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Mapping Industrial Poultry Operations at Scale With
Deep Learning and Aerial Imagery

Caleb Robinson , Ben Chugg , Brandon Anderson, Juan M. Lavista Ferres , and Daniel E. Ho

Abstract—Concentrated animal feeding operations (CAFOs)
pose serious risks to air, water, and public health, but have proven
to be challenging to regulate. The U.S. Government Accountability
Office notes that a basic challenge is the lack of comprehensive
location information on CAFOs. We use the U.S. Department of
Agriculture’s National Agricultural Imagery Program 1 m/pixel
aerial imagery to detect poultry CAFOs across the continental USA.
We train convolutional neural network models to identify individ-
ual poultry barns and apply the best-performing model to over
42 TB of imagery to create the first national open-source dataset of
poultry CAFOs We validate the model predictions against held-out
validation set on poultry CAFO facility locations from ten hand-
labeled counties in California and demonstrate that this approach
has significant potential to fill gaps in environmental monitoring.

Index Terms—Concentrated animal feeding operations (CAF-
Os), convolutional neural networks (CNNs), deep learning,
National Agricultural Imagery Program (NAIP), poultry barns,
semantic segmentation.

I. INTRODUCTION

ONE of the most substantial environmental challenges
stems from modern agriculture. An area of specific con-

cern has been concentrated animal feeding operations (CAFOs),
which are intensive large-scale industrial farms that can pose
serious environmental and health threats. In 2008, CAFOs pro-
duced more than 50% of the total livestock in the U.S. [1]. The
number of CAFOs has continued to increase [2]; yet, obtaining
reliable information on the precise locations and prevalence of
CAFOs is difficult, due in part to litigation, limited regulatory
capacity, and permit evasion [3]. Indeed, the U.S. Government
Accountability Office noted that the Environmental Protection
Agency (EPA) “does not have comprehensive, accurate infor-
mation on the number of permitted CAFOs nationwide. As a
result, EPA does not have the information it needs to effectively
regulate these CAFOs” [4].

CAFOs present significant public health and environmental
risks. A single CAFO can produce more manure than a large city
of over 1 million people [4]. CAFOs produce more than 13 times
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the amount of human waste annually [6]. Such waste is often
inadequately handled, leading to the contamination of nearby
lands and waterways with pathogens [7], pharmaceuticals [8],
heavy metals [9], and hormones [10]. This causes nitrogen and
phosphorous runoffs, which severely affect water quality [11]
and result in algal blooms [12]. CAFOs are also associated
with air pollution. Living or attending school in proximity to
CAFOs, even at a distance of some miles, is associated with
reduced lung function and asthma [13], [14], [15]. Additional
public health impacts of CAFOs include the propagation and
incubation of disease and aggravating climate change [2].
Former Secretary of Energy Stephen Chu noted that agriculture
and meat production may be more consequential to climate
change than power generation [16], but such claims are hard to
validate without a systematic enumeration of facilities. These
challenges have given rise to recent work on automating CAFO
detection and monitoring [17], [18], [19], [20].

Here, we augment this existing work by taking a deep learning
approach to provide the first public, comprehensive, national
map of poultry CAFOs. Our approach is fully automated, open
source, and does not rely on the Census of Agriculture (CoA),
a limitation of some of the existing methods (see Section II).
Specifically, we employ a two-step modeling process. First,
we use high-resolution (1 m/pixel) four-band (RGB and near-
infrared) aerial imagery and poultry barn labels with an open
dataset from the Delmarva Peninsula to develop a convolutional
neural network (CNN) model. Second, we develop a rule-based
filtering methodology to remove false-positive predictions made
by our model. For instance, predicted poultry barns should fol-
low the distribution of shapes of the labeled barns observed in the
Delmarva Peninsula. Similarly, one of the main sources of con-
cept drift is that poultry barns are oriented toward the wind (due
to ventilation), and we use rotation augmentation to overcome
significant orientation differences across states. The advantage
of this approach is that it enables us to leverage the open and
high-fidelity Delmarva data when ground truth segmented data
can be expensive to acquire in new domains. We validate our
model by comparing its predictions to a hand-labeled dataset of
poultry CAFOs from ten counties across California, which were
not used in the model development. We show that our model
is able to obtain the recall of 87% and the precision of up to
83%.

Our contributions are fourfold:
1) a method for combining image segmentation with data

augmentation and object based filtering to scale CAFO
detection using a small set of ground truth labels;
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2) the first national open-source poultry CAFO dataset with
facility locations and size estimates based on building
footprints;

3) out-of-sample validation based on large-scale independent
labeling by a trained team;

4) results that demonstrate the potential for this approach
to detect CAFOs and uncover significant blind spots, for
instance, in the CoA.

We make all the detected facilities, the model, and replication
code available at https://github.com/microsoft/poultry-cafos/.

II. RELATED WORK

Our work touches on several strands of prior research. First,
there has been much success in applying CNNs to analyze
high-resolution satellite imagery, for both object detection (see,
e.g., [21] and [22]) tasks and semantic segmentation (see,
e.g., [23] and [24]). Applications stemming from this progress
have included ship detection [25], footprint extraction [26], and
wildfire detection [27], among others.

