massive unannotated samples and few annotated samples to
obtain unsupervised feature with refinement representation and
unsupervised features rectified by limited labeled samples, re-
spectively. Tan et al. [18] proposed a deep HSI feature extraction
method with multiple Gaussian–Bernoulli restricted Boltzmann
machines (GBRBMs) with different hidden layers in parallel.
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Shi et al. [19] proposed a dual-attention denoising network con-
sidering both the global dependence and correlation of spectral
and spatial information for HSI denoising. Roy et al. [20] first
introduced an attention-based adaptive spectral-spatial kernel
component to obtain selective 3-D convolutional kernels, captur-
ing differentiated spectral-spatial HSI features with end-to-end
training resulted in better classification results compared to the
existing methods they investigated. In [21], a cascaded RNN
model consisting of two RNN layers for exploring redundant and
complementary information of HSIs with gated recurrent units
(GRUs) was proposed. Hong et al. [22] proposed a minibatch
graph convolutional network (GCN) called miniGCN that can
train large-scale GCNs in the form of minibatch and showed
superior advantages of miniGCN over GCNs on HSI classi-
fication. A deeper and wider network called contextual deep
CNN was proposed by Lee et al. [23] for HSI classification.
Zhong et al. [24] proposed an end-to-end spectral-spatial resid-
ual network (SSRN) for HSI classification, which mitigates the
declining-accuracy phenomenon of other deep learning models.

Despite the blossoming of machine learning and deep mod-
els for HSI classification, these algorithms are susceptible
to the curse of dimensionality, also called the Hughes phe-
nomenon [25]. Additionally, deep models often require plenty
of training samples, and HSI annotation is time consuming and
labor intensive, so HSI only has a limited number of annotated
samples. As a result, deep models easily face the issue of overfit-
ting. There are various solutions for overfitting and the curse of
dimensionality, such as feature extraction [26], dropout [27],
regularization, and data augmentation. The generator within
GAN can be seen as a method of data augmentation. Therefore,
GAN [28] is starting to emerge in HSI classification.

The generator and the discriminator are the two main compo-
nents that constitute the GAN model, and they explore the real
data distribution through a constant competitive game between
the generator and the discriminator. The first approach to classify
HSIs using GAN was proposed by Zhu et al. [29] in 2018,
which proposed a total of two schemes, 1-D GAN and 3-D
GAN, ultimately improving the classification performance and
exploiting the potential of GAN for HSI classification. Wang
et al. [30] proposed Caps-TripleGAN for HSI classification by
exploring triple generative adversarial networks (TripleGAN)
and combining capsule network (CapsNet). Another GAN,
combining CapsNet and convolutional long short-term memory
(ConvLSTM), was designed by Wang et al. [31] to tackle the
insufficiency of annotated samples in HSI by generating artificial
HSI samples for data augmentation. Wang et al. [32] proposed a
dropblock-enhanced generative adversarial network (ADGAN)
to address the model collapse problem of GANs and the per-
sistent and challenging class imbalance of hyperspectral data,
achieving remarkable performance compared to the state-of-the-
art GAN-based models. Similarly, Roy et al. [33] proposed a
novel 3D-HyperGAMO model, which employs generative ad-
versarial minority oversampling to conquer the class imbalance
issue in HSI. In the training process, the existing samples of the
minority-class are used by 3D-HyperGAMO to automatically
generate more minority-class samples, which tackles the class
imbalance by leveraging the oversampling strategy.

Although the aforementioned GANs combined with convo-
lutional neural networks (CNNs) and RNNs achieve compet-
itive results in HSI classification, some limitations remain in
their approaches to targeting of sequence data. Capturing the
sequence attributes well in HSIs with their many categories
and extremely similar spectral features is difficult for CNNs;
furthermore, spatial information is given too much attention,
distorting the sequence information in the learned features on the
spectrum. And, even though RNNs was designed for sequential
data, represented by long short-term memory (LSTM) [34] and
GRUs [35]. RNNs are able to extract rich contextual semantics
from sequential data like sequential networks. However, the
effective spectral information in RNNs is stored in individual
fragmented neurons, which cannot effectively preserve the ul-
tralong data dependencies. Furthermore, the sequential network
structure makes it difficult to efficiently scale and parallelize
the computation of LSTM and GRUs. The emergence of the
transformer [36] has successfully addressed the shortcomings
of the CNN in capturing long-range information. Compared to
RNNs, transformer allows parallel computation, which reduces
training time and performance degradation due to long-term
dependencies. The number of manipulations needed to calculate
the correlation between two positions do not grow with distance,
and its self-attention module captures long-range information
more easily than the CNN, making the transformer one of the
most cutting-edge models today. A vision transformer (ViT) [37]
demonstrates that the transformer not only excels in natural
language processing (NLP) but also achieves outstanding per-
formance in image classification. The current cutting-edge trans-
former backbone network also shows excellent performance in
the field of HSI classification. For example, Hong et al. first
used the ViT for HSI classification by proposing a network
called SpectralFormer [38], which solved the flaws of the ViT
in the weakness of local detail spectral representation and jump
connection design, and ultimately achieved a significant 10%
improvement in overall classification accuracy over the classical
ViT, which strongly demonstrated the potential of the trans-
former in HSI classification. Since the transformer has shown
competitive performance in computer vision, the authors in [39]
used the transformer for a more difficult vision task, GAN. The
authors in [39] proposed the first pure transformer-based GAN
with no convolution at all, named TransGAN, which achieved
competitive results when compared with the current cutting-
edge CNN-based GANs. Immediately afterward, the authors
in[40] proposed the ViTGAN to solve the training stability
problem that arises when combining GAN with the transformer.
The ViTGAN was shown to yield comparable performance to
the most advanced CNN-based StyleGAN2 [41].

