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SWCGAN: Generative Adversarial Network
Combining Swin Transformer and CNN for Remote

Sensing Image Super-Resolution
Jingzhi Tu , Gang Mei , Zhengjing Ma, and Francesco Piccialli

Abstract—Easy and efficient acquisition of high-resolution re-
mote sensing images is of importance in geographic information
systems. Previously, deep neural networks composed of convolu-
tional layers have achieved impressive progress in super-resolution
reconstruction. However, the inherent problems of the convolu-
tional layer, including the difficulty of modeling the long-range
dependency, limit the performance of these networks on super-
resolution reconstruction. To address the abovementioned prob-
lems, we propose a generative adversarial network (GAN) by
combining the advantages of the swin transformer and convolu-
tional layers, called SWCGAN. It is different from the previous
super-resolution models, which are composed of pure convolu-
tional blocks. The essential idea behind the proposed method is
to generate high-resolution images by a generator network with a
hybrid of convolutional and swin transformer layers and then to
use a pure swin transformer discriminator network for adversarial
training. In the proposed method, first, we employ a convolutional
layer for shallow feature extraction that can be adapted to flex-
ible input sizes; second, we further propose the residual dense
swin transformer block to extract deep features for upsampling
to generate high-resolution images; and third, we use a simplified
swin transformer as the discriminator for adversarial training. To
evaluate the performance of the proposed method, we compare the
proposed method with other state-of-the-art methods by utilizing
the UCMerced benchmark dataset, and we apply the proposed
method to real-world remote sensing images. The results demon-
strate that the reconstruction performance of the proposed method
outperforms other state-of-the-art methods in most metrics.

Index Terms—Convolutional layers, generative adversarial
network (GAN), remote sensing images, super-resolution
reconstruction, swin transformer.

I. INTRODUCTION

CURRENTLY, remote sensing plays an important role in
various fields [1]–[4]. As a critical component of remote
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sensing, optical satellite remote sensing with high spatial res-
olution provides observation targets with clear spatial texture
information, which can present the essential features of the land-
scape. However, an increase in the pixel density of the sensor will
significantly increase the hardware cost of obtaining optical re-
mote sensing images. To acquire high-resolution remote sensing
images more conveniently and cost-effectively, super-resolution
reconstruction techniques that recover high-resolution im-
ages according to low-resolution images have received much
attention.

The essential idea behind image super-resolution is to learn
the prior knowledge from the image data and then use it to
recover the lost details of the low-resolution images. It is
worthwhile to mention that some early methods, such as sparse
reconstruction-based methods [5], degenerate models [6], and
interpolation [7], have achieved success in high-resolution im-
ages by acquiring a priori knowledge under the limitation of a
lack of learning ability. In recent years, deep learning methods
have achieved great success in various fields, and naturally,
super-resolution reconstruction methods with powerful learning
capabilities based on deep learning surpass traditional methods
in terms of performance. Convolutional neural networks (CNNs)
have long been the “standard answer” to image processing tasks.
A super-resolution CNN, the first CNN with a high learning
ability for super-resolution reconstruction, was proposed by
Dong et al. [8]. Then, to further boost the performance of super-
resolution reconstruction using CNNs, various new techniques,
including residual dense blocks [9], [10], residual learning [11],
[12], and recursive blocks [13], are also introduced.

Moreover, with generative adversarial networks (GANs) be-
ing originally proposed and receiving great attention [14], [15],
GANs using convolution modules have also been proven to have
impressive performance on the super-resolution reconstruction
task. For example, SRGAN [16] first introduced a GAN architec-
ture for the super-resolution reconstruction task and proposed a
perceptual similarity-based loss function. CDGAN [17] has im-
proved the discriminator for GAN, where both generated image
and its high-resolution ground truth are input to the discriminator
for better discrimination. EEGAN [18] reduces the interference
of noise in the super-resolution reconstruction of satellite images
by purifying the noise-contaminated components with mask
processing. Although CNNs with powerful learning capabilities
offer a significant performance improvement over traditional
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methods, they cannot escape from the basic problems that orig-
inate from the basic convolutional layer, i.e., the convolutional
layer based on the principle of local processing has difficulty, or
is even ineffective, for the capture of long-range dependencies.

