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Abstract—With the development of deep learning, great progress
has been made in object detection of remote sensing (RS) imagery.
However, the object detector is hard to generalize well from one la-
beled dataset (source domain) to another unlabeled dataset (target
domain) due to the discrepancy of data distribution (domain shift).
Currently, adversarial-based domain adaptation methods align the
semantic features of source and target domain features to alleviate
the domain shift. But they fail to avoid the alignment of noisy
background features and neglect the instance-level features, which
are inappropriate for detection models that focus on instance loca-
tion and classification. To mitigate domain shift existing in object
detection, we propose a reconstructed feature alignment network
(RFA-Net) for unsupervised cross-domain object detection in RS
imagery. The RFA-Net includes one sequential data augmentation
module deployed on data level for providing solid gains on unla-
beled data, one sparse feature reconstruction module deployed on
feature level to intensify instance feature for feature alignment, and
one pseudo-label generation module deployed on label level for the
supervision of the unlabeled target domain. Extensive experiments
illustrate that our proposed RFA-Net is effective to alleviate the
domain shift problem in domain adaptation object detection of RS
imagery.

Index Terms—Data augmentation, domain adaptation, feature
reconstruction, object detection, pseudo-label filtering.

I. INTRODUCTION

NOWADAYS, object detection is essential in remote sensing
(RS) imagery interpretation and also has a widespread

application in natural resource management, intelligent
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Fig. 1. Difference between the NWPU VHR-10 [1] (source domain) and
DIOR [2] (target domain) datasets. From left- to right-hand side: Original image,
the image histogram after normalization, and the frequency domain magnitude
histogram after normalization.

agriculture, building detection, etc. In the past decade, with the
development of deep learning algorithms [3], [4], great progress
has been made by deep convolutional neural networks (DC-
NNs) in RS object detection [5]–[13]. However, the outstanding
performance highly relies on large quantities of training data
with annotations. Specifically, the background and scale of the
RS imagery vary greatly and are complicated. These render the
annotation of RS imagery more computationally expensive and
time-consuming. The model trained on a small number of the
labeled dataset (source domain) will generalize poorly on a large
number of the unlabeled dataset (target domain). Moreover, due
to the diversity of RS imagery acquisition conditions, including
varied geospatial regions, weather conditions, ground sampling
distances, and arbitrary shooting angles [14], the discrepancy
of data distribution between two datasets, treated as the domain
shift, is inevitable. And, it disastrously restraints the improve-
ment of model generalization further. As shown in Fig. 1, the
discrepancy between the frequency domain histograms of the
source and target domains is significant.

To improve the generalization performance of deep learning
models on the target domain, one naive way is to train the
model on the source domain and fine-tune the model on the
target domain. Such an approach requires manual annotations
of the data in the target domain, which is computationally ex-
pensive and time-consuming as described previously. Therefore,
an effective method is to transfer the knowledge learned on
the source domain data into the unlabeled target domain in an
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unsupervised way, which means the data in the target domain
will be utilized for training in an unsupervised manner without
ground truth. Following this idea, the unsupervised domain
adaptation methods [15]–[23] have appeared and been widely
utilized in classification and segmentation tasks of RS imagery.
These methods are devoted to alleviating the discrepancy by
utilizing the semantic feature alignment between the source and
target domains. In the initial application of classification and
segmentation in RS imagery, the most popular approaches [15]–
[19] project features in the source and target domains into a
subspace and design a metric loss to minimize the discrepancy.
Maximum mean discrepancy (MMD) [24] has been used for
preserving the main statistical property in domains and mini-
mizing the distance of the distribution between the source and
target domains. However, the specific distance metric varies
between different domains and requires to be designed manually.
As the gradient reversal layer (GRL) [25] has been proposed,
the adversarial-based domain adaptation methods appear and
have been deployed in domain adaptation, classification, and
segmentation in RS imagery. The adversarial-based domain
adaptation methods mainly utilize a classifier treated as a domain
discriminator and achieve domain confusion between the source
and target domains based on adversarial training.

While many domain adaptation algorithms have been widely
applied in the classification and segmentation of RS imagery, to
the best of our knowledge, there are few algorithms specifically
designed for multicategories object detection in RS imagery. Xu
et al. [26] proposed the FADA with a single-stage detector to
align the cross-domain features. Besides, there are also some
methods [27]–[29] exploring the domain adaptation object de-
tection, which only focus on the detection of only one category.
For example, Chen et al. [27] proposed the rotation-invariant
and relation-aware cross-domain adaptation object detection
network based on a relation-aware graph to align the feature
distribution and a rotation-invariant regularizer to deal with the
rotation diversity. However, all of them conduct the feature
alignment directly, as most algorithms in classification and
segmentation do without considering the redundant features in
the RS imagery. Specifically, different from classification or
segmentation of RS imagery, which mainly deals with semantic-
level features to conduct a classification of image or pixel,
object detection focuses more on local instance-level features
for regressing bounding box and object classification. Therefore,
domain adaptation object detection in the RS imagery requires
the design of specialized algorithms for alleviating the domain
shift between the source and target domains. To relieve the
limitations of the domain adaptation algorithm with the meth-
ods in the classification and segmentation of RS imagery, we
propose a reconstructed feature alignment network (RFA-Net)
for domain adaptation object detection in RS imagery. The
RFA-Net improves the performance from one dataset with a
small quantity of labeled data to one dataset with a large quantity
of unlabeled data. The RFA-Net shown in Fig. 3 includes one
sequential data augmentation (SDA) module, one sparse feature
reconstruction (SFR) module, and one pseudo-label generation
(PLG) module. All of these modules have been deployed on
multistages, respectively.

