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A Deep Learning Model for Road Damage Detection
After an Earthquake Based on Synthetic Aperture

Radar (SAR) and Field Datasets
Sadra Karimzadeh , Mohammad Ghasemi , Masashi Matsuoka , Koichi Yagi, and Abdullah Can Zulfikar

Abstract—This article is a new assessment of damaged roads
after the Kumamoto earthquake in southern Japan (2016) using
remotely sensed synthetic aperture radar (SAR) data, field data
and deep learning. Three SAR images from descending orbits
of Sentinel-1 in vertical-vertical polarizations are considered for
radiometric calibration, geocoding and interferometric analyses.
Field data in terms of the international roughness index (IRI) were
gathered over more than 530 km using a smartphone accelerometer
and the BumpRecorder application. The relationship between SAR
data and IRI data was investigated in a binary (0 and 1) mode to
establish a multilayer perceptron model of damaged and intact
roads. We found the remote sensing SAR datasets suitable, not
only for the detection of damaged roads, but also as an indicator of
road roughness changes. The classification results for damaged and
intact roads indicated that our datasets (SAR and field measure-
ments), together with a deep learning model, yielded acceptable
overall accuracy (87.1%).

Index Terms—Deep learning, international roughness index
(IRI), Kumamoto, synthetic aperture radar (SAR).

I. INTRODUCTION

TRANSPORTATION infrastructure elements are essential
for national development. Intercity transportation net-

works are vital parts of daily life in populated communities since
they facilitate the movement of people, products, and services.
Moreover, infrastructure plays a vital role in promoting socioe-
conomic welfare and sustainability in our world [1], [2]. Road
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networks are the most substantial forms of transportation infras-
tructure. Smooth and nonstop performance is highly important
for transportation network stability after natural disasters [3].

Earthquakes can occur anywhere worldwide. According to
previous experiences, like other infrastructure types, road net-
works are also at risk, and any failure in their components may
result in economic damages and disruptions in relief, rescue, and
evacuation activities in the region. Road destruction may limit
the movement of emergency vehicles and directly affect rescue
and emergency aid actions in the damaged area, resulting in
spatial disturbances, increased travel times, and subsequent eco-
nomic, social, and livelihood losses. Therefore, two of the main
goals of disaster management are minimizing disaster effects
and formulating efficient emergency plans and risk alleviation
strategies [4]. Hence, it is essential to perform injury and loss
evaluations following earthquakes and road network damage and
the harm to economic growth and social sustainability must be
considered [5]. The extensive repairs for failed transportation
infrastructure usually take several months or years to complete
after an earthquake so that the transportation network will remain
disrupted to some extent during the repair period. The timely
recovery of an out-of-service transport network is essential
because it will improve the efficiency of traffic flows and,
more importantly, accelerate long-term attempts to repair other
vital infrastructure types [6]. Communication, energy, and water
systems highly depend on the transportation system. In addition,
disrupted traffic networks during long repair periods may be
associated with increased risk of car accidents in certain work
areas, and public driver safety may be diminished, including
those involved in disaster recovery attempts [7].

There has been a long history of studies focusing on the post-
disaster modeling of transportation network performance [8],
[9]. Road roughness would be increased by the collapse of roads
and significant displacement in roads. Road management and
control after an earthquake require accurate and rapid methods
for detecting and assessing damage [10], [11]. Traditional road
monitoring methods based on road surface visual inspections
are costly and time-consuming and can yield unreliable and
inconsistent results [12], [13]. Pavement is measured using
high-efficiency equipment that detects the road profile, and the
obtained data are evaluated based on known global indicators.
The international roughness index (IRI) is the most popular
index that is globally used to assess pavement roughness. The IRI
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is a statistical indicator of irregularity in the pavement surface
[14], [15].

The World Bank proposed some standards in Technical Paper
46 to measure the roughness of roads worldwide [16]. Four
classes were defined based on the IRI reliability criterion, and
they vary with device calibration requirements and the required
user accuracy.

1) Class 1 indicates the highest standards of accuracy for IRI
measurement, and it involves a longitudinal profile with
0.5 mm precision in the vertical dimension for measure-
ments.

2) Class 2 includes all methods in which the longitudinal
profile is required as the IRI measurement basis.