To solve the abovementioned problem, a self-attention mech-
anism derived from transformer [19]–[21] was used as an
alternative to CNNs that capture global interactions between
contexts and shows an excellent performance on several visual
tasks. However, the networks designed based on the transformer
block often have a number of parameters that exceed those of
general convolutional networks. On the other hand, the trans-
former for image recovery typically segments the input image
into patches [22]–[24], which can introduce boundary artifacts
around each patch.

Recently, swin transformer [25], a self-attention network
that overcomes the abovementioned shortcomings of the trans-
former, has shown great potential in the field of computational
vision. It is capable of both processing large-size images without
dividing the images into patches and learning long-range de-
pendencies as a transformer due to the shifted window scheme.
Furthermore, it has less computational cost than the transformer.
Swin transformer has reached state-of-the-art in image classifi-
cation and semantic segmentation tasks. However, its application
and research in image super-resolution, especially in remote
sensing images, is still relatively rare.

Remote sensing images contain more information than natural
images, and the pixels of remote sensing images are correlated
with each other. CNNs have difficulties in acquiring global
information and long-range dependencies between pixels for
remote sensing images. Moreover, since the size of real remote
sensing images tends to be larger than that of natural images
and the complexity of the self-attention network is high, the
pure self-attention network is prone to memory bottlenecks if
the remote sensing images are used directly as input.

In this article, to adapt the characteristics of remote sensing
images, we first introduce the shifted window self-attention
mechanism from the swin transformer into the super-resolution
research of remote sensing images and propose a GAN that
combines the advantages of the swin transformer and convolu-
tional layers, namely, SWCGAN. Specifically, in the proposed
SWCGAN,

1) we employ a convolutional layer for shallow feature ex-
traction that can be adapted to flexible input sizes;

2) we propose the residual dense swin transformer
block (RDSTB) by drawing on the characteristics of
DenseNet [9] to build the depth feature extraction module
of the generator, which is used to obtain the deep features
for upsampling to generate high-resolution images;

3) we simplify the original swin transformer and use it as a
discriminator.

To demonstrate the performance of the proposed SWCGAN,
the UCMerced dataset is utilized for training and validation
of the proposed method, and the performance of the proposed
method outperforms other state-of-the-art methods in most met-
rics. Moreover, the proposed method is applied to a real-world
remote sensing image to verify the effectiveness and applicabil-
ity of the proposed method.

Our contributions are as follows.
1) We propose a GAN with a hybrid of convolutional

and swin transformer layers for the super-resolution re-
construction of remote sensing images to consider the
features of large size, large information, and strong cor-
relation between pixels of remote sensing images for
super-resolution reconstruction.

2) We further propose a depth feature extraction block,
namely, RDSTB, which can extract deep image features
efficiently by stacking multiple blocks. As a feature ex-
traction block of images, the proposed RDSTB can also
be used in other image processing tasks in the future.

3) We evaluate the proposed method using the UCMerced
benchmark dataset and real-world remote sensing images
from a high-resolution satellite.

The rest of this article is organized as follows. In Section II,
the proposed method, including the network architecture, the
loss functions, and the shifted window self-attention mechanism,
are described in detail. Section III presents the experimental
results and performance evaluations, and the proposed method
is applied to a real-world remote sensing image. In Section IV,
we present a discussion. Finally, Section V concludes this article.

II. METHODS

In this section, we will first briefly introduce the essential idea
behind the proposed method, i.e., the idea of the SWCGAN for
super-resolution. Specifically, for the proposed method, we will
describe the generator network, the discriminator network, and
the loss function. Furthermore, the advanced shifted window
self-attention mechanism is summarized.