In this article, we first propose a novel semisupervised GAN-
based model, HyperViTGAN, for the HSI classification task,
in combination with the cutting-edge and promising transform-
ers currently used for HSI classification. Three well-designed
hyperspectral ViT-based cascaded elements—a generator, dis-
criminator, and external classifier—are designed to constitute
HyperViTGAN. The design of a discriminator with a single dis-
crimination output and an external classifier with a single classi-
fication output effectively eliminates self-contradiction when the
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discriminator performs both classification and discrimination
tasks. In addition, because the HyperViTGAN is specifically
designed for HSI, it can better preserve spectral sequence infor-
mation in order to avoid the loss of critical information. At the
same time, HyperViTGAN yields better generalization ability
via data augmentation. Three well-known HSI datasets, Indian
Pines 2010, Houston 2013, and Xuzhou, are used to quantita-
tively and qualitatively validate the classification performance of
HyperViTGAN, which outperforms the current state-of-the-art
models for the HSI classification task. Our contribution to this
work is as follows.

1) HyperViTGAN, a GAN-based entirely on transformers
for HSI is first proposed. A discriminator and an external
semisupervised classifier that do not share the architecture
with each other are designed for a single discrimination
task and a single classification task in HyperViTGAN,
respectively. HyperViTGAN can generate hyperspectral
HSI patches by adversarial learning and semisupervised
learning while alleviating the challenge of class imbalance
in HSI.

2) Cascaded architecture with skip connections are designed
for a generator, discriminator, and classifier to deliver
memory-like information, thus avoiding the loss of key
components and boosting classification performance.

The rest of this article is organized as follows. Section II
focuses on theoretical background related to GAN and trans-
former. Our proposed HyperViTGAN is introduced in detail in
Section III. The specific experimental details and analysis are
reported in Section IV. Finally, Section V concludes this article.

II. RELATED WORKS

A. Generative Adversarial Networks (GANs)

GANs [28] learn by pitting two neural networks against each
other. Minimizing the divergence of distribution between the
generated data pz and the real data pdata is the target of GAN,
e.g., via variety of f -divergences [42] or integral probability
metrics (IPMs) [43]–[45].

The generator G and discriminator D are the two main el-
ements that form the GAN model. The main purpose of G in
GAN is to generate samples similar to real samples in order
to fool D. The input of D consists of two parts, real samples
and generated samples, and D aims to judge whether the input
sample is real samples or generated samples generative by G.
The GAN converges when D and G reach Nash equilibrium in
the game theory, i.e., D cannot judge whether its input is real
samples or generated samples generated by G. At this point, it
can be assumed that G learned the distribution of real samples.

To enable the generator to learn on the data Xreal, random
noise z is fed to the generator G and a mapping of the data space
Xfake = G(z)) is generated. Immediately afterward, D com-
putes the probability that Xreal is the real samples from training
set and outputs a probability distribution P (S|X) = D(X) over
the input samples. Therefore, maximizing the log-likelihood of
its assignment to the right source is the ultimate aim of D

Fig. 1. Architecture of ACGAN employed in [29] for the HSI classification
task. y ∈ {1, 2, 3, . . . , n} denote the HSI class labels. n represents the number
of HSI classes.

L = E[logP (S = real|Xreal)]

+ E[logP (S = fake|Xfake)]. (1)

The use of side information applied to the GAN can effectively
enhance existing generative models, thus forming two means of
optimization. The first is to use auxiliary label information to
augment the original GAN, and train both the generator and
discriminator using labeled data, i.e., CGAN [46]. The CGAN
was developed to better control the GAN using side information.
It adds some prior conditions to the initial GAN model to
make the GAN more controllable. Specifically, CGAN adds
conditional constraint c to both G and D to guide the data
generation process. The second way is to directly reconstruct
the side information by modifying the discriminator to include
an auxiliary decoder network, thereby improving the generation
effect of the GAN, i.e., SGAN [47], [48]. Combining the advan-
tages of the aforementioned two approaches, the ACGAN [49]
shows that incorporating more architecture as well as specialized
loss functions in the latent space of the GAN yields high-quality
samples. The ACGAN is used in [29] for HSI classification; its
framework is shown in Fig. 1. The generator of the ACGAN
has two inputs, conditional constraint c and random noise z,
and outputs the generated dataXfake = G(c, z).D performs two
tasks simultaneously: to determine the probability distribution
of whether the input data is true or not and the probability distri-
bution of categories, P (S|X), P (O|X) = D(X). The objective
function of the ACGAN contains two parts, the first oriented to
the loss function of whether the data are true or not, and the sec-
ond part to the loss function of the data classification accuracy.
The ultimate objective function of the ACGAN consists of two
parts, LS and LO. Therefore, the objective function of D and G
is to maximize LS + LO and LO − LS , respectively .