As noted above, there has also been work specifically aimed
at applying computer vision methods to CAFOs. Handan-Nader
and Ho [20] employed a CNN with hand-labeled imagery
collected by environmental interest groups over the course of
years to automate the mapping of poultry and swine CAFOs
across North Carolina. Their approach uses transfer learning
with a pretrained network (Inception V3) to classify image
tiles. Our work builds on this effort by moving from an im-
age classification to a semantic segmentation framework and
focusing on model generalization in order to scale our analysis
to the entire U.S. In contrast with a classification approach, the
semantic segmentation approach allows us to identify individual
barns and, thus, calculate barn-level features (such as area). Our
hypothesis is that an additional filtering step based on barn-level
features will improve the performance and generalization ability
of our approach (compared to an image classification approach)
because industrial poultry production is relatively homogeneous
regardless of geography.1

Maroney et al. [29] detect poultry operations in 35 counties
across seven southeastern states, using the ArcGIS Feature
Analyst [30], [31] on National Agricultural Imagery Program
(NAIP) 1 m/pixel aerial imagery. Feature Analyst proceeds by:
1) having the user to manually select a training set; 2) using
ensembled supervised learning (with a range of models, includ-
ing neural networks, decision trees, and k-nearest neighbors);
and 3) retraining after the user removes false positives. Patyk
et al. [32] augment this ArcGIS-based detection with probabilis-
tic estimates based on the CoA [33] to detect poultry operations
in almost 600 U.S. counties.

These efforts are promising, and our work builds and improves
on these efforts in several key ways. First, the modeling approach

1Poultry production in the U.S. operates under the paradigm of “vertical
integration,” meaning that there are a handful of large companies—integrators—
across the country responsible for contracting out the majority of production
to smaller farm operations. Integrators contractually require that production
facilities adhere to specific standards. This results in structurally similar poultry
barns across the country. See [28] for an overview.

by Patyk et al. relies on data from the CoA. The CoA, however,
is taken only once every five years, masks results in small
counties, and is based principally on a survey that is affected by
nonresponse and unknown farm locations [34]. We demonstrate
that our approach identifies significant blind spots in the CoA,
identifying counties with zero reported CAFOs that, in fact,
have a large number of CAFOs. Second, the proprietary ArcGIS
Feature Analyst system relies on manual inputs and provides
little detail on the exact model deployed for a task; this black box
nature makes replication, model verification, and improvements
difficult. Third, while Patyk et al. estimate locations for nearly
600 counties, the resulting data are not publicly available. We,
hence, provide CAFO locations for all 3000+ counties in the
U.S.

III. PROBLEM FORMULATION

We would like to perform an instance segmentation of re-
motely sensed imagery to identify individual poultry CAFO
barns over the continental U.S. We break this problem in two
steps:

1) a binary semantic segmentation of the remotely sensed
imagery into a “barn” and “background” class;

2) a supervised grouping of contiguous pixels classified as
“barn” into barn objects.

Formally, we are given a dataset of N labeled multispectral
images and corresponding label masks, D = {(Xi, Yi)}Ni=1.
Xi ∈ Rh×w×c denotes the imagery, where h and w are the pixel
height and width, respectively, and c is the number of spectral
bands. Yi ∈ {0, 1}h×w denotes the label, with 1 denoting a barn
and 0 background.

Step 1 is a standard supervised learning problem, in which we
aim to learn the parameter, θ, of a semantic segmentation model
f(Xi; θ) = Ŷi that produces a probabilistic estimate of whether
each pixel in an input image is part of the foreground “barn”
class, Ŷi ∈ [0, 1]h×w. Step 2 is less standard in machine learn-
ing and involves aggregating contiguous groups of predicted
foreground pixels into objects, O, and then classifying each of
these objects as a “barn” or not in terms of their object-level
features. We engineer or extract d features per object (e.g.,
the object’s area), Oj ∈ Rd, which allows us to incorporate
accessory data, besides the multispectral imagery, at the object
level. The classification step can be done through hand-crafted
rules, or, for example, by gathering object-level labels, Y object

j ,

and training a classifier, g(Oj ;φ) = Ŷ object
j .

While it is in principle possible to build an end-to-end model,
we believe there are strong practical reasons to keep object-level
detection as a separate step. First, manual rules can leverage
expertise on CAFOs (e.g., dimensions, features, and geography).
Such rules are transparent, easily scrutinized, and are readily
modifiable by future research terms if needed. Second, encoding
object-level features (e.g., predicted CAFO area and aspect
ratios) would be less straightforward as these features depend
on the output of the model. Third, the computational burden is
extensive for end-to-end approaches. Keeping recall high at step
1 and inspection false positives at step 2 enables a rapid discovery
of filters. This is particularly the case when our training data

https://github.com/microsoft/poultry-cafos/
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Fig. 1. Locations of poultry barns from the Delmarva dataset [5].

may not cover all the areas that reveal systematic false positives.
That said, future work investigating an end-to-end approach
would be valuable. Such approaches might 1) add an additional
image channel for each additional feature, similarly to CNNs
for structured data [35] or 2) add a separate network for the
metadata, connecting its output with that of the CNN with
additional layers (see, e.g., [36]).

In the following sections, we describe the datasets we use,
the different modeling approaches for the two steps, and exper-
iments to validate our modeling choices and final dataset.

IV. DATA

In this article, we use aerial imagery from the U.S. Department
of Agriculture’s NAIP imagery, the Soroka and Duren dataset
of poultry barn polygons from the Delmarva Peninsula [5], a
dataset of CAFO facility polygons from an internal validation
process, and road network data from OpenStreetMap (OSM).