A. Overview of SWCGAN

In this article, we proposed a GAN by combining the advan-
tages of the swin transformer and convolutional layers for super-
resolution. The workflow of the proposed SWCGAN for super-
resolution is illustrated in Fig. 1. A typical GAN model consists
of two parts, a generator G and a discriminator D. As shown
in Fig. 1(a), for the generator G, the input is the low-resolution
image, and then, the features of the input low-resolution image is
extracted to obtain the feature maps using the feature extraction
module. To obtain the generated high-resolution image, the
extracted feature maps will be upsampled by the upsampler (in
this article, 4x upsampling is used). For the discriminator D, the
input is the generated high-resolution image, and the generated
high-resolution image also undergoes a feature extraction step
to obtain its deep features, where the sizes of feature maps
gradually decrease, unlike in the generator. Finally, a linear layer
is classified dichotomously by the output 0 or 1. Naturally, in
an image super-resolution GAN, G is used to generate a fake
high-resolution image by reducing the difference between the
fake high-resolution image and the real high-resolution image,
and D is used to distinguish the real high-resolution image from
the generated image in training. G and D compete with each other
in the training process in such a way that the data distribution of
the generated images is gradually close to the real distribution
[see Fig. 1(b)].
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Fig. 1. Illustration of GAN for the super-resolution reconstruction task. (a) Network framework. (b) Data distribution.

Previously, convolutional blocks were commonly used to
form GANs for super-resolution reconstruction. However, the
convolutional layers that compose CNNs limit the performance
of CNNs in the super-resolution reconstruction task due to its
inherent problems, especially the inability to simulate long-term
dependencies. To address the abovementioned issue, we propose
a GAN with a hybrid of convolutional and swin transformer
layers named SWCGAN for the super-resolution reconstruction
task, where we introduce swin transformer layers with convolu-
tional layers to form RDSTB by dense connection and residual
structure to extract image features.

B. Generator Network in SWCGAN

As shown in Figs. 1(a) and 2(a), the generator can be further
divided into the following three modules:

1) shallow feature extraction module;
2) deep feature extraction module;
3) upsampling module.
In this shallow feature extraction module, a convolution layer

Conv(c, nf , k, s, p) is used to extract shallow features, where
c represents the filter channels, nf represents the number of
filters, k represents the kernel size, s represents the stride, and p
represents the padding. The advantage of the convolution layer
in shallow image processing is that it can flexibly set the input
image size. Thus, k, s, and p should be set to 3, 1, and 1, which

ensures that the channel of the input image is transformed from c
to nf without changing the size of the input image (H ×W × 3
to H ×W × nf ).

After extracting shallow features, the H ×W × nf feature
maps are imported into the deep feature extraction module,
which is composed of the L layer of the proposed RDSTB
(in this article, we set L = 4). As shown in Fig. 2(b), in this
proposed RDSTB, we first introduce a swin transformer layer
and combine it with a convolutional layer, which ensures the
learning of local information and the modeling of long-range
dependency with shifted window self-attention. Then, inspired
by DenseNet, we connect these residual blocks in a densely
connected scheme (N is set to 6), which keeps us building
a complex and deep model. Finally, we keep the dimensions
of the input and output of RDSTB constant by a convolution
layer.

As shown in Fig. 3, the nearest neighbor interpolation
method [26], [27] combined with a convolutional layer is ap-
plied to upsample the feature map after extracting deep feature,
and its size changes from H ×W to 2H × 2W . We utilized
this upsampling operation twice to achieve a 4x upsampling
effect. There have been some investigations showing that this
upsampling operation is effective in reducing the noise of the
generated high-resolution images compared to the upsampler
composed of convolution and PixelShuffle [28]. Moreover, to
comprehensively utilize the extracted features, we aggregate
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Fig. 2. Architecture of the proposed SWCGAN. (a) Network architecture of generator and discriminator. (b) RDSTB. (c) Swin transformer block.

shallow features and deep features into the upsampler

IHR = Hup(F0 + FD) (1)

where IHR is the generated high-resolution image, Hup is the
function of the upsampler, F0 is the shallow features, and FD is
the deep features.