LS = E[logP (S = real|Xreal)]

+ E[logP (S = fake|Xfake)] (2)

LO = E[logP (O = class|Xreal]

+ E[logP (O = class|Xfake)] (3)

whereLS andLO represent the log-likelihood of the exact origin
and categories, respectively.
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Fig. 2. Overview of the proposed HyperViTGAN for the HSI classification task.

B. Vision Transformer (ViT)

A ViT [37] is a convolution-free model proposed in 2020
to directly apply the transformer to image classification. The
ViT divides images into many equally sized patches and obtains
the patch embedding by a linear transformation. The specific
realization of the ViT is described as follows.

The 2-D image X ∈ RH×W×I is split into a sequence of
patches Xp ∈ RN×(P 2·I) in order to adapt the input of the
transformer, where N = H×W

P 2 denotes the resulting number of
patches and P 2 · I is the dimension of each patch. H , W , I , and
P represent height, width, number of channels, and the patch
size of the image, respectively.
E ∈ RP 2·I×d and Epos ∈ R(N+1)×d are a patch embedding

and a position embedding, respectively. The number of units
embedded in the spectrum is denoted by d. Xclass denotes a
learnable classification embedding. We prepend Xclass to the
sequence of embedded patches (h0

0 = Xclass), whose state at
the output of the transformer encoder (h0

L) serves as the patch
representation y [see (7)]. y is the patch representation of 1× n
dimensions, which is calculate by the multiple-layer perceptron
(MLP) head (classification head) including LayerNorm (LN)
and Linear layer. The ViT is dominated by MLP, multiheaded
self-attention (MSA) and LN modules. The embedded patches
h0 consists of a learnable classification embedding Xclass and a
1-D positional embedding Epos according to [50]. The architec-
ture of the ViT is as follows:

h0 = [Xclass;X
1
pE;X2

pE; . . . ;XN
p E] +Epos (4)

h′� = MSA(LN(h�−1)) + h�−1 (5)

h� = MLP(LN(h′�)) + h′� (6)

y = LN(h0
L, ) (7)

where E ∈ R(P 2·I×d), � = 1, . . . ,L.
The query, key, and value representation are represented by

the learnable matrices Wq ∈ Rd×dk , Wk ∈ Rd×dk , and Wv ∈

Rdk×dv , respectively. Equation (8) shows the calculation of a
single self-attention head (indexed by j).

Attentionj(X ) = softmax

(
QKT√

dj

)
V (8)

where Q = XWq , K = XWk, and V = XWv , X =
LN(h�), � = 1, . . . ,L represents the input of the transformer
encoder.

In (9), MSA in (5) integrates information derived from J
self-attention heads via concatenation and linear projection.

MSA(X ) = concatJj=1[Attentionj(X )]W (9)

where W ∈ Rdv×d denotes the transformation matrix.

III. METHODOLOGY

In this section, the diagram of our HyperViTGAN is first
illustrated in Fig. 2, and the design of the three cascaded ViT-
based operation (i.e., discriminator, generator, and classifier) is
then introduced. We introduce the following techniques to both
the discriminator and generator to make them apply well to the
highly accurate classification of HSIs:

1) design of hyperspectral discriminator and generator;
2) newly designed external classifier;
3) cross-layer adaptive fusion.

A. Discriminator Design

The discriminator of the ACGAN [29], [49] performs two dif-
ferent tasks at the same time, classification and discrimination,
so there are some flaws in the design of the two losses. First, a
discriminator of a single architecture cannot be optimal on two
different tasks at the same time. Second, the loss function de-
signed by the ACGAN forD is defective in generating minority-
class samples. This design causes minority-class samples to be
identified as fake samples by D. Therefore, the discriminator
always treats minority-class samples as fake, damaging the
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Fig. 3. Discriminator architecture of the proposed HyperViTGAN for HSI classification task. We take the HSI pixel points as input of D and perform a pixel
linear embedding. The positional embedding is added and the resulting vector sequence is fed into a standard transformer encoder. The diagram on the left shows
the model overview of D. On the right, we show the specific flow of the transformer block.

classification performance. Unlike the discriminator design in
the ACGAN, we design the hyperspectral discriminator (Hy-
perD) as a single output for the discrimination task only so
that the discriminator does not contradict itself. Ultimately, the
discriminator training is designed to maximize (10).

LD = E[logP (S = real|Xreal)]

+ E[logP (S = fake|Xfake)] (10)

where Xreal and Xfake = G(z) denote the real HSI patches
and fake HSI patches generated by the generator, respectively.
P (S|X) = D(X) represents the probability distribution of the
discriminator for the real HSI patchesXreal and fake HSI patches
Xfake.

The discriminator in our proposed HyperViTGAN is used
only to judge the source of the input HSI patches. D is trained
to maximize log-likelihood in (10) to its own ability to correctly
assign sources of HSI.

The architecture of the HyperD in HyperViTGAN is designed
based on [40]. HyperD is entirely a pure ViT-based network.
Unlike the discriminator in [40], HyperD only discriminates the
authenticity of the input and does not perform classification. The
overview framework of the discriminator is shown in Fig. 3.

Next, two main modules used in HyperD, cross-layer adaptive
fusion (CAF) and data augmentation, are introduced.