A. NAIP Imagery

The NAIP imagery has a 0.6–1 m/pixel spatial resolution,
RGB and near-infrared channels, and is collected on a state-by-
state basis once every three years in the U.S. For consistency, we
use the most recent 1 m imagery per state, as not all the states
have transitioned to 0.6 m/pixel imagery. The resulting imagery
dataset is substantial in size (>42 TB) and has the advantage
of providing comprehensive coverage of the U.S. at high spatial
resolution.

B. Delmarva Data

The Delmarva data were produced by the U.S. Geological
Survey Chesapeake Bay Studies program to study disease trans-
mission from migratory birds to farms. It consists of 6013

poultry barn polygons from NAIP 2016/2017 aerial imagery
over the Delmarva Peninsula (containing portions of Virginia,
Maryland, and Delaware) [5]. We augment these data using
the methodology described by Robinson et al. [18] to create
estimated construction dates back to 2010/2011 for each poultry
barn. Fig. 1 depicts the region and instances of the Delmarva
data.

C. Validation Data

In a separate project examining environmental and public
health dimensions of CAFOs in California, we developed an
active-learning-based approach to find CAFO facilities of any
type or confirm where CAFO facilities exist. We scanned ten
large agricultural counties in California, yielding a validation
dataset of 8869 polygons. Each polygon is labeled as “empty”
or with the type of CAFO as determined by expert annotators.
In contrast to the Delmarva data, the polygon contains the entire
facility, including areas that are not the barn. Appendix A pro-
vides more detail on the data labeling process. Because there are
substantial changes in the landscape, surroundings, and adjacent
facilities in different regions, we use these validation data as a
tough test for our approach to generalize to an agricultural setting
that is quite distinct from Delmarva.

D. OSM Data

Street data are particularly useful for our object-based
filtering for two reasons. First, CAFOs require access to major
roads for the distribution of livestock or livestock products.
Second, roadways can themselves be visually similar to CAFO
barns (see Appendix C), and road networks are, hence, valuable
to filter out false positives. We download all road network
location data in the U.S. from OSM using theosmnx library [37]
and incorporate these data as we describe in the following.
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Fig. 2. Example of our temporal augmentation method. We have labeled data (i.e., pixel masks) and aerial imagery for poultry barns at time t; however, we also
have historical aerial imagery and know many barns will have existed before t. With our single training strategy, we use imagery and masks from just t, with all
we use imagery from all time points and assume that the same masks apply, and with augmented, we use an unsupervised method to determine the previous points
in time that the masks are valid for. At “Site A,” both all and augmented will allow us to train with four additional labeled samples in different imaging conditions.
However, at “Site B,” the all strategy will introduce noisy labels, while the augmented strategy will correctly identify that only the imagery at t− 1 contains a valid
mask for training.

V. METHODS

A. Supervised Model Training

We implement Step 1 from the problem formulation (see
Section III) by training U-Net models [38], to segment NAIP
imagery into “barn” and “background” classes. Despite the
success of some image classification approaches on aerial im-
agery [39], [40], [41], we chose an image segmentation approach
because it enables easier rule-based filtering (see Step 2). We
do not pursue few-shot segmentation (see, e.g., [42]) because
we have sufficient training data. We use a ResNet-18 encoder
as implemented in the segmentation-models-pytorch
package [43]. We split the Delmarva Peninsula spatially into
a northern training area and a southern testing area (roughly
75% and 25% of the total area). We further use a 7× 6 km2

area from the training area as a validation set. We do not use a
fixed dataset of pre-extracted patches during training, but instead
sample patches of size 256× 256 pixels from imagery covering
the training area. As only 0.1% of the training area contains
positive “barn” masks,2 we weight the sampling procedure by
randomly discarding a patch with probability α if it does not
contain an instance of a positive label. Intuitively, lower values
of α result in training on more background pixels, while higher
values ofα result in training on a more balanced dataset. A value
of α ≈ 0.999 would correspond to a class-balanced dataset.

Given that we only have labeled data from the Delmarva
Peninsula—but would like to apply a trained model over the
entire U.S.—our main concern is that our models will not be
exposed to sufficient variation in the data during training and
will, thus, fail to generalize when applied to imagery through-
out the country. While poultry barns are relatively standard in
appearance regardless of location, their relationship with their
surroundings and their orientations can and do vary with loca-
tion. Furthermore, the NAIP imagery itself varies considerably

2The training area covers ∼ 14.091 km2, while the area of poultry barns in
the training area is 13.190 km2.

across states due differences in the time of year, day, and environ-
mental conditions of image capture. For example, Fig. 2 shows
NAIP imagery for two locations at five points in time—there are
considerable nonsemantic differences between the images due
to the different imaging conditions.

Considering this, we train the models with random rotation
augmentation (and random horizontal/vertical flips) to account
for shifts in the distribution of poultry barns’ orientations. More
generally, training with rotation augmentation, or using rotation
equivariant networks [44], [45], is a necessary component of
modeling pipelines that use remotely sensed imagery as objects
in remotely sensed imagery can be observed in any orientation.