Fig. 2. Models’ performance visualization with the feature space representa-
tion. (a) Model is trained with the source domain data. It can perform well in
the source domain data, while some foregrounds and backgrounds in the target
domain data are misclassified. (b) Adversarial-based domain adaptation methods
of aligning the semantic features between different domains directly. Rough
alignment tends to suffer from misclassification between some foregrounds and
background. (c) Our proposed method RFA-Net rectifies the misclassification.

In the data preprocessing stage, it is difficult for the model
trained on the source domain to perform well on the target
domain, since the domain shift between different domains.
Moreover, the volume gap in data quantity exacerbates the
difficulties. Therefore, we propose an SDA module, which not
only expands the data volume, but improves the robustness of
the model trained with the target data with noisy labels [30].
The label generation for target domain data is described in
Section III-D. In the feature extraction stage, excessive semantic
alignment in the popular approaches of classification and seg-
mentation leads to the alignment of noisy features and implicitly
weakens instance-level features. Inspired by that, the matrix
reduction [31], [32] can denoise the redundant features utilizing
low-rank matrix reconstruction, the SFR module is proposed
to design a selection of representative features with feature
reconstruction. The SFR reconstructs the low-level features not
only to denoise the redundant features, but to implicitly intensify
the specific instance features for alignment in their respective
domains. In the label supervision stage of the detection head,
only the source domain can provide label supervision for the
output, since the target domain data are unlabeled. The model
tends to learn biased information in the source domain, which
does harm to the generalization ability. To expand the number of
labeled data, we propose one PLG module to generate the labels
for the unlabeled target domain by exploiting the knowledge
learned from the source domain. The high-quality labels are used
as the pseudo labels for the unlabeled target domain, implicitly
conducting information alignment between different domains in
the detection head.

Fig. 2. shows the visualization of the detection model’s per-
formance in RS imagery. The detection model only trained on
the labeled source domain data is difficult to perform well on the
unlabeled target domain data. Meanwhile, the adversarial-based
domain adaptation methods, with aligning the semantic features
between different domains directly, can only perform slightly
better in the target domain compared to the source-only detection
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model. There are still false alarms and objects missing during the
testing phase because of the excessive alignment. Our proposed
method can effectively rectify the false alignment and solve these
problems with the consideration of the characteristics of object
detection in RS imagery. And, extensive experiments prove the
effectiveness of our proposed RFA-Net. The main contributions
of this article are described as follows.

1) We argue that the domain shift exists in RS imagery object
detection and propose an RFA-Net to alleviate the domain
shift. The RFA-Net includes one SDA module, one SFR
module, and one PLG module.

2) The SDA module is deployed on data preprocessing at
the data level to expand the data volume and improve
the robustness, the SFR module is deployed on feature
extraction at feature level to intensify instance feature and
feature alignment, and the PLG module is deployed on
label supervision in label level as the pseudo labels of the
unlabeled target domain.

3) We achieve a significant improvement in the experimental
results with the increase of a small number of parameters,
and all of the modules are not introduced in the inference
phase to avoid the reduction of the inference speed.

The rest of this article is organized as follows. In Section II,
we briefly discuss some related methods. In Section III, we de-
scribe our implementation in detail. In Section IV, we explained
the experiments and results. Finally, Section V concludes this
article.

II. RELATED WORK

In this section, we provide a brief overview of some related
work, which covers object detection, domain adaptation in RS
imagery, and some comparable domain adaptation object detec-
tion methods in natural scene images.

A. Object Detection

With the progress of DCNNs [3], [4], [33], the DCNNs-based
object detection methods [34]–[38] can automatically extract
the input image features. They detect the objects with higher
accuracy and more robustly than the previous methods that
use manual methods [39], [40] for feature extraction. In the
field of RS, many object detection methods [6], [7], [9]–[13],
[41] have followed the DCNNs-based methods and achieved
excellent performance. Cheng et al. [9] proposed a new rotation-
invariant layer, named rotation-invariant CNN model, to lift the
performance of object detection in RS imagery. Yang et al. [7]
tended to solve the problem caused by the narrow width of the
ship and proposed a rotation dense feature pyramid networks
framework compared with the feature pyramid network [42]. Fu
et al. [41] constructed a unified framework for arbitrary-oriented
and multiscale object detection in RS imagery by combining
features with different levels. The model can get a robust feature
representation and augment the anchors with multiple default an-
gles to get powerful performance on multiscale-oriented objects.
Lin et al. [10] employed a novel geometric transformation to
represent the oriented object in angle prediction and an enhanced
intersection over union (IOU) loss for oriented bounding boxes

(OBBs) detection. The detection model predicts the OBBs in a
per-pixel fashion. Shi et al. [12] designed the centerness-aware
network with a new centerness-aware model, which can utilize
the symmetrical shape of objects in RS imagery. However, the
object detection methods rely on the test dataset with similar
data distribution of the train dataset, and these methods do
not consider the domain shift and fail to perform well on an
unlabeled dataset with discrepancy.