1) Cross-Layer Adaptive Fusion (CAF): Since the skip con-
nection in the transformer is only used in a single block, this
weakens the connections between different layers. Therefore,
the CAF module is introduced to strengthen the association
between different layers or blocks of the transformer [38]. A
diagram of the CAF is shown in Fig. 4. The CAF is a module
designed for learning cross-layer feature fusion, which uses
a middle-range skip connection (SC) mechanism. Let h�−2 ∈

Fig. 4. Diagram of CAF module [38]. (a) Architecture of the CAF module.
(b) CAF module in the HyperViTGAN.

R1×d and h� ∈ R1×d be the outputs (or representations) in the
(�− 2)th and (�)th layers, respectively. d is set to 128. CAF can
be then expressed by

ĥ� ← ẅ

[
h�

h�−2

]
(11)

where ĥ� is the integrated representation in the (�)th block
with CAF, and ẅ ∈ R1×2 represents the parameter for adaptive
fusion.

2) Data Augmentation: In order to reduce the GAN’s
memory and sensitivity to adversarial samples, we introduce
mixup [51] for data augmentation of real samples. Specifically,
the mixup mechanism trains the network model on convex
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combinations of paired samples and their labels in order to
regularize the network, which can increase the model’s ability
of generalize, and improve its robustness against adversarial
attacks. We then design the GAN by linearly superimposing the
real spectrometric characteristics by mixup during the training of
the discriminator to get the augmented data, which effectively
improves the generalization ability of the GAN on HSI. The
labels for the augmented HSI data were obtained based on the
calculation obtained in [51].

B. Generator Design

We followed the generator architecture in [40] to design a
hyperspectral generator (HyperG) for the HSI generation task.
Unlike in [40], we use HSI pixel embedding instead of patch
embedding. This design enables the generator to better adapt to
the hyperspectral data. The generator G generates samples that
can fool the discriminator D. For this purpose, the HyperG G is
trained to maximize as follows:

LG = E[logP (S = real|Xfake)]. (12)

G strives to enable the generated Xfake to be assigned by D
to a label belonging to class c, while the D aims to accurately
identify the Xfake as the new class of fake. Through adversarial
learning between G and D, G is able to generate fake data that
D cannot discriminate as real or fake.

In this section, we design a generator specifically for HSI.
A linear projection EG ∈ Rd×(B·p2

) is learned to generate HSI
pixel vectors. Note that p denotes the size of the each pixel in
the HSI cube, and p has a size of 1. E maps the d-dimensional
output embedding to the HSI patch of B × p× p. The sequence
of N = W×H

p2 HSI pixels [Xi
p]

N
i=1 ∈ Rp2×B is finally reshaped

to form a whole HSI patch X ∈ RW×H×B . The principles of
the generator are shown as follows:

h0 = Epos (13)

h′� = MSA(SLN(h�−1,w)) + h�−1 (14)

h� = MLP(SLN(h′�,w)) + h′� (15)

y = SLN(hL,w) = [y1, . . . ,yN ] (16)

X = [X1
p, . . . ,X

N
p ] = [fθ(Efou,y

1), . . . , fθ(Efou,y
N )] (17)

whereEpos ∈ RN×d denotes the patch embedding and positional
embedding unit in generator, i = 1, . . . , N represents the current
sequence, and w ∈ Rd is the intermediate latent embedding
from random vectorz.Efou ∈ Rp2·D andfθ(·, ·)denote a Fourier
encoding of p× p spatial locations and a two-layer MLP, respec-
tively.

The SLN in (14) is calculated by

SLN(h′�,w) = SLN(h�,MLP(z))

= γ�(w)� h� − μ

σ
+ β�(w). (18)

Among them, the symbol � is the element-wise dot product.
The mean and variance of the sum of inputs within the layer are
tracked by μ and σ, respectively. The adaptive normalization
parameters governed by the noise z is calculated by γ� and β�.

Eventually, the HSI pixel values Xi
p ∈ Rp2×B are mapped

from an HSI patch embedding yi ∈ Rd by an implicit neural
representation unit, as shown in (17).

It is worth pointing out that the CAF module is also used in
the design of the generator to strengthen the association between
different blocks and reduce the extent to which key information
is forgotten.

C. Classifier Design

While the design of a discriminator that performs both clas-
sification and discrimination tasks concurrently achieves an
excellent classification performance on the HSI classification
task [29], [32], such a design forces the discriminator to converge
to separate data distributions for both classification and discrim-
ination tasks, thereby corrupting the overall HSI classification
performance of the GAN-based model. GANs that share a single
architecture for classification and discrimination fail to solve the
HSI class imbalance problem properly, and the discriminator
is prone to associating fakes with minority-class(es), which
results in weak abilities to classify minority-class(es) samples.
Haque [52] used GAN and a semisupervised algorithm to supple-
ment the supervised classifier with artificial data. This algorithm,
named EC-GAN, was proved to be effective on small, realistic
datasets. It consists of three parts: generator, discriminator, and
classifier. The classifier does not share its architecture with the
discriminator, which avoids self-contradiction when performing
both discrimination and classification. Inspired by the afore-
mentioned problems, we designed a semisupervised ViT-based
cascaded external classifier C, called hyperspectral classifier
(HyperC), specifically for HSI classification.