C. Discriminator Network in SWCGAN

For the discriminator, the simplified swin transformer is used
to conduct the dichotomous classification task. As shown in
Figs. 2(a) and 4, in the original swin transformer, the feature
extraction is a total of 4 stages, and the dimensions of the
input data are transformed fromH ×W × 3 to the feature maps
H/32×W/32× 8C after extracting features. In our simplified
swin transformer (discriminator), we employ only the first two
stages of the original swin transformer as the feature extraction

module of the discriminator, and the dimensions of the input
data are transformed from H ×W × 3 to the feature maps
H/8×W/8× 2C after extracting features. Then, the feature
mapsH/8×W/8× 2C from the feature extraction module are
used directly for classification by a linear layer. It is worthwhile
to note that instead of the standard discriminator, we use the rel-
ativistic average discriminator, which estimates the probability
that the real image is relatively more realistic than the fake image.
Its concrete implementation is described in the loss function.

D. Use of Swin Transformer in SWCGAN

To address the challenges involved in the application of
CNNs and transformers to the image field, the swin transformer
proposed a shifted windows operation that included nonoverlap-
ping local windows and overlapping cross-window connections
to restrict the attentional computation to a single window, which
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Fig. 3. Illustration of the upsampler in SWCGAN.

can allow the model to enjoy the advantages of CNN convo-
lutional operations on the one hand and to save computational
effort on the other hand.

As shown in Fig. 4, the whole model adopts a hierarchical
design, where the model contains a total of four stages, each
of which reduces the resolution of the input feature map and
expands the receptive field layer by layer like a CNN. First,
compared with vision transformer [23], [29], patch partitioning
becomes an optional operation due to the window self-attention
mechanism, which greatly increases the flexibility of the model.
Second, there is a patch merging operation before performing
swin transformer block, which serves to perform downsampling.
It is used to reduce the resolution, adjust the number of channels,
and save computational effort. In patch merging, the features
of each group of 2× 2 neighboring patches are concatenated
together as a whole tensor, and a linear layer is applied to these
4C-dimensional concatenated features, reducing its output di-
mension to 2C. Third, the architecture of the STB is similar to
that of the transformer block, except that the standard multihead
self-attention module in the transformer block is replaced with a
module built on the shifted windows, and the other layers remain
the same.

To solve the problem of high computational complexity
caused by the global-based calculation of attention in the tradi-
tional transformer, the swin transformer reduces the complexity
of the algorithm by the window attention, limiting the compu-
tation of attention to each window. The equation for computing
self-attention is as follows:

A(Q,K, V ) = Softmax

(
QKT

√
d

+B

)
V (2)

where Q, K, and V ∈ RM2×d indicate the query, key, and value
matrices, B ∈ RM2×M2

indicates a relative position bias; d
represents the Q

K dimension, and M2 represents the number
of patches in a window ((M,M) is the window size). In the
computation of self-attention, the relative position is critical.

The abovementioned window self-attention is calculated for
each window. To allow different windows to interact with one

another, a unique method called shifted window is adopted in
swin transformer. As shown in Fig. 5, there is an illustration of
the shifted window approach. First, a regular window partition-
ing scheme is adopted in layer Layer (the feature map is divided
evenly into 2× 2windows of size 4× 4). Then, it can be noticed
that the window partitioning scheme has been altered in layer
Layer + 1, where the window partitioning is shifted in such a
way that the shifted window contains the features of the original
neighboring window.

E. Loss Functions in SWCGAN

Our choice is the relativistic average GAN, which differs from
the standard GAN that discriminates real images as 1 and fake
images as 0. It estimates the probability that the real image is
relatively more realistic than the fake image (see Fig. 6). The
loss function of the discriminator is defined as follows:

LD = −Exr∼pdata(xr) [log(1−DRA(xr, zf ))]

−Ezf∼pz(zf ) [log(1−DRA(zf , xr))] (3)

where zf is the high-resolution image by the generator G(xi),
xi is the input low-resolution image, and xr is the corresponding
real high-resolution image.xr ∼ pdata represents the distribution
pattern of the real data, and zf ∼ pz(zf ) is similar to x ∼ pdata.