3) Class 3 includes measurement tools that require mathe-
matical computations. After longitudinal profiles of the
road are obtained, a computational method is used to eval-
uate road roughness. Consequently, some simulations are
defined considering characteristics related to roads based
on the vertical displacement caused by a standard vehicle,
and this approach is called the quarter-car model based on
a “golden car,” which includes a set of masses, springs, and
inertial damping systems that interact with the road in the
longitudinal profile. Notably, cumulative vertical motions
caused by road irregularities can be measured. The IRI is
usually reported in m/km or in/mi units.

4) Class 4 refers to the subjective evaluation of the IRI
value, such as via visual inspection. Any system used
(directly or indirectly) to assess pavement roughness must
be integrated with one GPS receiver with high accuracy
to provide accurately located measurements.

Currently, measurement systems for riding assessment (three-
axis accelerometers and GPS) are available in modern smart-
phones, which they have been integrated and improved. Hence,
many types of these solutions have been proposed with different
approaches worldwide [17]–[19]. In general, an increase in the
IRI is associated with an increase in pavement roughness, and
IRI = 0 represents smooth pavement. However, semiautomated
or automated methods have been created to detect damage
to paved roads based on computer vision, image processing
algorithms, and terrestrial platforms to reduce the influence of
manual measurement subjectivity [20]. However, IRI measure-
ments must be collected over a long time window, and a large
database is often needed or analysis. Conversely, remote sensing
technology can provide efficient and inexpensive images, such
as drone-based, airborne laser scanning-based, and satellite im-
agery [21]. Because remote sensing tools are efficient, they can
be used in alternative methods of IRI assessment to complement
traditional measurement techniques. Previous attempts at IRI
recovery from remote sensing were highly focused on visual
remote sensing data and obtained valuable results [22]. Notably,
satellite remote sensing, particularly synthetic aperture radar
(SAR) remote sensing, has developed over the past two decades,
including in transportation monitoring. The main benefits of
these techniques are associated with providing highly dense
and frequently updated arrays of data and high accessibility
to time series through various archives. With a 1–20 m spatial
resolution, 5-6 day temporal revisit period, and comprehensive

spatial coverage, SAR imagery has become extremely valuable
for monitoring displacement (at the mm scale) using the inter-
ferometry technique (InSAR) [19]. Moreover, SAR can provide
moderate-resolution images and efficiently process and manage
data; thus, a wide range of transportation network-related factors
can be assessed. Many studies have aimed to find a correlation
between engineering plans and remote sensing techniques. Re-
cent SAR remote sensing studies have shown that it is possible
to monitor major urban elements, such as railroads, bridges,
and buildings. Amplitude and phase are the two components of
SAR images [23]–[25]. Both components can be used to measure
deformation, such as that associated with earthquake damage,
volcanic activity, land subsidence, and landslides. The phase in-
formation is also used in InSAR methods to extract vertical land
displacement information. In previously conducted studies [19],
[26]–[28], Suanpaga and Yoshikazu [29] developed a model
using L-band radar images from the ALOS/PALSAR sensor
of the Japan Aerospace Exploration Agency. They collected
information about road roughness (IRI) in Ayutthaya Province,
Thailand, and a significant relationship between roughness in
radar images and the IRI was observed. Fiorentini et al. [30]
applied an InSAR technique and IRI measurements through
a profilometric laser method. They combined this approach
with machine learning algorithms to predict average vertical
displacement for a 10-km road. The results indicated a clear
association between displacement, the interferometry technique
used, and IRI values. Gagliardi et al. [31] also conducted a
study to assess the applicability of moderate-resolution SAR
products in the monitoring of local airport runways and noted
the high accuracy of SAR data. Other studies have also been
conducted in this area. Karimzadeh and Matsuoka [19] used
IRI data and X-band SAR images to assess the IRI in Tabriz,
Iran, and obtained successful results. Previous studies have
shown that artificial intelligence can be widely used to solve
various problems, including nonlinear pavement engineering
problems [32], [33]. Furthermore, deep learning and machine
learning techniques are applied in different innovative fields.
IRI measurement has some limitations so remote sensing can
complement this method. Many researchers have focused on
developing advanced statistical models for IRI prediction by
developing powerful computational methods, such as machine
learning and deep learning, to predict and evaluate the IRI. Qian
et al. [34] suggested multiple regression methods for predicting
IRI deterioration. Hossain et al. [16] used an artificial neural
network (ANN) to predict the IRI of simple concrete pave-
ment sections. Yousefzadeh et al. [22] discussed road profile
estimation using an ANN. Mactutis et al. [35] analyzed the
association between the IRI, cracking, and grooving in more
than 317 observations. These studies’ results indicated that such
techniques could yield reliable results and reduce the traditional
analysis time. Road roughness models have been established to
predict IRI parameters in most cases.