B. Domain Adaptation

As for a source domain with labeled training data and a target
domain with an inconsistent distribution, domain adaptation
concentrates on how to design a model that generalizes well
on the unlabeled target domain data [43], [44]. General ap-
proaches [15]–[19], [45]–[48] are proposed to formalize the do-
main gap and minimize it. Ghifary et al. [45] deployed the MMD
metric in the supervised domain adaptation to diminish the
mismatch in the features subspace between the cross-domains.
Since the GRL [25] has been proposed, the adversarial-based
methods [20]–[23], [49]–[52] have become increasingly pop-
ular. Zhu et al. [20] designed a semisupervised center-based
discriminative adversarial learning framework for cross-domain
classification, which is based on filtering out easy triplets, pro-
posed hard triplet loss, and the adversarial learning with center
loss. Yan et al. [21] proposed to distinguish two segmentation
maps in the same domain from the two maps in the different
domains with a triplet adversarial domain adaptation method
based on adversarial training. The algorithm explicitly narrows
the distribution gap across domains with the consideration of
both domains’ information. Iqbal and Ali [22] proposed an
adaptive method with a strategy of weakly supervision, where
they introduced the image-level labels for the unlabeled target
domain data. Li et al. [23] proposed a semantic segmenta-
tion network utilizing a novel objective function with multiple
weakly supervised constraints. They introduced the DualGAN to
employ unsupervised style transfer between the cross-domains.
However, these methods were proposed for classification and
segmentation of RS imagery excessively align semantic features.
They are not suitable to be implemented in object detection.
Object detection focuses more on local instance-level features
for bounding box regression and object classification. Therefore,
domain adaptation object detection algorithms of RS imagery
should be explored specifically.

C. Domain Adaptation for Object Detection

Object detection domain adaptation methods have been wildly
explored in the field of computer vision because of their im-
portance in the wild. The object detection domain adaptation
methods can be mainly classified as discrepancy-, adversarial-,
and reconstruction-based methods. Discrepancy-based meth-
ods [53]–[55] mitigate the domain shift by refining the net-
work with labeled and unlabeled data in the target domain.
Cai et al. [54] focused on cross-domain object detection from
synthetic images to real images with a mean teacher paradigm.
Cao et al. [55] presented an autoannotation framework and
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Fig. 3. Architecture of our RFA-Net. The SDA module is deployed on both image and instance levels to expand the data volume and improve the robustness
of the model. The SFR sends the source and target domains low-level features to their respective corresponding flows and deploys matrix reduction for feature
reconstruction. The PLG is utilized to generate the labels for the unlabeled target domain by exploiting the knowledge learned from the source domain data, lifting
the generalization ability of the detection model.

used a region proposal network with two-streams, which ex-
tracted the multispectral features for robust pedestrian detection.
Adversarial-based methods [56]–[61] conduct adversarial train-
ing with GRL, which is accompanied by the domain discrimi-
nator to expect domain confusion between the cross-domains.
Chen et al. [56] proposed the domain adaptive faster RCNN to
tackle the domain shift raised from the image and instance levels,
which was the first work to carry out the domain adaptation
object detection problem. Saito et al. [58] proposed an unsuper-
vised domain adaptation object detection method that considers
the global and local features alignment, respectively. Following
this method, many incremental domain adaptation object de-
tection methods [59]–[61] have been proposed. Reconstruction-
based methods [62], [63] employ the image reconstruction in
the source or target domains to enhance the performance of the
detection model. Arruda et al. [62] explored the CycleGAN to
generate a synthetic dataset by translating data style from the
daytime domain to the nighttime domain. The synthetic dataset
is then used to train the detection model, which achieves sig-
nificant improvements. Although these methods have achieved
promising performance on natural images, they are still difficult
to solve the domain adaptation object detection in RS imagery,
since the structure of RS imagery is more diverse and complex.
Some methods [27]–[29] were proposed that only focus on the
detection of only one category. Xu et al. [26] proposed the FADA
with a single-stage detector to align the cross-domain features,
which also conducts on detection of a few categories (e.g.,
1–3). However, all of them are not suitable for the detection of
complex RS scenes with multicategories. We propose an object
detection domain adaptation method specifically for RS imagery
considering the characteristics of the RS imagery. Extensive
experiments are conducted to demonstrate that our approach
enables excellent performance in RS.

III. DOMAIN ADAPTATION FOR RS IMAGERY

In this section, we elaborate on the RFA-Net. Fig. 3 shows
the overview of the structure of our proposed RFA-Net.

A. Preliminaries

For the source domain images {Xs, Y s} and the target do-
main images {Xt} without labels, we take an image xs and
ground truth ys in source domain, as well as an image xt without
labels in target domain. Specially, the popular adversarial-based
domain adaptation methods [58], [59], [61] divide the backbone
into subnetworks F1 and F2. The subnetwork F1 extracts the
low-level features P s

1 and P t
1 of xs and xt for local features

alignment, respectively. Subsequently, F2 takes P s
1 and P t

1 to
extract the high-level features P s

2 and P t
2 for global features

alignment. Specifically, for the input image x, F1 extracts the
low-level features with a shape of C ×H ×W from x. The
domain discriminator D1 is used to predict a domain probability
map for low-level features with a shape ofH ×W . Each pixel is
used to estimate the probability of the domain label d, which is 0
if the input features are from the source domain, otherwise 1. The
loss function of low-level feature alignment can be formulated
as follows:

Ls
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Similarly, F2 extracts the high-level features of the input
image x, and the domain discriminator D2 is a binary classifier
used to predict a domain label of high-level features for align-
ment. The loss function of high-level feature alignment can be
formulated as follows:

Ls
high = − 1

ns

ns∑
i=1

FL (D2 (F (xs
i ))) (4)

Lt
high = − 1

nt

nt∑
i=1

FL
(
D2

(
F
(
xt
i

)))
(5)

Lhigh (F,D2) =
1

2

(
Ls

high + Lt
high

)
(6)

where FL = (1− pt)
γ log(pt) is the focal loss [36] and pt is

1− p if domain label is 0, otherwise p. Therefore, the adversarial
loss in (1) can be formulated as follows:

Ladv = Llow (F,D1) + Lhigh (F,D2) . (7)

Finally, onlyP s
2 extracted from source domain images is used

as input to the detection head R. The detection head R consists
of the RPN and ROI heads in faster RCNN [34], and outputs the
bounding boxes with the specific class labels. To perform the
domain adaptation on the object detection, the overall objective
function is summarized as follows:

L
(
Xs, Y s, Xt

)
= Ldet (X

s, Y s)− λLadv
(
Xs, Xt

)
(8)

where Ldet is the detection loss, Ladv is the adversarial loss to
minimize the domain shift between the different domains, and
λ is the weight to balance the Ldet and Ladv.