1) Temporal Augmentation: We also train with temporal
augmentation to account for differences in NAIP imagery. This
method involves pairing multiple years of NAIP imagery over
the training area with a single layer of labels. For example, the
Soroka and Duren dataset was created with NAIP imagery from
2016 and 2017 (depending on the state), so without temporal
augmentation, we would train on a dataset consisting simply of
pairs (Xt, Y t), where t represents the 2016/2017 layer. How-
ever, we also have NAIP imagery of the Delmarva Peninsula
at the same resolution dating back to 2010. With temporal
augmentation, we can use the fact that many labels will not
change over time and augment our training set with samples of
the form (Xt−k, Y t) for offsets, k, that point to valid years of
NAIP imagery. While this is a strong assumption, it allows us
to expose the model to more variance in the NAIP imagery at
the cost of introducing label noise during training. We further
use the unsupervised method described in [18] to estimate the
construction dates of each poultry barn to avoid augmenting
with imagery samples before the construction of the labeled
barn. Specifically, we create three versions of our training data,
corresponding to different levels of temporal augmentation:

1) single, which only uses the 2016/2017 Delmarva labels
paired with the corresponding NAIP 2016/2017 imagery;

2) all, which pairs the Delmarva labels with all valid NAIP
imagery back to 2010;
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TABLE I
SIZE OF THE DIFFERENT TRAINING SPLITS (DESCRIBED IN SECTION V-A), THE

TESTING SPLIT, AND THE FULL U.S. IMAGERY (USED IN SECTION VI-C)

3) augmented, which uses estimated construction dates from
an unsupervised model to pair the Delmarva labels with
appropriate imagery (i.e., in which the labeled poultry
barns existed in) back to 2010.

See Fig. 2 for an example of the samples selected by these
three approaches. We apply each of these methods to create three
training datasets, but keep the test labels fixed to their 2016/2017
imagery. See Table I for the size of each set.

We train all the models with a pixelwise cross entropy loss,
an initial learning rate of 0.01 using the AdamW optimizer [46],
and learning rate decay that drops the learning rate by a factor of
10 on training loss plateaus. We compare models trained: with
and without filtering (described in the following section); with
values of α ∈ {0.05, 0.1, 0.5}; with the three different measures
of temporal augmentation (single, all, augmented); and with
and without rotation augmentation. In all the cases, we perform
model selection based on validation set performance.

B. Object-Based Filtering

The second step of our approach aims to incorporate data,
such as a vector road map, that is not possible to directly use
in the semantic segmentation model from the first step. Here,
we group the per-pixel outputs of the semantic segmentation
model to create objects and then classify these objects as “barns”
or not based on object-level features. Specifically, given the
probabilistic output of a semantic segmentation model over a
large area, Ŷ , we first threshold the output to create a binary
“barn” prediction per pixel. The threshold value used can be
tuned over a held-out validation set to achieve a desired point
on the precision/recall curve. Next, we group contiguous sets
of pixels predicted as the positive “barn” class into objects (or
polygons in geographic space) using a polygonize operation3

with a 4-pixel neighborhood. We then compute the following
set of features for each object/polygon.

1) Area: We compute the minimum rotated rectangle [48]
that fits the group of pixels and record the area of this
rectangle as the area of the predicted “barn.” A mini-
mum rotated rectangle for a given polygon is the smallest
rectangle with at least one edge coincident to an edge
from the polygon. Such a rectangle can be determined

3A search is performed over predicted pixels to group each contiguous set of
pixels into a polygon using the rasterio package [47].

in O(n) time, where n is the number of vertices in the
given polygon [49].

2) Aspect ratio: We again compute the minimum rotated
rectangle and record the ratio of the length of longer side
of the rectangle to the length of the shorter side.

3) Road distance: We compute the distance from each object
to the nearest road in the OSM database of public and
private roads over the U.S.4

We use these features to create a rule-based classifier using
the range of the same features computed over the Soroka and
Duren polygons (see Fig. 3 ). Any object that has an area outside
of the range [525, 8106] m2, an aspect ratio outside of the range
[3.4, 20.49], or is immediately intersecting with a road in the
OSM data is classified as background. In contrast, any object
that fits these criteria is classified as a poultry barn. Another way
of interpreting this method is a filtering step that aims to discard
groups of false-positive predictions made by the segmentation
model. The segmentation model naively operates on image-
based data with pixel-level supervision without a direct way to
incorporate higher order labels such as the distribution of aspect
ratios of known poultry barns or road network vector data. These
features are useful in modeling, and while we used a rule-based
classifier with three features in this article, the classifier could
be learned using labeled data over a more in-depth object-based
feature representation.

VI. EXPERIMENTS AND RESULTS

A. Evaluation

To evaluate a model, we run the model over the entire test area
and then group contiguous sets of predicted poultry barn pixels
into objects. We consider an object as a true positive prediction
if it has greater than a 50% intersection over union (IoU) with a
labeled barn. Similarly, an object is a false positive if it does not
have a 50% IoU with a labeled barn, and a labeled barn is a false
negative if no predicted object is counted as a true positive with it.

We evaluate performance using precision, recall, and the F 2

score. We choose the F 2 metric to more heavily weight recall
in the model evaluation as it is possible to reduce the number
of false positives in postprocessing; however, it is not possible
to reduce the number of false negatives (i.e., find new objects).
This point broadly applies to object detection models being run
over large amounts of satellite imagery—there is a much higher
cost of missing a potential object of interest than that of making
a false-positive prediction.