We set the training objective of the generator to minimize the
joint loss, which consists of the content loss and the adversarial
loss. The loss function of the generator is defined as follows:

LG = Lcont + λLadv (4)

Lcont = zf−xr 1 (5)

Ladv = −Exr∼pdata(xr) [log(1−DRA(xr, zf ))]

− Ezf∼pz(zf ) [log(DRA(zf , xr))] (6)

where the content loss Lcont is the L1 pixel loss to evaluate the
mean square error between a generated high-resolution image
and real one, the form of the adversarial loss for the generator
corresponds to the relativistic average GAN, and λ is a hyper-
parameter.

III. RESULTS

In this section, we first list the environment of the experiment.
In addition, to evaluate the proposed method, we present the
results of the comparison between the proposed methods and
other methods. Finally, the application results of the proposed
methods are shown.

A. Experimental Environment

The details of the experimental environment are listed in
Table I.

B. Evaluation of the Proposed Methods

1) Experimental Dataset and Model Training: We selected
the commonly used remote sensing dataset “UCMerced” [30] as
the experimental dataset for the super-resolution reconstruction
task. There are many classes of images in the UCMerced dataset
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Fig. 4. Illustration of the simplified swin transformer (discriminator).

Fig. 5. Illustration of the shifted window approach.

Fig. 6. Illustration of the relativistic average discriminator.

TABLE I
PLATFORMS USED FOR TESTING

with 21 classes (including forest, buildings, beach, and so on),
which contain most of the remote sensing scenes. Each class
has 100 images, and all images are 256× 256 in size. In the
training process, we selected 10% of the UCMerced images as
the validation set and the remainder as the training set. Further-
more, we use the bicubic algorithm [31], [32] to downsample
the UCMerced dataset and obtain the low-resolution dataset as
the input.

For the optimizer, the Adam optimizer [33] with the initial
learning rate 10−4 and the batch size of 8 is used. Specifically, we
first pretrain a single generator for 3× 105 iterations to provide a
standard mean square error-based super-resolution model since
the training of the generator is based only on the content loss;
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TABLE II
RESULTS OF COMPARISON WITH DIFFERENT METHODS ON THE UCMERCED DATASET

A higher PNSR means better result; a higher LPIPS means lower result. It should be noticed that the proposed SWCG is the pretrained generator based on the content loss, which
lacks adversarial training with the discriminator compared to the SWCGAN. Red for the first, blue for the second.

on the other hand, it provides better pretraining weights for
subsequent adversarial training. Then, based on the relativistic
average GAN, the pretraining generator with our discriminator
is trained, where the number of iterations is 2× 105, and the
learning rate cuts in half every 7× 104 iterations. Finally, we
obtained the following two versions of the model: 1) the standard
mean square error-based super-resolution model (SWCG) and
2) the SWCGAN.

2) Evaluation Metrics: To comprehensively evaluate the per-
formance of the proposed method, we use two evaluation metrics
with different focuses. The first metric is the peak signal-to-noise
ratio (PSNR), which is the most widely used evaluation metric
for images. The PSNR is based on the error between the corre-
sponding pixel points, and minimizing the L1 loss is equivalent
to maximizing the PSNR. The higher PNSR means that the
closer the generated image is to the real image, and the better
effect of the super-resolution reconstruction. The equation of
PSNR is as follows:

PNSR = 10log10(Max2
I/MSE) (7)

where Max2
I is used to represent the possible maximum pixel

value of the image, and MSE is the mean square error.
However, the PSNR does not consider the visual character-

istics of the human eye, resulting in images with high PNSR
often being evaluated as low quality [34], [35]. Therefore, the
additional evaluation metric, learned perceptual image patch
similarity (LPIPS) [36], is selected, which is more consistent
with human perception than PNSR. The LPIPS evaluates the
perceptual similarity of the image by a deep learning model,

where an L2 distance between the real image x and the corre-
sponding generated super-resolution image x0 is calculated

LPIPS (x, x0) =
∑
l

1

Nl
‖ωl � (φ(x)l − φ (x0)l)‖22 (8)

where φ(·)l is a feature space constructed from a well-trained
lth layer CNN, and Nl represents the number of elements in
φ(·)l. ωl is a learned weight vector and � is the channel-wise
product operation. The lower LPIPS represents the better effect
of super-resolution reconstruction.