Based on such an adversarial-based approach, we propose the
RFA-Net, which is specially designed for domain adaptation ob-
ject detection of RS imagery. The overall workflow of RFA-Net
is shown in Fig. 3, which is composed of one SDA module, one
SFR module, and one PLG module. The detailed formulation is
described in the following sections.

B. SDA Module

In the RS imagery, the object position angle varies greatly and
the discrepancy of pixel distribution exists. Moreover, while a
gap exists in the amount of data between different domains, it is
difficult for the model trained on the source domain to perform
well on the target domain. Therefore, the input data are viewed as
an important factor needs to be promoted in the data preprocess-
ing. We proposed an SDA module to conduct the augmentation
on both image and instance levels. The SDA not only considers
the volume gap in data quantity, but improves the robustness
of the model when it is trained with the target data with noisy
labels [30]. At first, we simply flip the labeled data in the source
domain to expand the data quantity. After that, the image- and
instance-level data transformations are combined in a sequential
way for the input images. The sequential data transformation is
viewed as a strong data transformation to deteriorate the data
distribution discrepancy and to execute augmentation at image
and instance levels. In addition, we believe that SDA can improve
the robustness of adversarial training as proposed by Rebuffi
et al. [64].

Fig. 4. Visualization of sequential data transformation with different strate-
gies. From left- to right-hand side: Original image, image-level data transfor-
mation, instance-level data transformation, and masking.

As for the image-level data transformation, global geomet-
ric transformation [65] is applied in the input images, which
includes x–y translation, rotation, and shear. As for the instance-
level data transformation, we simply deploy the global geometric
transformation in the bounding boxes of the images randomly.
The transformation at instance-level has smaller magnitude
ranges compared with that at image level. Especially, as for the
unlabeled target domain images, we apply the instance-level
data transformation on the pseudo labels generated by PLG (as
described in Section III-D). Furthermore, the complex structure
of RS imagery and redundant information of the background
exist in each domain. Such redundant information distributes
the detection model to extract efficient features for bounding
box regression and object classification. We randomly mask the
input images with a low rate to compress the input images for
alleviating the domain shift caused by the redundant information
in each domain. For the abovementioned data transformations,
we sequentially construct them and view such mixed transfor-
mation as a strong data augmentation [30].

In the training phase, we equip the SDA module for the
input images in the source and target domains. All the data
transformations of SDA are shown, respectively, in Fig. 4. Unlike
the traditional data transformation, which selects the certain
data transformation by a probability randomly, we apply the
abovementioned data transformations to the input data with a
probability of 1 in turn. We visualize the adopted data transfor-
mation methods in Fig. 4.

C. SFR Module

The adversarial-based object detection domain adaptation
methods align the semantic features directly to alleviate the
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domain shift. Specifically, The subnetworks F1 and F2 extract
low- and high-level features of the input image, respectively. The
low-level features are deployed on strong local alignment, and
the high-level features are deployed on weak global alignment.
Such alignment intends to align the distribution of the features
in the source and target domains and alleviates the domain shift.
The paradigm is also a general method adopted by domain
adaptation classification and segmentation in RS imagery. But it
is not appropriate for domain adaptation object detection in RS
imagery, as the structure of RS imagery is complicated. We argue
that the low-level features extracted from subnetwork F1 are
strongly aligned pixel-by-pixel, ignoring the fact that complex
background features exist in RS imagery.

To align the low-level features effectively, the proposed SFR
module reconstructs the low-level features before deploying
strong alignment. Specifically, the matrix reduction, as described
in the method proposed by Geng et al. [31], projects it into a
low-dimensional space, thus removing the interference of back-
ground in the features. For the low-level feature Fll = F1(x)
(Fll ∈ R(C×H×W )) extracted from the low-level network, we
deploy matrix reduction on Fll. Regarding the low-level feature
Fll extracted from the subnetwork F1, we first flatten it by
channel to obtainF f

ll with the shape ofC ×HW .F f
ll can be rep-

resented by a dictionary matrix Ddict = [d1, . . . , dK ] ∈ RC×K

and corresponding codes C = [c1, . . . , cHW ] ∈ RK×HW in the
following way:

F f
ll =

¯
F f
ll + E = DdictC + E (9)

where ¯
F f
ll ∈ RC×HW is the low-rank reconstruction of F f

ll and
E is the noisy matrix, which we want to ignore in the alignment.

We can specify a very small value K to restrict the ranks of
Ddict andC, because the rank in matrix product has the following
property:

rank
(
¯
F f
ll

)
≤ min (rank (Ddict) , rank(C))

≤ K � min(C,HW ). (10)

Hence a low-rank matrix ¯
F f
ll is obtained to represent F f

ll with
minimizing the SFR loss LSFR, which is summarized as

LSFR (Ddict, C) = L (Ddict, C) +R1 (Ddict) +R2(C) (11)

where L(Ddict, C) = ‖F f
ll −DdictC‖F , ‖ · ‖F in L(Ddict, C) is

the Frobenius norm, and R1 and R2 are the regularization terms
for the dictionary matrix D and the codes C, respectively. We

reshape the ¯
F f
ll to represent the low-rank reconstruction of input

feature Fll.
Shekhar et al. [32] mapped features into a low-dimensional

feature subspace with the implementation of sharing the dictio-
nary matrix Ddict to create different projections for the features
in the cross-domains, so that the source and target domains can
retain specific semantic features in their respective domain. Our
proposed SFR allocates split paces for the source and target
domains features, respectively. The low-level feature alignment
is deployed on the reconstructed low-dimensional features of
the source and target domains from different paths subsequently.
The SFR module with low-level alignment is shown in Fig. 3.