LC = E[logP (O = class|Xreal)]

+ λE[logP (O = class|Xfake)] (19)

argmax(Xfake) = argmax(C(Xfake)) > t

where P (O|X) = C(X) represents the probability distribu-
tion of the classifier C to assign sample Xreal and Xfake to each
specific HSI class, denoted class; λ denotes the unsupervised
loss weight; and t is the confidence threshold of the pseudolabel
of Xfake.

In (19), the first term is supervised loss using real HSI samples
and real HSI labels. The second term is the unsupervised loss in
fake HSI samples and their corresponding pseudolabels. High-
quality fake HSI samples are selectively selected to supplement
supervised HSI classification. Due to the presence of the weight
λ, the fake samples do not contribute much to the model update
and classifier loss calculation. We set λ to 0.1 followed [52]. A
smaller λ ensures that the model still learns mainly from real
HSI samples, while the model is fine tuned using the high-
quality fake HSI samples. The selection of high-quality fake
samples is also critical to the training of the model. We followed
the design of [52] and [53] and employed a confidence-based
pseudolabeling scheme. The weak initial generation capability
of the GAN leads to generation of low-quality samples by the
generator. The pseudolabel confidence threshold t successfully
prevents low-quality samples from joining the training process
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TABLE I
LAND COVER OF THE HOUSTON 2013 DATASET, WITH THE STANDARD

TRAINING AND TESTING SETS FOR EACH CLASS

of the classifier model. As the generative power of the GAN
gradually improves with training, more and more high-quality
fake samples will be adopted into the GAN training process,
bypassing the confidence threshold t. The unsupervised loss is
obtained by calculating the fake samples and their corresponding
pseudolabels. Here, t is set to 0.7, following [52].

IV. EXPERIMENTS

In this section, three typical HSI datasets are briefly intro-
duced, followed immediately by the implementation details of
the state-of-the-art models used for comparison. Finally, plenty
of ablation and comparison experiments are shown to evaluate
both quantitative and qualitative HSI classification performance
of our HyperViTGAN.

A. Data Description

1) Houston 2013: This dataset was captured by ITRES
CASI-1500 on June 23, 2012 over the University of Hous-
ton campus and adjacent urban areas in Texas, USA [54]. It
comprises 349× 1905 pixels and has 144 wavelength bands
ranging from 364 to 1046 nm at 10-nm intervals. We reserved
only ten principal components of the Houston 2013 dataset as
spectral bands for our experiments using principal component
analysis (PCA) [55]. The Houston 2013 dataset we adopted is
a cloud-free version.1 Table I lists 15 classes of interest and the
division of training and test samples. Fig. 6 demonstrates the
color composite representation and the training and test samples
we used.

2) Indian Pines 2010: This dataset (see Fig. 7) was collected
on May 24 and 25, 2010 by using the ProSpecTIR system in a
region around Purdue University in West Lafayette, Indiana,
USA. A subset of 445× 750 pixels is used for our experiments,
which has a spatial resolution of 2 m, a spectral width of 5 nm,
and 360 spectral bands. Only ten principal components in the
Indian Pines 2010 dataset were retained as spectral bands using

1The data were provided by Prof. N. Yokoya from the University of Tokyo
and RIKEN AIP.

TABLE II
LAND COVER OF THE INDIAN PINES 2010 DATASET, WITH THE STANDARD

TRAINING AND TESTING SETS FOR EACH CLASS

TABLE III
LAND COVER OF THE XUZHOU DATASET, WITH THE RANDOMLY SELECTED

TRAINING AND TEST SETS FOR EACH CLASS

PCA. There are 16 land cover classes in this studied scene (see
Table II). Table II lists the class names and training and test
samples used in the experiments.

3) Xuzhou: This dataset was captured in November 2014 by
the airborne HYSPEX hyperspectral camera in the area around
Xuzhou, China. The spatial resolution of Xuzhou is 0.73 m/pixel
with 500× 260 pixels 436 spectral bands. Nine classes are
included in this dataset. It is worth mentioning that we use
PCA to reduce the number of spectral bands to ten principal
components for the Xuzhou dataset. Table III lists nine classes
and the division between training and test samples used for the
experiments. Ten samples are randomly selected from each class
to form the training set, and the rest constitute the test set. Fig. 8
illustrates the color composite representation of Xuzhou dataset
and its training and test samples.

B. Experimental Setup

1) Evaluation Metric: Three well-known evaluation metrics:
Overall accuracy (OA), average accuracy (AA), and Kappa coef-
ficient (k) are used to evaluate the HSI classification performance
of our HyperViTGAN and comparison models.
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Fig. 5. Generator architecture of the proposed HyperViTGAN for the HSI classification task. We follow [40] to replace the normalization with the self-modulated
layernorm (SLN) computed from the affine transform A learned from w. The diagram on the left shows the overall architecture of the generator for generating
HSI pixel points using random noise z. The right side of the diagram illustrates the details of the self-modulation operation applied in the transformer block.

Fig. 6. Houston 2013 dataset. (a) RGB composition. (b) Training set. (c) Test
set.

2) Comparision With State-of-the-Art Backbone Networks:
We have selected several well-known and representative al-
gorithms and models for comparing our proposed HyperViT-
GAN. They are KNN, SAE [56], CNN [57], SSRN [24],
RNN [21], ViT [36], SpectralFormer [38], EC-GAN [52], and
ViTGAN [40]. The parameters of these comparison models are
configured as listed in the following.