3) Comparative Results: To further evaluate the perfor-
mance of the proposed SWCG and SWCGAN, we com-
pared our methods with some advanced super-resolution
models, including RCAN [37], SRGAN [16], EDSR [38], LGC-
Net [39], CDGAN [17], EEGAN [18], and HSENet [40], on the
UCMerced dataset.

Table II lists the evaluation results of different algorithms on
the UCMerced dataset. We calculated the PNSR, reflecting the
mean pixel error, and LPIPS, reflecting the perceptual similarity
of super-resolution reconstruction methods on 21 categories of
images separately due to the different learning difficulties of
different images, and obtained the total average values. For the
average PNSR and LPIPS, the proposed SWCGAN receives
the best score on the LPIPS metric, and the proposed SWCG
receives the second score on the PNSR metric. It is worthwhile
to note that these algorithms that minimize pixel loss as a training
goal, including RCAN, EDSR, LGCNet, HSENet, and SWCG,
can achieve high PNSR, yet their performances on LPIPS are
unsatisfactory. In contrast, GANs that incorporate adversarial
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Fig. 7. PNSR and LPIPS distributions of different models on all scenes of the UCMerced dataset. (a) PNSR distribution of different models. (b) LPIPS distribution
of different models. (White dot represents the PNSR or LPIPS of the corresponding model on a scene).

loss tend to perform well on the LPIPS metric and obtain lower
scores on the PNSR metric. For these GANs, SRGAN obtains the
worst performance on the PNSR metric, EEGAN obtains the best
performance on the PNSR metric, and the proposed SWCGAN
has the best score on the LPIPS metric and the second score on
the PNSR metric.

On the other hand, for different scenarios, these deep-
learning-based super-resolution algorithms show a significant
preference. For example, all algorithms can obtain higher PNSR
(>30) on both Baseballdiamond and Beach scenes, and all
algorithms obtain lower PNSR (<24) on Harbor scene. More-
over, compared with other algorithms, the proposed SWCGAN
obtains the best LPIPS for Denseresidential and Freeway scenes,
and the proposed SWCG obtains the highest PNSR for Overpass,
Parkinglot, River, and Runway scenes. As shown in Fig. 7, for
different scenarios, the values of the proposed SWCGAN are
more concentrated around the mean value, whether based on the
PNSR metric or the LPIPS metric, with fewer outliers, which
means that the performance of the proposed SWCGAN is the
most stable compared to other algorithms. As listed in Table II,
the proposed SWCGAN has the smallest standard deviation,
which also reflects that the SWCGAN has the best stability.

Specifically, as illustrated in Fig. 8, the two examples, Base-
balldiamond33 and Golfcourse35, are chosen to compare the
details of the different algorithms. In Fig. 8(a), the proposed
SWCGAN with the lowest PNSR and the best LPIPS shows
the most details and the best perceptual effects. In Fig. 8(b),
both SWCGAN and CDGAN with better LPIPS show bet-
ter perceptual effects. Furthermore, except for SWCGAN and
CDGAN, other algorithms exhibit the same image style for the

super-resolution reconstruction task, i.e., the borders of objects
are not sufficiently clear and the transition between pixels is
overly smooth, causing the image to appear blurry.

C. Ablation Studies

According to the comparative results, the proposed SWCGAN
obtained the best score on the LPIPS metric, and the proposed
SWCG obtained the second score on the PNSR metric. In
this section, to further verify the effectiveness of the STB in
the proposed RDSTB, the ablation experiments are established
by replacing the STB with a convolutional block. Moreover,
to demonstrate the impact of the pretraining generator (i.e.,
SWCG), an experiment is added without pretraining. Finally,
to verify the effectiveness of the simplified swin transformer as
a discriminator, an experiment using the complete swin trans-
former as a discriminator is added.