Fig. 5. PLG. In stage 1, we train a detection model with the labeled source
data and inference the unlabeled target data for label supervision generation.
We also set a threshold to filter out the predictions whose confidence scores
are below the threshold during the inference phase. After that, we train a new
model with labeled source data and target data with pseudo labels, and the new
model predicts the target domain data with the same threshold for final label
supervision generation.

D. PLG Module

In the training phase of adversarial-based object detection do-
main adaptation, knowledge learned on the source domain data is
transferred into the unlabeled target domain in an unsupervised
way. Only a small number of labeled data in the source domain
are utilized for supervision, which renders the detection model
to learn biased information in the source domain. The benefits of
the unlabeled data, proposed by Carmon et al. [66], demonstrate
that the unlabeled data can improve the robustness of adversarial
training. Therefore, we propose the PLG module to generate the
labels for the unlabeled target domain. As shown in Fig. 5, PLG
generates the labels for the unlabeled data utilizing self-training
with multistages.

As for the PLG of the target domain, for stage 1, we simply
train the first detection model with source domain data until it
converges. Such a model inferences the unlabeled target domain
data to get the predictions. The pseudo labels in stage 1 are
generated by filtering the predictions with a threshold τ . After
that, the labeled source domain data and the unlabeled target
domain data with pseudo labels are merged for training the
second detection model from scratch in stage 2. And, the second
detection model inferences the unlabeled target domain data to
generate the final pseudo labels for domain adaptation object
detection in RS imagery, in which the threshold τ is the same
as that in stage 1. Specifically, we believe that some noisy
labels also exist in the pseudo labels inevitably even though
the threshold is applied. As for the second detection model, the
labels in the source domain are the supervisions for the RPN
and ROI heads, while the pseudo labels in the target domain
are only for the RPN. The pseudo labels in the target domain are
generated with self-training and only these in stage 2 are utilized
as supervision for domain adaptation.

Finally, for the ground truth of the source domain and the
pseudo labels generated by PLG of the target domain, we con-
sider them as supervision during training. As we believed above,
the pseudo labels of unlabeled target data may still accompany
by noisy labels inevitably. Therefore, the pseudo labels in the
target domain are only utilized as supervision of RPN, expecting
the RPN to produce higher quality proposals than before. The
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objective function of detection in (8) is described as follows:

Ldet = Lrpn(x
s, ys) + Lroihead(x

s, ys)

+ αLrpn(x
t, ytpl). (12)

The hyperparameter α controls the tradeoff between the total
RPN losses of source and target domains.

E. Overall Objective

Considering that the SFR is inserted before the low-level
feature alignment, we set the hyperparameter β in adversarial
loss to control the tradeoff between the feature alignment losses
in low and high levels. The objective function of adversarial
losses in (7) is described as follows:

Ladv = Llow (F,D1) + βLhigh (F,D2) . (13)

The total loss consists of the detection loss and the adversarial
loss, where the detection loss is described as in (12) and the
adversarial loss is described as in (13), so the total loss is
described as follows:

Ltotal = Ldet(F,D) + LMD (Ddict, C)

− λLadv (F,D,Ddict, C) . (14)

And, λ is usually set to 1 in the total loss, and α is considered
as a hyperparameter in the detection loss as well as β in the
adversarial loss.

IV. EXPERIMENTS AND RESULTS

A. Datatsets

1) NWPU VHR-10 Dataset [1]: The dataset collects 800 im-
ages, in which 715 high-spatial-resolution color images are from
Google Earth and 85 very-high-spatial-resolution pansharpened
color infrared (CIR) images are from the Vaihingen dataset [67].
In NWPU VHR-10, the spatial resolution of the images from
Google Earth ranges from 0.5 to 2 m and the resolution of
the images from CIR is 0.08 m. Out of all 800 images, 650
images containing a total of ten categories of objects are used as
a positive image dataset and the other 150 images without any
objects are used as the negative image set, and the ratio of the
train, validation, and test sets in the positive image set is 14:6:5.

2) DIOR Dataset [2]: The DIOR dataset contains 23 463
optical RS images and 192 472 objects with 20 common object
categories. All images in the dataset are got from Google Earth
(Google Inc.) with the spatial resolution ranges from 0.5 to 30 m
and the size of 800× 800 pixels. By contrast to the NWPU
VHR-10 dataset, the DIOR dataset has richer image variations
in geospatial regions weather conditions, scales, image quality,
etc., which contains the RS images covering more than 80
countries. Consequently, the DIOR dataset has more variations
for each object class in viewpoint, occlusion, appearance, back-
ground, object pose, etc. We draw the same ten categories in the
NWPU VHR-10 dataset from the DIOR dataset, formulating the
DIOR* dataset with a total of 6997 images and 50 410 objects
for RS images object detection domain adaptation.