1) KNN: KNN with the nearest neighbor number of 10 is
used for HSI classification.

2) SAE: Three hidden layers are used to constitute the SAE,
with the number of neurons in layers one to three being

Fig. 7. Indian Pines 2010 dataset. (a) RGB composition. (b) Training set. (c)
Test set.

Fig. 8. Xuzhou dataset. (a) RGB composition. (b) Training set. (c) Test set.

32, 64, and 128, respectively. The activation function
used is rectified linear unit (ReLu).

3) CNN: Three 1× 1 2-dimensional convolutional layers
are used. The size of the neighbor region is set to 7× 7.
Based on [57], the dropout rate is set to 0.6.
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Fig. 9. Classification maps obtained on Houston 2013 dataset. (a) KNN. (b) SAE. (c) CNN. (d) SSRN. (e) RNN. (f) ViT. (g) SpectralFormer. (h) EC-GAN. (i)
ViTGAN. (j) HyperViTGAN.

4) SSRN: The kernel numbers of convolutional filter banks
are set to 28. The patch size is set to 7× 7 for a fair
comparison.

5) RNN: Two recursive layers with the GRU were used for
the RNN. There are 128 neurons in each recursive layer.

6) ViT: A ViT network architecture containing only the
transformer encoder is used, where the number of en-
coder blocks is 5.

7) SpectralFormer: Based on [38], five cascaded trans-
former encoder blocks with the embedded spectrum of
64 units are employed. The patch-wise SpectralFormer
version with patch input is adopted for HSI classification.

8) EC-GAN: Based on [52], a generator, a discriminator, and
an external classifier are employed to construct EC-GAN.
The generator and discriminator use the architecture of
the deep convolutional GAN (DCGAN) [58]. The patch
size is set to 8× 8.

9) ViTGAN: A discriminator and a generator are used to
build ViTGAN, where both the discriminator and the
generator are based on a five-block ViT architecture.

10) The proposed HyperViTGAN: For the proposed Hyper-
ViTGAN, a discriminator, a generator, and an external
classifier are used to construct HyperViTGAN, where the
discriminator, generator, and classifier are all designed
based on the five-block ViT for a fair comparison. Each
encoder consists of six attention heads, and the patch size
is set to 7× 7.

3) Implementation Details: All experiments were imple-
mented on the PyTorch platform with a laptop configuration
of Intel Core i7-10750H CPU, 16-GB RAM, and an NVIDIA
GeForce RTX 2070 Super 8-GB GPU. The learning rate of the
discriminator, generator, and classifier is set to 0.002. The epochs
set on the three datasets of Houston 2013, Indian Pines 2010, and
Xuzhou are 600. The Adam optimizer is used in HyperViTGAN
with a minibatch size of 64 [59], and β1 = 0.0, β2 = 0.99.

C. Ablation Study

Ablation experiments on three HSI datasets are used to val-
idate the contribution of the external classifier, as shown in
Table IV. The GAN without classifier employs the loss design of
D andG in [32], in which the architecture ofD andG is identical
to HyperViTGAN. Wang et al. [32] regard fake as a new class of
category outputs for the discriminator; its discriminator has only
a single classification output to perform both classification and
discrimination tasks. First, the HyperViTGAN with an external
classifier outperforms the GAN that only utilizes a discriminator
to perform both classification and discrimination tasks on OA,
AA, and k. Second, the external classifier design contributes the
most to AA. The proposed HyperViTGAN is superior to the
GAN with discriminators as classifiers by 0.12, 2.3, and 0.55
percentage points for AA on the Houston, Indian Pines, and
Xuzhou datasets, respectively. The number of each class in the
Houston 2013 training set is large and relatively uniform, but
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TABLE IV
ABLATION ANALYSIS OF THE PROPOSED HYPERVITGAN, WITH AND WITHOUT EXTERNAL CLASSIFIER

Note: Left value is evaluation metric of the proposed HyperViTGAN, followed by the evaluation metric of a GAN (same architecture as HyperViTGAN counterpart)
that performs both discrimination and classification tasks using discriminator.

TABLE V
CLASSIFICATION ACCURACIES OBTAINED FROM THREE DATASETS USING DIFFERENT CLASSIFICATION METHODS WITH LIMITED TRAINING SAMPLES

they are slightly different from each other. The Xuzhou dataset
has the same number of samples of each class in the training set.
The number of each class in the Indian Pines 2010 training set is
more unevenly distributed, with more severe class imbalance
problems. The HyperViTGAN we designed still maintains a
better AA, while the GAN with a discriminator as a classifier
performs poorly. The reason for this phenomenon is that when
using fake as the new class output of the discriminator, the
discriminator is prone to associate minority class(es) with fake
when the sample classes are unbalanced, thus jeopardizing the
accuracy of the minority class(es). Moreover, since the external
classifier designed in the HyperViTGAN is trained only on the
high-quality fake HSI patches generated by the generator and all
the real HSI patches, it avoids iterations of noisy HSI patches due
to the incorporation of low-quality generated HSI patches into
the training, which may damage the HSI classification perfor-
mance of the classifier. Therefore, performing the classification
task alone using external classifiers that do not share architecture
enables better utilization of the GAN for the HSI classification
task.