1) ConvGAN: The STBs in the generator of the SWCGAN
are replaced by convolution blocks, and the simplified swin
transformer is used in the discriminator.

2) ConvG: The STBs in the generator of the SWCG are re-
placed by convolution blocks, and the discriminator is removed.

3) SWCGAN (N): The proposed SWCGAN without pretrain-
ing.

4) SWCGAN (all): the complete swin transformer is used as
a discriminator in the SWCGAN.

As listed in Table III, compared with SWCGAN and SWCG,
the corresponding models (ConvGAN and ConvG) perform
worse on both PNSR and LPIPS metrics when STBs are re-
placed with convolutional blocks. Compared with the standard
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Fig. 8. Detailed comparison of the outputs with different methods. (a) Baseballdiamond. (b) Golfcourse.

TABLE III
RESULTS OF THE BLATION EXPERIMENTS

All models are evaluated on the UCMerced dataset.

mean square error-based super-resolution model ConvG, due
to the effect of adversarial loss, ConvGAN exhibits the same
characteristics as other GANs, i.e., lower scores on the PNSR
metric and better performance on the human perceptual metric
LPIPS.

On the other hand, SWCGAN (N) performs excellently on
the LPIPS metric compared to SWCGAN, yet performs poorly
(< 26) on the PNSR metric, which is caused by the overpowering
influence of the discriminator on the generator. Therefore, a
pretraining generator is necessary to make the capabilities of
SWCGAN more comprehensive.

Furthermore, SWCGAN (all) with higher complexity only
achieves a slightly better performance than SWCGAN. When
the input size is 64× 64, the floating point operations (FLOPs)
of SWCGAN (all) (26.1 G) are 17 % larger than that of SWC-
GAN (22.3 G), and the FLOPs of the complete swin transformer
(5.7 G) are 3 times that of the simplified swin transformer
(1.9 G). These experimental results demonstrate the effective-
ness of the simplified swin transformer as a discriminator.

D. Application of the Proposed Methods

To verify that the proposed algorithms can be applied to real
satellite remote sensing images, we test the super-resolution

effect of our proposed SWCGAN and SWCG on a real-world
multispectral image from WorldView-4 (WorldView-4 is capa-
ble of acquiring satellite images with a panchromatic resolution
of 0.3 m and a multispectral resolution of 1.24 m and is used
to test the proposed method), where NIQE [41] is chosen as the
evaluation metric. Due to the lack of real high-resolution im-
ages, we use the nonreference evaluation metric NIQE (a lower
score means a better output for super-resolution reconstruction),
which is different from PNSR and LPIPS.

As shown in Fig. 9, before super-resolution reconstruction,
the NIQE of the original low-resolution image is 17.049. After
super-resolution reconstruction, the quality of the image is sig-
nificantly improved, and the proposed SWCGAN and SWCG
obtained the second and first scores compared to other models.
When the real satellite remote sensing image (400× 400) is
used as input, the proposed SWCGAN and SWCG provide more
improvement for image quality compared to other models, which
means that it is important to capture long-range dependencies
between pixels for the real satellite remote sensing image.

IV. DISCUSSION

A. Advantages of the Proposed SWCGAN

The advantage of this method is that it overcomes the inherent
drawbacks of the convolutional layer by introducing the swin
transformer based on shifted window self-attention, and the pro-
posed SWCGAN achieves the best score in the LPIPS metric and
performs better than other GANs in all metrics. For different sce-
narios, the proposed method has the smallest standard deviation,
which means that it has the best stability. Specifically, since the
introduction of swin transformer overcomes the shortcomings of
convolutional layers, it allows the generator to better learn the
relationship between different regions of the image, which leads
to the generated images with clear object boundaries, unlike



TU et al.: SWCGAN: GENERATIVE ADVERSARIAL NETWORK COMBINING SWIN TRANSFORMER AND CNN FOR REMOTE SENSING 5671

Fig. 9. Application of the proposed methods on a real-world multispectral image for the super-resolution reconstruction. (Red for the first, blue for the second).