TABLE I
STATISTICS OF THE NWPU VHR-10, DIOR, AND HRRSD DATASETS

WITH TEN CATEGORIES

3) HRRSD Dataset [68]: The HRRSD is an RS imagery
object detection dataset with multi categories, in which an image
may contain one object or multiple objects with multiple cate-
gories. This dataset includes 13 categories with a total of 26 722
RS images, of which 21 761 images with a spatial resolution
of 0.15–2 m are from Google Earth and another 4961 images
with the spatial resolution of 0.6–2 m are from Baidu Maps.
An algorithm was designed in [68] for the division of the train,
validation, and test sets, which makes the object distribution
in HRRSD more balanced compared to the NWPU VHR-10
dataset. We also draw the same ten categories of the NWPU
VHR-10 dataset from the HRRSD dataset. These data formulate
the HRRSD* dataset with a total of 17 016 images and 43 168
objects for RS images object detection domain adaptation. The
distribution of the number of objects in each category in the
NWPU VHR-10 and DIOR* datasets is given in Table I.

B. Implementation Details

We employ faster RCNN [34], a two-stage object detection
network with RoIAlign, for object detection domain adaptation.
ResNet101 [69] is used as the backbone for input image feature
extraction. The low-level features extracted from the conv2_x
layer in the ResNet101 are used for strong local alignment,
and the features extracted from the conv4_x layers are used for
weak local alignment. To better illustrate the performance of
our proposed method for RS imagery domain adaptation object
detection, we also adopt the same settings as Saito et al. [58]
to implement the method in our experiments. Besides, we also
experimented with the backbone of VGG16 [70]. The backbone
is initialized with the pretrained model on ImageNet. In the train-
ing phase, we train the model with stochastic gradient descent
for 20 epochs. The initial learning rate is 0.001 and reduced by
ten times every 10 epochs. The weight decay and momentum
are configured to 0.0001 and 0.9, respectively. All experiments
are conducted on the PyTorch framework and carried out on a
Tesla P100 GPU with 16 GB of memory.

We adopt the average precision (AP) to evaluate the perfor-
mance of the detection model, and the AP can be calculated by
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TABLE II
QUANTITATIVE COMPARISON WITH THE SOURCE-ONLY AND OTHER DOAMIN ADAPTATION OBJECT DETECTION METHODS IN THE EXPERIMENTS

OF THE NWPU VHR-10 TO DIOR*

*Values of AP and mAP in bold are the best.

TABLE III
QUANTITATIVE COMPARISON WITH THE SOURCE-ONLY AND OTHER DOAMIN ADAPTATION OBJECT DETECTION METHODS IN THE EXPERIMENTS

OF THE NWPU VHR-10 TO HRRSD*

*Values of AP and mAP in bold are the best.

precision and recall, which are defined as

Precision =
NTP

NTP +NFP
(15)

Recall =
NTP

NTP +NFN
(16)

where NTP, NFP, and NFN stand for the number of true pos-
itives (TPs), false positives (FPs), and false negatives (FNs),
respectively. TPs are the objects detected correctly in the test
set, FPs are the objects detected that are incorrectly, and FNs
are the missed objects in the detection results. In general, when
calculating AP, a predicted bounding box is viewed as TP if
its IOU with the ground truth is greater than 0.5. Otherwise, it
is treated as FP. Also, when multiple objects match the ground
truth with high IOU, the object that has the highest detection
confidence is usually selected as TP. And, the AP is calculated
as the mean precision with a set of equally spaced recall rates
S. In our experiments, we use S = {0, 0.1, . . . , 1}, and the AP
defined as

AP =
1

11

∑
r∈S

Precision|Recall=r. (17)

And, we calculate the mean of AP with all categories as mAP
to evaluate the detection model for multiclass object detection.

C. Experimental Results and Analyses

In this section, we evaluate our domain adaptation method
RFA-Net for domain adaptation object detection of RS imagery

qualitatively and quantitatively. As described in Section IV-A
and Table I, we collect three RS imagery datasets for conducting
experiments. In all experiments, the NWPU VHR-10 dataset
serves as the source domain, while all others are viewed for
the target domain. Tables II and III give the results of our
experiments. Source only indicates that the detection model is
trained only on the source domain data, after which it is tested
directly on the target domain. SWDA denotes the strong–weak
alignment domain adaptation method [58]. Besides, we also
compare the HTCN [61] and SCL [59] methods deployed with
different backbones in the DIOR* and HRRSD* datasets.

1) NWPU VHR → DIOR*: As given in Table II, we have
presented the AP and mAP for RS imagery object detection
on the DIOR* test set. The proposed RFA-Net outperforms
the source-only method and other domain adaptation object
detection methods, besides achieving the highest AP for almost
all categories and the highest mAP compared to other methods.
In our experiments, we set α in (12) and β in (13) to 0.5 and 1.5,
respectively. To generate stable pseudo labels for the unlabeled
target domain data as supervision, the threshold τ for filtering
predictions is set to 0.9.

Compared with the performance of the source-only model,
all of the methods can improve the performance of the detection
model. The experimental results indicate that a domain shift
certainly exists between the source domain dataset NWPU
VHR-10 and the target domain dataset DIOR* because of the
diversity in the acquisition conditions of RS imagery in the two
datasets. Meanwhile, the experimental results of our proposed
RFA-Net are much higher than those of the SWDA, HTCN, and
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Fig. 6. In (a) and (b), from top to down, the original images in the NWPU VHR and DIOR* datasets, the visualization of the features in the low-level network
before SFR, and the visualization of the features in the low-level network after matrix reduction. In the visualization, orange color represents more information
embedded in the feature and blue color indicates less information embedded. The redundant features are suppressed significantly after SFR. (a) Visualization of
images and features in the NWPU VHR dataset. (b) Visualization of images and features in the DIOR* dataset.