B. Results

Table II summarizes our main results for model variants
trained with rotation augmentation. The table presents perfor-
mance measures based on the model’s raw predictions (un-
filtered columns) and predictions after applying our proposed
object-based filtering method (filtered columns), varying α, and
temporal augmentation in rows. Results are sorted by the F 2

score of filtered models.

4For more details about performing this computation at a national scale, see
Appendix B.
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Fig. 3. Distributions of properties of the poultry barns in the Delmarva dataset. (a) Distribution of the aspect ratio of poultry barns (ratio of the length of the long
side of the barn to the length of the short side of the barn). (b) Distribution of the area of poultry barns. (c) Distribution of the orientations of poultry barns.

TABLE II
TEST RESULTS OF MODELS TRAINED WITH ROTATION AUGMENTATION

1) Impact of Filtering: We find that the filtering step is
highly effective based on rules derived from the training set
statistics. On average (over the rows of Table II), recall decreases
by 3.29, while precision increases by 52.27. This underscores
the substantial utility of expert-based rules in complementing
CNN-type approaches.

2) Impact of Temporal Augmentation: We also observe that
the U-Net trained with temporal augmentation and an α value
of 0.05 performs the best in terms of the filtered F 2 score.
Overall, “augmented” data with lower values of α, correspond-
ing to including a higher proportion of background imagery,
result in better performance. We also observed in our train-
ing process that methods trained with some type of temporal
augmentation appear to generalize better than those without
temporal augmentation—despite potentially introducing noise
into the training process.

3) Impact of Rotation Augmentation: We observe a distinct
rotation bias in our labeled dataset, where most barns have an

East–West orientation (panel C from Fig. 3). The reason for
this rotation bias lies in ventilation. Among growers, one piece
of received wisdom is that “longest side of your pen, that is, the
breadth, should face the prevailing direction of the wind.”5 Of
course, wind direction can differ dramatically across regions,
so the ability to generalize will be affected by this rotation.
Because our training and testing data are from the same area,
we do not observe any significant differences between models
trained with and without rotation augmentation on our fixed test
set. To demonstrate the positive effect of rotation augmentation,
we conduct a further experiment with test-time augmentation,
where we crop a patch of imagery around each poultry barn
in the test set, and then test each model on all possible 45◦

rotations of these images. The average difference in recall
between models trained with and without rotation augmentation

5[Online]. Available: https://www.justagric.com/poultry-house-
construction-guidelines/

https://www.justagric.com/poultry-house-construction-guidelines/
https://www.justagric.com/poultry-house-construction-guidelines/
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Fig. 4. Distributions of orientations of predicted poultry barns by state. (Left) Pennsylvania. (Middle) West Virginia. ( Right) Mississippi.

Fig. 5. Density rendering of our filtered version of predicted poultry barn locations over the U.S. colors range from 0 barns in a 10-km2 radius (transparent) to
100 barns in a 10-km2 radius (dark red).

is 22.32, while the best model with rotation augmentation
shows a 27.47 improvement in recall over its nonrotation
augmented counterpart. In other words, if poultry barns are
oriented randomly over a landscape, the models with rotation
augmentation will identify 22.32% more poultry barn pixels than
the models without rotation augmentation. As expected, we find
that other states in the U.S. (outside of the Delmarva Peninsula)
have different distributions of orientations. For example, Fig. 4
shows the distribution of orientations of predicted poultry barns
in Pennsylvania, West Virginia, and Mississippi.

C. Out-of-Sample Inference and Validation

1) Inference: We create a U.S.-wide map of predicted poultry
CAFO locations by applying the best-performing model over
42 TB of the most recent 1 m/pixel NAIP imagery from each state
in the continental U.S. This computation was run on Microsoft
Azure, specifically with an NC24v3 virtual machine6 that was
located in the same cloud region as the NAIP imagery. The NAIP

imagery is broken up into 212 354 tiles, each of which is ∼
8500× 7000 pixels, for a total of ∼ 13 trillion pixels. We create
a grid of 256× 256 patches with 64 pixels of overlap between
neighboring patches from each tile of NAIP imagery, run the
model to compute the per-pixel class probability estimates for
each patch of imagery, and then stitch together the resulting
predictions while averaging the class predictions in overlapping
areas. The process of averaging predictions along the edges of
tiles serves to reduce any border artifacts caused by zero padding
within the model [50]. We performed this process 4× in parallel
(one process for each GPU on the virtual machine) for a total
run time of approximately 2.5 days. This results in 7 108 719
predicted barn polygons before filtering and 360 857 predicted
barn polygons after the filtering step. A density rendering of the
predictions is shown in Fig. 5.

2) Out-of-Sample Validation: We compare our final filtered
set of poultry CAFO barn predictions to the out-of-sample

6The NC24v3 virtual machine type contains four NVIDIA V100 GPUs.
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TABLE III
ABLATION RESULTS

Fig. 6. Comparison of our U.S.-wide model predictions with the CoA data at a county level. (Left) Scatter plot showing the number of poultry layer operations
with ≥ 10 000 heads reported by the CoA to the number of predicted barns per county. We highlight Sussex and Robeson counties as extreme examples, where
the CoA is missing data (see Fig. 7). (Middle) Spearman’s correlation coefficient between the number of poultry layer operations over different size categories
and our number of predicted barns per county. The correlation is highest for the subset of operations with ≥ 10 000 heads (i.e., the plot shown in the left panel)
indicating that our model is picking up on larger operations. (Right) Spearman’s correlation coefficient between the number of poultry operations from subsets of
counties with increasing coefficients of variation (CV) as reported by the CoA and our number of predicted barns per county. Our predicted number of barns are
highly correlated with the CoA data over the subsets of counties that the CoA data have the most certainty in.

validation dataset described in Section IV and Appendix A.
This dataset covers ten counties in California and consists of
facility-level annotations (not barn polygons) for all types of
CAFOs, as well as “empty” annotations for polygons that have
been confirmed to not have any CAFOs in them.