D. Classification Results With Limited Samples

In HSI classification tasks, the number of labeled samples
is not sufficient because the acquisition of labels is time-
consuming and costly. Therefore, models that can obtain supe-
rior classification results with a limited number of labeled train-
ing samples are more suitable for HSI classification tasks. To
this end, we perform experiments with limited training samples
(only ten samples per class are selected to constitute the training
set) to verify the classification performance of the proposed Hy-
perViTGAN and comparison models. For the Houston 2013 and
Indian Pines 2010 datasets, ten samples were randomly selected

from each class in the standard partitioned training set to form
the new training set, and the rest were used as the test set; for the
Xuzhou dataset, ten samples were randomly selected from each
class to form the training set, and the rest were used as the test
set. The classification accuracies obtained by the HyperViTGAN
and other comparison models on the three datasets are shown
in Table V. From Table V, we can observe that compared to the
classification results on the standard partitioned Houston dataset,
KNN, SAE, CNN, SSRN, RNN, ViT, SpectralFormer, EC-GAN,
ViTGAN, and HyperViTGAN decreased by 16.87, 7.34, 18.40,
14.99, 23.96, 13.08, 10.66, 15.39, 42.40, and 16.89 percent-
age points in OA, respectively. Subsequently, compared to the
classification results on the standard partitioned Indian Pines
dataset, KNN, SAE, CNN, SSRN, RNN, ViT, SpectralFormer,
EC-GAN, ViTGAN, and HyperViTGAN decreased in OA by
27.30,12.94, 16.58, 10.24, 18.38, 11.73, 10.60, 9.25, 45.41, and
7.94 percentage points, respectively. Both traditional algorithms
(e.g., KNN) and deep models show a very substantial decrease in
classification performance when the number of training samples
is reduced. When the HyperViTGAN is compared with other
GAN-based models (e.g., ViTGAN and EC-GAN), the OA
of the HyperViTGAN and EC-GAN using the same external
classifier with limited training samples decreases by 15.39 and
16.89 percentage points on the Houston dataset and 9.25 and
7.94 percentage points on the Indian Pines dataset, respectively.
Comparing ViTGAN trained with the standard partitioned train-
ing set with ViTGAN trained with limited training samples, the
OA of the ViTGAN decreases by 42.40 and 45.41 percentage
points on the Houston and Indian Pines datasets, respectively. In
particular, in the Xuzhou dataset with only 90 training samples,
HyperViTGAN and EC-GAN achieved the first and second OA,
respectively, compared to other models. This indicates that the
design of the external classifier is well adapted to the case of
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TABLE VI
CLASSIFICATION ACCURACIES OBTAINED FROM THE HOUSTON 2013 DATASET USING DIFFERENT CLASSIFICATION METHODS

Fig. 10. Classification maps obtained on Indian Pines 2010 dataset. (a) KNN. (b) SAE. (c) CNN. (d) SSRN. (e) RNN. (f) ViT. (g) SpectralFormer. (h) EC-GAN.
(i) ViTGAN. (j) HyperViTGAN.

limited training samples. It can be concluded that the GAN with
external classifier design is able to maintain the performance of
the GAN-based model with limited training samples.

E. Quantitative Results and Analysis

Tables VI–VIII show the running time in seconds and HSI
classification performance of all the compared algorithms in OA,
AA, k, and each land-cover class for the Houston 2013, Indian

Pines 2010, and Xuzhou datasets, respectively. The best results
are shown in bold in Tables VI–VIII. For the Houston 2013
data classification results listed in Table VI, the proposed Hy-
perViTGAN leads all traditional and deep models with absolute
OA (89.04%). Moreover, HyperViTGAN achieves the highest
accuracy on five land-cover classes, while KNN, SAE, CNN,
SSRN, RNN, ViT, SpectralFormer, EC-GAN, and ViTGAN
achieve the optimal accuracy on only 2, 0, 1, 3, 4, 0, 0, 0,
and 0 land-cover classes, respectively. HyperViTGAN greatly
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TABLE VII
CLASSIFICATION ACCURACIES OBTAINED FROM THE INDIAN PINES 2010 DATASET USING DIFFERENT CLASSIFICATION METHODS

TABLE VIII
CLASSIFICATION ACCURACIES OBTAINED FROM THE XUZHOU 2014 DATASET USING DIFFERENT CLASSIFICATION METHODS

improves the performance of the ViTGAN on HSI classification
tasks by 9.18 percentage points on OA compared to ViTGAN.
In addition, HyperViTGAN is 6.9 percentage points higher in
OA compared to SpectralFormer due to the excellent ability of
the GAN to solve the dilemma of limited training data in deep
models. For the Indian Pines 2010 dataset listed in Table VII,
HyperViTGAN outperformed the conventional KNN algorithm
by 3.65 percentage points in OA, respectively. Compared to
the deep models, the HyperViTGAN outperforms ViTGAN,
EC-GAN, SpectralFormer, ViT, RNN, SSRN, CNN, and SAE
by 0.18, 1.53, 2.56, 5.34, 3.92, 0.65, 4.64, and 0.43 percentage
points in OA, respectively. HyperViTGAN not only performs
best in OA compared to the other models but also achieves
the best accuracy on nine land-cover classes: it has the highest
number of classes and achieves the highest accuracy among all
comparison models. In addition, unlike the Houston and Xuzhou
datasets, the number of individual categories in the training set of
Indian Pines 2010 is unbalanced. Among the six least categories
in the Indian Pines 2010 training set (class No. 3, 8, 12, 14, 15,
and 16), the HyperViTGAN achieves the best accuracy in class
No. 3, 12, 14, and 15 compared to other comparison models.