SCL methods conducting the alignment of the semantic features
directly. Since the structure of RS imagery is more complex
and instance-level features are crucial to be concerned during
conducting alignment. Such methods aligning the alignment
of the semantic features directly is not effective for domain
adaptation object detection of RS imagery, and the proposed
algorithms need to take the properties of object detection in RS
imagery into account.

Addressing the complexity of RS imagery, our method de-
ploys matrix reduction on the low-level features extracted from
the subnetworkF1 in the source and target domains first, and then
deploys low-level alignment on the features after suppressing the
redundant information. Fig. 6 shows the visualized heatmap of
low-level features in the source and target domains extracted
from the subnetwork before and after the SFR. In Fig. 6, the or-
ange color represents more information embedded in the feature
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Fig. 7. (a) and (b) shows the qualitative detection results from the NWPU VHR dataset to the DIOR* and HRRSD* datasets, respectively. In (a) and (b),
columns from left- to right-hand side represent the visualization detection results, i.e., ground truth, source only, SWDA, HTCN, SCL, and our proposed RFA-Net.
(a) Visualization of detection results in the DIOR* dataset. (b) Visualization of detection results in the HRRSD* dataset.

and the blue color indicates less information embedded. We can
see that the redundant features are suppressed significantly after
the SFR, and the instance-level features are more significant,
which facilitates the subsequent low-level alignment of the
features to alleviate the domain shift. Moreover, by comparing
the experimental results of our proposed method and others in
Table II, our proposed SDA, SFR, and PLG work together to
perform the optimal results of the experiments. Comparisons of
the AP results for each category in Table II show that we can
achieve the best performance in almost all categories.

We also show the visualization of the detection results on the
DIOR* dataset in Fig. 7(a). While the SWDA, HTCN, and SCL
methods can do better than the source-only method on some
categories, we can find that there are still many false alarms

in the detection results, as it fails to align the instance-level
features effectively. All of them adopt the same pixel-by-pixel
feature alignment on the low-level feature, which is difficult to
obtain good performance. Due to the overalignment of features
at low-level, it is easy to cause some inaccurate information
to be aligned. The excessive alignment is accompanied by the
biased information in the source domain, which leads to more
FPs in target domain data and decreases the detection model’s
performance.

2) NWPU VHR → HRRSD*: In the experiments from the
NWPU VHR-10 dataset to the HRRSD* dataset, α in (12) and
β in (13) are also set to 0.5 and 1.5, respectively. τ , used to
filter predictions, is set to 0.6 to enable the model to perform
best.
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TABLE IV
INFERENCE SPEED COMPARISON WITH OTHER METHODS ON THE DIOR*

DATASET BY A 2080TI GPU

The Backbone is ResNet101 for all the models in this table.

Compared with the task from the NWPU VHR-10 to DIOR*
datasets, the task from the NWPU VHR-10 to HRRSD* datasets
is more challenging. The quantity of HRRSD* is approximately
26 times larger than the NWPU dataset. Not only there is a
domain shift between the different domains, but a large amount
of unlabeled target domain data also makes it difficult to have
a good performance of the model. Considering the huge vol-
ume gap of data quantity between the different domains, the
pseudo labels generated by the PLG work well to supplement
supervision information of the unlabeled target domain data and
improve the robustness of adversarial training.

As given in Table III, we can conclude that our RFA-Net
is considerably better than the source-only method and other
domain adaptation object detection methods in the experiments
of NWPU VHR-10 to HRRSD*. Moreover, in the experiments
with the backbone of ResNet101, our proposed method achieves
a great improvement on some categories, such as ship, storage
tank, and ground track field. In particular, our method achieves
an AP improvement of 0.3778 on the storage tank compared
with other methods.

Despite the noisy pseudo labels in target domain cannot
be filtered by the PLG, the SDA treated as one strong data
augmentation is robust for the model training with noisy labels.
Furthermore, the redundant features in low-level features are
removed before the alignment. The instance-level features can
be aligned more precisely and the FPs during inference time can
be avoided by our RFA-Net. Fig. 7(b) shows the visualization of
detection results in the HRRSD* dataset. Our method not only
regresses to the bounding boxes accurately, but also has fewer
false alarms in the inference results.

3) Network Computational Burden Comparison: We also
calculate the number of parameters of the model within each
method and give the detailed results in Tables II and III.
Compared with SWDA, we add the SFD module, but remove
the corresponding context vector computation in the pipeline.
Therefore, the parameters of our proposed method are only
0.21 MB more than SWDA. However, the final experimental
results are much more significant compared to SWDA due to
the effectiveness of our proposed RFA-Net. In addition, we
conducted the inference speed test using one NVIDIA 2080 Ti
GPU on the DIOR* dataset with ResNet101 as the backbone. We
yield the final inference speed results, as given in Table IV. Since
our SFR module is only employed in the training process, the
entire model of RFA-Net is a pure faster RCNN during testing,
but SWDA, HTCN, and SCL still rely on the computation of
other modules in their inference stages, such as the context
vector or attention. Therefore, their inference speed is reduced
compared to our RFA-Net.

TABLE V
ABLATION STUDY OF OUR PROPOSED RFA-NET

The significance of boldface number means the best value of
mAP.

D. Ablation Study

In this section, we first carry out an ablation study to demon-
strate the effectiveness of each component (one SDA module,
one SFR module, and one PLG module) in RFA-Net in the
experiments from the NWPU VHR-10 to the DIOR* datasets.
Furthermore, we investigate the effect of different thresholds
τ used for filtering pseudo labels and hyperparameters α in the
detection loss in (12). In the end, we also display the performance
of the source only, SWDA, and our proposed method in the
DIOR* dataset varies with different IOU thresholds.