We count true positives as predictions that are within 100 m
of a validated poultry facility and false positives as predictions
that are not within 100 m of any validated poultry facility. For
computing recall, we evaluate predictions within the validated
area, where false negatives are validated poultry facilities that do
not have a prediction within 100 m. We apply this methodology
over all the ten counties and achieve a recall of 86.90% and a
precision of 83.02%.

D. Comparison With Other Methods

We run an ablation study on model architecture, comparing
the original U-Net architecture we use to more modern U-
Net++ [38], DeepLabV3+ [51], and MA-Net [52] architectures.
In this experiment, we use identical hyperparameters to the best-
performing model from Table II—training with the augmented
training set, setting α = 0.05, the same decaying learning rate
schedule, etc. From Table III, we observe that the DeepLabV3+
architecture results in very similar performance to the U-Net,
while the MA-Net architecture has significantly improved pre-
cision and slightly improved recall—even after filtering. This

suggests that the MA-Net approach is able to eliminate some
classes of false positives that are not captured by the filtering step
and represents a promising direction for improving performance
on the task of detecting poultry barns. The U-Net++ approach
does not converge under the same training parameters.

We also compare to the state-of-the-art (open-source) results
in detecting CAFOs from Handan-Nader and Ho [20], who
use a tile classification approach to detect CAFOs. We ran
their pretrained model in the Delmarva Peninsula on images
centered on existing poultry barns and obtained a recall of
93.72% and a precision of 71.16%. Note that this is a drop
of 16 percentage points in precision compared to our model.
Moreover, their model’s performance drops significantly when
images are not centered around the facility (but instead tiled over
the entire study area) with recall dropping to 54%, almost 40
percentage points lower than our method. Fig. 6 also compares
our method with the status quo, i.e., the CoA. There we find
several counties whose numbers in the CoA differ drastically
with our predictions.

VII. IMPLICATIONS

Our study has substantial implications for environmental re-
search and governance. First, we have generated and released the
first open-source national map of poultry CAFOs, which can be
used for environmental research, monitoring, and enforcement.
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Fig. 7. Example model predictions (highlighted in blue) from two counties that the CoA reports zero poultry operations in. (Left) Twenty-four predicted poultry
barns with NAIP 2017 imagery over a 2.6-km2 area from Sussex County, Delaware. (Right) Ten predicted poultry barns with NAIP 2016 imagery over a 3.1-km2

area from Robeson County, North Carolina.

Fig. 5 shows a heatmap of the filtered version of the predicted
poultry barn locations over the U.S. This dataset includes a
polygon for each predicted poultry barn with attributes including
the properties used in the filtering step, the average modeled
probability over the pixels in the polygon, and the timestamp of
the imagery that the predictions were generated from. We have
released both the sets of filtered and unfiltered predictions for
future work to build on.

Such a map has a myriad of potential use cases. Epidemiolog-
ical researchers can examine the impact of livestock agriculture
of disease spread [5]. Environmental interest groups can use such
information to disseminate and monitor specific facilities [53]. In
2014, Earthjustice, for instance, filed a petition with EPA about
disparate impact of CAFO permitting in North Carolina [54].
Government agencies can use such information to prioritize
inspections and understand permitting failures [3], [55]. For ex-
ample, the EPA estimated that nearly 60% of CAFOs do not hold
permits [56]. The national map also enables risk scoring facilities
based on the proximity to waterways, vulnerable communities,
and other potential environmental impacts.

Our approach can also significantly reduce the time currently
spent on manually scanning for such facilities by providing a
set of likely poultry barns with high recall. The U.S. contains
over 4 million km2 of agricultural and pastoral land [57]. While
constructing the out-of-sample validation set, we found the
task of CAFO identification to be nontrivial even to a human
validator, requiring 90 s on average for specialists at a third-party
company to label a square kilometer image. At this rate, we can
estimate that it would require approximately 100 000 h of human
effort to cover the U.S. For states and environmental groups,
humans scanning satellite imagery took three or more years to
complete a single state [20].

Second, our results illustrate major limitations in the CoA, due
to coverage gaps, high nonresponse rates, and, even, internally
contradictory data [34], [58]. The left panel of Fig. 6 plots

the detected number of barns by our model per county against
the number of operations with over 10 000 heads of layer
chickens reported the CoA. While the two are indeed correlated
(Spearman’s rank-order correlation coefficient is 0.38), there are
many deviations, particularly in counties where the CoA reports
no poultry operations at all. For instance, the CoA lists both
Robeson County, North Carolina and Sussex County, Delaware,
as having no poultry operations with over 400 heads. In both
the counties, however, our model detected thousands of poultry
barns, which we have validated through the visual inspection
of the NAIP imagery (see Fig. 7 for examples from both the
counties). Both the counties also have been previously reported
as containing large CAFOs [59], [60], [61].