TABLE IV
PARAMETERS, FLOPS, AND GPU RUNTIME OF STANDARD MEAN SQUARE

ERROR-BASED SUPER-RESOLUTION MODELS

The input size is 125× 125.

other algorithms where the transition between different objects
is too smooth, causing the image to appear blurry. Moreover, the
swin transformer discriminator is essential for discriminating
the generated image from the real image based on fine features,
which rights the training objective in such a way that the style of
the generated image converges to that of the real image instead
of only reducing the error between pixels.

On the other hand, our proposed RDSTB that constitutes
the deep feature extractor has an excellent performance to the
extent that the proposed SWCG (i.e., the generator of SWCGAN
which is trained using only pixel loss) achieves a level close
to the state-of-the-art using only four layers of RDSTB. As
listed in Table IV, in the standard mean square error-based
super-resolution models, the proposed SWCG with significantly
lower parameters and FLOPs than those of the RCAN obtains
super-resolution performance close to that of the RCAN, and it
outperforms the EDSR with exceptionally large parameters and
FLOPs.

B. Shortcomings of the Proposed SWCGAN

The shortcoming of the proposed method is that its training
time is longer than that of general CNNs due to the introduction
of the swin transformer. Several investigations [23] have shown
that networks based on self-attention mechanisms require more
data and training time than general CNNs for image processing
tasks due to the lack of convolutional inductive bias, i.e., the

capability to presuppose some necessary assumptions for the
problem. In addition, the usage of swin transformer causes a
significant increase in complexity. As listed in Table IV, the
results show that the SWCG with middle complexity is still
much higher than the lightweight network LGCNet even when
the lightweight architecture is chosen.

Moreover, although the proposed SWCGAN performs the
best in GANs, its performance is still unsatisfactory compared
with the standard Mean Square Error-based super-resolution
models according to the PNSR metric due to the effect of
adversarial training on the loss. Therefore, for super-resolution
reconstruction tasks requiring high PNSR, the abovementioned
issue can be addressed by adjusting the hyperparameter λ in the
loss function of the generator.

C. Outlook and Future Work

In the future, we will continue to use the proposed RDSTB to
build a large-scale model to further improve the super-resolution
performance of SWCGAN. We believe that the proposed RD-
STB can form a deeper and larger network to obtain better
super-resolution performance due to the dense connectivity and
residual structure. Furthermore, as a feature extraction block
of images, the proposed RDSTB will be applied to remote
sensing image processing tasks, including classification, recog-
nition, and semantic segmentation. Finally, for the problem of
sparse remote sensing image data, we will consider training
deep-learning-based models using self-supervised [42] or un-
supervised methods [43], [44] in the future.

On the other hand, the superior performance of pure swin-
transformer-based models in the field of computational vision
has been proven. Thus, we will develop a GAN-based super-
resolution network composed of pure swin transformer blocks.

V. CONCLUSION

In this article, we proposed a GAN by combining the ad-
vantages of the swin transformer and convolutional layers for
super-resolution reconstruction, i.e., SWCGAN. The essential



5672 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

idea behind the proposed method is to generate high-resolution
images by a generator network with a hybrid of convolutional
and swin transformer layers and then use a pure swin transformer
discriminator network for adversarial training. In this proposed
SWCGAN,

1) we used a convolutional layer for shallow feature extrac-
tion;

2) we proposed the RDSTB to extract deep features of the
image for upsampling to generate high-resolution images;

3) we used a simplified swin transformer as the discriminator
for adversarial training.

To demonstrate the performance of the proposed methods, we
designed an experiment on the UCMerced dataset. The results
indicate that the proposed SWCGAN outperforms other state-of-
the-art methods in most metrics and performs best on the LPIPS
metric compared with other GANs. The ablation experiments
suggest the effectiveness of the STB in the proposed RDSTB.
Finally, the proposed SWCGAN is applied to a real satellite
remote sensing image, and the quality of the remote sensing
image is further improved compared to other models.
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