We can notice that the HyperViTGAN can achieve superior
accuracy even when the training classes are not balanced. This
is due to the fact that the HyperViTGAN uses external clas-
sifiers alone for the classification task, avoiding the situation
that minority-class samples are likely to be identified as fakes
when the discriminator does both classification and discrimina-
tion tasks. At the same time, the HyperViTGAN continuously
generates fake HSI patches by adversarial learning between the
generator and discriminator and selects confident HSI patches
to expand the training set of classifiers. Thus, the HyperViT-
GAN can well solve the dilemma when the training classes
are not balanced. For the randomly divided training and testing
Xuzhou dataset (see Table VIII), the HyperViTGAN achieved
the highest OA, AA, and k compared to all the comparison
models.

By analyzing the quantitative experiments on the three
datasets, we can draw the following conclusions. First, the
proposed HyperViTGAN always achieves the highest OA, AA,
and k on all three datasets when compared to KNN, SAE, CNN,
SSRN, RNN, ViT, SpectralFormer, EC-GAN, and ViTGAN.
The HyperViTGAN also obtains the highest number of optimal
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Fig. 11. Classification maps obtained on Xuzhou 2014 dataset. (a) KNN. (b) SAE. (c) CNN. (d) SSRN. (e) RNN. (f) ViT. (g) SpectralFormer. (h) EC-GAN. (i)
ViTGAN. (j) HyperViTGAN.

accuracies on each individual land-cover class on the stan-
dard partitioned Houston 2013 and Indian Pines 2010 datasets,
achieving 8 and 9 optimal classification accuracies on the Hous-
ton 2013 and Indian Pines 2010, respectively. This finding
indicates that HyperViTGAN designed for the HSI classification
task is well suited to HSI data, and learns hyperspectral feature
information by considering HSI data as a sequence. Second, the
skip connection between different blocks of SpectralFormer and
HyperViTGAN always outperforms ViT and ViTGAN without
skip connections between different blocks in terms of OA, since
the design of establishing connections between different blocks
of the transformer effectively prevents the loss of critical infor-
mation, and thus, improve the model classification performance.
By establishing skip connections between different blocks to
preserve the shallow local low-level features and enhance the
deep high-level features, spurious gradient explosion and gradi-
ent disappearance problems are avoided. Third, further compar-
ing ViTGAN and HyperViTGAN, which are both based on GAN
and transformer frameworks, the HyperViTGAN outperforms
the ViTGAN on all three datasets owing to its strong generaliza-
tion and stability. Fourth, comparing the EC-GAN with the same
extra classifier with HyperViTGAN, the HyperViTGAN benefits
from the transformer and outperforms the EC-GAN in OA, OA,
and k in three HSI datasets. Finally, by observing the running
time in seconds in Tables VI–VIII, we can find that GAN-based
models commonly have longer running time compared to other

deep models, and the traditional KNN has the shortest running
time.

F. Visual Evaluation

Classification maps for the Houston 2013, Indian Pines 2010,
and Xuzhou datasets acquired by KNN, SAE, CNN, SSRN,
RNN, ViT, SpectralFormer, EC-GAN, ViTGAN, and Hyper-
ViTGAN are shown in Figs. 9–11, respectively. First, it can
be observed that the classification map of the deep models is
smoother and has fewer noise points compared to conventional
classifiers, such as KNN. Second, Fig. 9(i) and (j) illustrates
that the HyperViTGAN reduces the information loss well dur-
ing the learning process and displays more realistic details.
By looking at the classification graphs of the ViT, ViTGAN,
SpectralFormer, and HyperViTGAN, it can be concluded that
the transformer-based framework does not perform as well as
the transformer-based model with the CAF module in terms of
edge details and textures without skipping connections between
blocks. The model with the CAF module design is able to better
distinguish complex feature classes while having sharper edges
and fewer noise points in detail features.

V. CONCLUSION

The GAN can address the limitations of small training sam-
ples when deep models are applied for HSI classification. At the
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same time, as a new convolution-free novel network skeleton
transformer is yielding unusually brilliant results in the field
of image classification. For this purpose, then, we propose a
combination of the transformer and GAN in a novel semisuper-
vised network called HyperViTGAN for the HSI classification
task. Three well-designed cascaded elements, a hyperspectral
generator, discriminator, and classifier, are used for HSI patch
generation, discrimination, and classification tasks, respectively.
A skip connection component is employed to deliver memory-
like components and prevent key information. Data augmen-
tation is also used to strengthen model generalization and sta-
bility, in consideration of the instability of the GAN combined
with self-attentive mechanisms. Experimental results on three
well-known HSI datasets show that the HyperViTGAN exhibits
state-of-the-art classification performance through adversarial
learning and semisupervised learning on HSI classification tasks
compared to the best models available at present.
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