The middle panel of Fig. 6 plots the Spearman’s rank-order
correlation coefficient between the number of barns predicted
by our model per county against counts from the CoA based on
different poultry operation size thresholds. This shows that the
two approaches are most highly correlated with mid- to large-
sized CAFOs. Finally, the right panel compares the number of
barns predicted by our model to the CoA count of total operations
for subsets of counties based on different uncertainty thresholds
reported by the CoA. The CoA reports a coefficient of variation
(CV) for each point estimate at the county and state levels, where
smaller values represent less uncertainty, with attempts to adjust
for the undercount of facilities [62]. We collect the subset of
counties corresponding to increasing CV value cutoffs and find
that our predictions are highly correlated with the CoA operation
counts for counties that the CoA has less uncertainty.

These results show that prior methods to map CAFOs that
rely on the CoA may inherit the same coverage gaps. Most
promisingly, our approach provides an independent enumeration
of CAFOs, without relying on self-reported information by
producers. This study also illustrates how advances in computer
vision can supplement areas where administrative data have
fallen short [63], [64].
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Third, our results illustrate advantages to a hybrid approach
that leverages the segmentation of regular objects (barns) and
expert-based heuristics. Earlier approaches that classify image
tiles grapple with centering the CAFO facility in the image and
may be sensitive to changes in the background, which could
change significantly across U.S. regions (e.g., arid versus humid
landscapes). For instance, the image classification model by
Handan-Nader and Ho results in recall of 93.72% and 71.16%
precision in Delmarva. This is a drop in 16 percentage points
in precision. But that model’s performance drops significantly
when images are not centered around the facility, with recall
dropping to 54%. This suggests that image segmentation is a
far more efficient by requiring inference on fewer overlapping
image tiles.

In short, focusing on the key object of the distinct poultry
barn and combining expert-based heuristics (e.g., aspect ratio of
barns, proximity to road for distribution, and wind orientation
of barns) can enable efficient learning with much lower costs in
labeling and inference.

VIII. LIMITATIONS

While this study has made a major advance toward an open-
source national poultry CAFO map, we spell out several limita-
tions and opportunities for further work.

First, the precision of our results varies by geography. From
a qualitative error analysis, the most common class of false
positive are predictions on roadways that are not covered by
OSM data and predictions on other linear features that are not
included in our current filtering step (e.g., railways). See Ap-
pendix C for examples. A future avenue of improvement could
involve obtaining more comprehensive road data to increase the
efficiency of our proximity filter. A tradeoff with this approach,
however, is that more comprehensive datasets (e.g., datasets
from ESRI or Google Maps) are not open source. Another
alternative would be for researchers to tailor the filtering step to
improve the precision based on local knowledge. Future work
might also treat the filtering step as an independent learning
problem, in which we attempt to learn the distribution of false
positives and correct for it.

Second, while our out-of-sample validation yields strong re-
sults, it is not possible to calculate the precision where California
data were not labeled. Since those labels resulted from an active
learning model to ensure 80% recall of facilities—i.e., human
labelers did not visually inspect 100% of each county—it is
possible that our precision is biased. If a predicted polygon is
outside of the validated area, we cannot tell whether it is a false-
positive or a true-positive prediction, as it could be a poultry
facility that was missed in the validation data. If we assume that
all predictions outside of the validated areas are false positives,
this yields an extreme lower bound on precision of 18.84%.
The large discrepancy between precision based on overlapping
imagery and this lower bound suggests that either our model
has a high false-positive rate and/or there are missing facilities
in the validation data. Qualitatively, we find a mix of both
the effects, with the model making false-positive predictions in
desert areas around San Diego, but also identifying likely poultry

facilities missed in the validation data. These results suggest that
combining sources information will be most promising for a full
enumeration of CAFOs.

Third, our approach has focused specifically on poultry
CAFOs and has not examined cattle or hog CAFOs. The reason
is that poultry CAFOs are visually distinguishable by the barn,
whereas distinguishing hog facilities requires the identification
of the manure storage system, and cattle CAFOs can rely exten-
sively on outdoor feedlots. A next natural step would be to extend
our approach to hog facilities that typically have, for instance,
different aspect ratios.

Fourth, while we demonstrate substantial gains from object-
based filtering, there may be other object-level features that
can help improve performance. The main challenge here lies
in whether such data are comprehensively available across the
continental U.S. and validating filters based on such data. For
instance, in an earlier iteration, our team attempted to crop-
land layer data, but, surprisingly, found that such data did not
significantly help in classifying CAFOs. Advances in weak
supervision may help to improve the development of such
heuristics [65].

Finally, we note that like all machine learning models, we are
constrained by our ground truth data. Consequently, it is unclear
how robust our method will be to changes in the imagery over
time or to changes in CAFO construction standards. While we
have applied temporal augmentation to our training data (see
Section V) to combat some of these temporal effects in past, we
are not immune from such changes in the future. In particular, it
may be harder to directly apply our model to time series of NAIP
imagery, as the resolution itself changes, and applicability to
more real-time (higher cadence) imagery will require adaptation
to lower spatial resolution (see, e.g., [19]).

Notwithstanding these limitations, our findings show that this
hybrid approach makes a substantial advancement in the large-
scale detection of CAFOs in a transparent open-source fashion.

IX. CONCLUSION

In this article, we provided the first freely available dataset
and corresponding open-source model aimed at locating poultry
CAFOs across the continental U.S. We hope that this work pro-
vides an initial step toward improving the regulatory capacity of
federal and state environmental agencies—filling blind spots in
the CoA and permit records from state authorities—as well as the
research capacity of academics and the ability of environmental
interest groups and the public to monitor these consequential
facilities.