1) Effectiveness of Each Component: To verify the effec-
tiveness of each component in RFA-Net, we equip individual
modules of SDA, SFR, and PLG, respectively. Besides, we also
remove SDA, SFR, and PLG in our RFA-Net, respectively. The
results of these experiments are given in Table V. It is worth
noting that in the ablation experiment of the single SDA module,
the instance-level annotations of the data in the target domain
are not available. Therefore, we can only apply the image-level
transformation and randomly mask the image when we add the
SDA module. And, the situation in the ablation experiment of
removing PLG is the same.

We can observe that the model does not yield many benefits
in the end when equipped with only a single module. In terms of
SDA, the promotion of single SDA is limited due to the large data
volume gap between the source and target domains. Similarly,
the model with a single SFR module can denoise the redundant
features in the source domain with instance supervision, but
has difficulty performing effectively in the unlabeled target
domain data during training. PLG not only provides supervision
for the target domain, but also improves the robustness of
adversarial training. However, noisy labels are also difficult
to be completely filtered out by the strategy in PLG. So, it is
still challenging to acquire high performance when using PLG
only.

The model can have a better performance when the SDA and
PLG cooperate, gaining a 2.91% improvement over the baseline
model, as given in Table V. It not only introduces supervised
information in the source and target domains to the model, but
also makes the model more robust to training with noisy labels.
Although the pseudo labels generated by PLG contain noisy
labels inevitably, the training of the model is more robust due
to the promotion of SDA, and hence SFR can better develop the
role of denoising the redundant features for source and target
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TABLE VI
PERFORMANCE OF OUR PROPOSED METHOD IN THE DIOR* DATASET WITH DIFFERENT α

*Values of AP and mAP in bold are the best.

Fig. 8. Performance of our proposed method in the DIOR* and HRRSD*
datasets varies with different thresholds τ .

domains. Finally, the model with SDA, SFR, and PLG obtains
a 5.1% improvement compared to the baseline.

2) Effectiveness of Threshold τ : Fig. 8 shows the test results
of the detection model on the DIOR* and HRRSD* datasets
with different thresholds when α is fixed to 1.5. For the DIOR*
dataset, the detection model achieves the highest mAP when the
threshold is 0.9. However, for the HRRSD* dataset, the detection
model is optimal when the threshold is 0.6.

The threshold enables the predictions with high quality to
be selected. A large threshold can filter out most of the low
confidence proposals, but it can easily lead to a low recall of the
detection model. It is because the pseudo labels are hard to cover
all the real objects. Therefore, the model can neither learn those
hard-to-learn instance features in the target domain dataset from
the source domain nor can the pseudo labels be used as reliable
proposals. While a small threshold tends to cause false alarms
with low confidence to be added to the pseudo labels, rendering
large quantities of false alarms in the prediction results with
low precision. Therefore, for different object detection domain
adaptation tasks, it requires us to set the appropriate threshold
for the generation of pseudo labels for the target domain data.

3) Effectiveness of Hyperparameters α: We further conduct
the ablation study on the differenceα of (12), and the experimen-
tal results are given in Table VI. The hyperparameter α controls
the tradeoff between the total RPN losses of source and target
domains.

Fig. 9. Performance of source only, SWDA, and our proposed method in the
DIOR* varies with different IOU thresholds.

We can conclude from observing the experimental results in
Table VI that different α affects the performance of the model
in different categories. When the selected pseudo labels of the
target domain are utilized as supervision, it is necessary for us
to make a tradeoff between the RPN losses of different domains
because of the discrepancy between the pseudo label and ground
truth. Thereby, better proposals can be selected for subsequent
bounding box regression and classification.

When α is set as 1.5, the detection model achieves the best
performance of the overall mAP compared to the other values of
α. Even though the detection model does not perform optimally
in each category, it performs uniformly on each category, with
no results where the AP of one category is much lower than
under the other values of α.

4) Influence of Different IOU Thresholds: To compare the
accuracy and robustness with other models, we conducted exper-
iments utilizing different IOU thresholds in source only, SWDA,
and our proposed RFA-Net. Fig. 9 shows the experimental
results that our proposed method consistently outperforms the
source-only and SWDA methods with the variation of IOU
thresholds. Simultaneously, it demonstrates that our RFA-Net
has better accuracy and more robust bounding boxes regression
for domain adaptation object detection of RS imagery.

V. CONCLUSION

In this article, we proposed an RFA-Net for unsupervised
domain adaptation object detection in RS imagery, to alleviate
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the domain shift between different domains in RS imagery.
The RFA-Net includes one SDA module, one SFR module,
and one PLG module. All of these modules were deployed
on multistages of the pipeline separately. In the stage of data
preprocessing, due to the domain shift and volume gap in data
quantity between different domains, we introduced the SDA to
expand the data volume and improve the robustness of adver-
sarial training. Moreover, we proposed the SFR and inserted it
before the low-level feature alignment to relieve the excessive
alignment of semantic features. Such a module reconstructs
the features for denoising the redundant features and implicitly
intensifying the specific instance features for alignment in their
respective domains. Furthermore, the detection model tends
to learn biased information in the source domain with only
labeled data of the source domain available. We conducted one
PLG to generate the labels for the unlabeled target domain by
exploiting the knowledge learned from the source domain data.
Our experiments demonstrated that our method can promote
the generalization of the RS imagery object detection model
effectively. We hope our work can inspire future exploration
in alleviating the domain shift between different domains of
object detection in RS imagery. In the future, we will also further
pursue the problem of category imbalance in domain adaptation
object detection to improve performance. Besides, when source
domain data are unavailable and only the model trained in the
source domain is available, source-free domain adaptation object
detection will also be explored to protect data privacy and save
data transmission expenses.
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