APPENDIX A
VALIDATION DATA

Using a YOLOv3 model [66] built for a separate project, the
inference was run over California to detect CAFOs of any type
(swine, dairy, and poultry). The predictions were then validated
using a team of trained annotators (Stanford undergraduate
students), employing an active learning approach based on upper
confidence bound (UCB) sampling [67] to reduce the necessary
number of images to check.
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Each detected facility is assigned a score in [1,∞), represent-
ing the model’s confidence in the prediction. We partition the
space [1,∞) into K discrete buckets B1, . . . , BK , each bucket
Bi associated with an interval [ai, bi)where∪i[ai, bi) = [1,∞).
Bucket Bi contains those images containing a facility with
a score in the interval [ai, bi). If an image contains multiple
detected facilities, it is placed in the bucket associated with
its highest scoring facility. We add an additional bucket B0

containing those images with no detected facilities.
For each bucket Bi, let μi denote the fraction of examined

images inBi containing a facility, and let ni indicate the number
of times we have validated an image from this bucket. The UCB
score associated with bucket Bi is then

Si = μi + α

(
log

∑
j nj

ni

)1/2

where α ∈ R is an “exploration parameter.” The UCB score re-
flects the past success of the bucket at containing positive images,
but by favoring those buckets that are visited less frequently, the
second term ensures that we do not focus exclusively on buckets
with the largest percentage of past successes. As α → ∞, we
rely less on past success and more on a uniform selection of
the buckets. To decide which images to sample, we form a
probability distribution π over the buckets in the natural way

πi =
Si∑
j Sj

.

We sample from π with replacement m times, where m is the
number of images validated in that round, and then update the
scores for the subsequent rounds. For the first round, we take π
as the uniform distribution.

This process is repeated in each country until it is estimated
that we have found 80% of the facilities. The estimate is con-
structed by extrapolating success rates in each bucket over all
the images. That is, the total number of estimated CAFOs is

NC =

K∑
i=0

|Bi|πi.

Once we have identified at least 0.8 ·NC , we stop the process
and move onto another county. The validation data used in this
article employed this process in ten counties across California.
Note that the process does not result in every image being
examined.

APPENDIX B
COMPUTING ROAD DISTANCE FEATURES AT SCALE

Across the U.S., the OSM road network contains ∼ 37.8 mil-
lion edges,7 and our model initially predicted 7.1 million poultry
barn polygons. Calculating the distance between each polygon
and the closest edge in the road network is, thus, nontrivial. First,
we break the problem up such that it can be solved in parallel
by splitting the road network and predictions across the 212 354

7The number of “highway” tags reported by https://taginfo.geofabrik.de/ web
service.

NAIP tiles and only considering nearest matches within a tile
(we download the road network aligned to these tile definitions
using the osmnx library [37], and our model predictions are
saved at the tile level). Now, we need to compute the shortest
distance between N polygons and M lines per tile; however, in
urban areas, both M and N will be prohibitively large (as our
model’s false positives are often correlated with roads and white
buildings) for a naive approach. Our approach is as follows.

1) Split each road edge into pieces of at most length d. If an
edge of length D contained two nodes previously, after
this splitting step, it would contain 2 + 
D/d� nodes.

2) Add all the nodes from the now split road network into
a K-dimensional tree data structure. This data structure
offers logarithmic time lookup of the r nearest neighbors
of a query point.

3) For each predicted polygon, query theK-dimensional tree
with the polygon’s centroid for all the neighbors up to
a distance of 2d away. The set of points returned are
guaranteed to include the nodes from the closest line.

4) Compute the polygon-line distance between each pre-
dicted polygon and lines corresponding to the nearest
points returned in the previous step. This distance will
be the minimum distance.

The road splitting step in this algorithm is necessary to calcu-
late the nearest road line for each given polygon. For example,
if we try to find the nearest line for a given polygon based on
the endpoints of the line, then we can easily miss long straight
roads that pass near to the given polygon. This approach is
implemented in the accompanying repository and can process
road network data and predictions corresponding to a given tile
in seconds.

APPENDIX C
EXAMPLES OF FALSE POSITIVES

Fig. 8 shows different types of false-positive predictions and
a true-negative prediction from across the entire U.S. Road false
positives are the most common and occur where OSM data
are incomplete (e.g., in rural areas or on informal dirt roads),
which breaks the filtering step, or where the OSM roads and
the NAIP imagery we use are not aligned. In nonroad cases,
we observe that the arrangement of the false positives usually
mimics a plausible arrangement of barns in a poultry facility
(e.g., the pair of false positives shown in the right panel of Fig. 8).
These cases often happen in nonurban contexts, where poultry
facilities will be found. We find that the model consistently does
not make false-positive predictions in more urban settings (e.g.,
with airplane hangars shown in the bottom right subfigure of
Fig. 8), suggesting that the model takes the spatial context of an
area into account while making predictions.
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Fig. 8. Examples of false positives and true negatives. (Top left) False-positive prediction along a section of white, straight road in rural South Dakota. (Top right)
False-positive predictions on dirt roads in Utah. (Bottom left) False-positive predictions on barren ground in Wyoming. (Bottom right) True-negative predictions
for airplane hangars in Baltimore, Maryland.
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