Machine and deep learning algorithms can be used to adjust
data during the training process, and various variables can be
considered. As a result, a certain balance among sample size,
the number of inputs, and model complexity can be achieved
[36]–[38]. The road monitoring methods explained in this article
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Fig. 1. Modified Mercalli intensity (MMI) map of the M 7.3 Kumamoto earthquake (2016). The yellow circles indicate the locations of the mainshock and
preshock.

are taken under different conditions, so the direct comparison of
the methods is not appropriate. For example the sensitivity of the
X-band datasets is higher than the current study (i.e., C-band),
but the accessibility for X-band data is limited for many areas.

In this article, changes in road roughness after an earth-
quake in Kumamoto are identified by using remote sensing
images as complementary data for IRI analysis. Although both
co-polarized (e.g., vertical-vertical) and cross-polarized (e.g.,
vertical-horizontal) SAR images can be used for this purpose
[23]–[25], but here only vertical-vertical (VV) SAR images are
selected due to their sensitivity to roughness and confirmed satis-
factory qualities in infrastructure monitoring [20]. High spatial-
resolution images are discarded due to their high cost and lack of
free access, and free images with moderate spatial resolution in
the C-band are used. Moreover, remote sensing techniques are
used, especially radar remote sensing (interferometry). Finally, a
deep learning method (multilayer perceptron [MLP]) is applied
to predict the IRI using remote sensing parameters.

II. MATERIALS AND METHODS

A. Study Area

Kumamoto city, the capital city of Kumamoto Province, is
located in the center of the island of Kyushu at northern latitude
48°32 and eastern longitude 42°103, with an area of 390.32
km2 (see Fig. 1). According to the census, the population of Ku-
mamoto Province totaled 1 813 000 before the earthquake, and
it was reduced to 6000 people six months after the earthquake.
Fig. 1 shows the studied area [39].

On 2016/04/14, a magnitude 6.2 earthquake occurred in the
region of Kumamoto, Japan. The fault rupture originated from

the northern segment of the Hinagu fault. The earthquake caused
intense shaking in the eastern part of Kumamoto prefecture and
caused major damage in the town of Mashiki near the epicenter.
On April 16, 2016, another earthquake, magnitude 7.0 Mw,
shook the region. The epicenter of the first shock was reported 12
kilometers northwest of Kumamoto city center, south of Mount
Kinpo. The epicenter of the second shock was reported south of
Kyushu Prefecture in southwestern Japan. The first shock was
called the preshock, and the second shock was called the main
shock. The most severe damage occurred in the eastern area of
Kumamoto in Mashiki.

The crustal deformation due to the mainshock was observed
as ground surface rupture at many locations along the Futagawa
fault [40]. These earthquakes have caused significant tangible
and intangible damage. The total number of casualties was 1747
[41]. More than 180 000 people were evacuated immediately
after the main shock. Total economic losses were estimated at US
$ 24 billion to US $ 46 billion [42]. These earthquakes affected
several mountainous areas in Kumamoto prefecture, destroying
major infrastructure and facilities. In Kumamoto Plain areas,
several sections of Kyushu Highway (bridges and cracks in the
road surface) were damaged by earthquakes, leading to major
disruptions to the regional traffic network. This earthquake killed
55 people and injured more than 3000 others. Many landslides
occurred after the earthquake, damaging roads [43], [44]. A mix
of IRI information and SAR images were used in this article.

B. Methodology

IRI is a measure of vertical displacement as the horizontal
distance traveled along the road [17]. The roughness index is
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commonly measured using profilometers, which are devices
equipped with sensitive accelerometers or laser sensors that
measure the traveled distance and vertical acceleration of the
vehicle to which they are attached. In this article, the method of
a quarter car (QC) is used which is different from the one-wheel
technique that was used a few decades ago. This technique was
used using a variety of ordinary cars with a mobile application
on the basis of the direct computations of the IRI after removal of
effects of the car suspension system. In this article, smartphone
and BumpRecorder applications are used. The BumpRecorder
application is used to measure vehicle acceleration and the
longitudinal profile of the road, and the results are refined based
on the vibration frequency [19], [20], [45].

Therefore, the use of this application reduces the need for a
driving calibration step. In this article, roughness index mea-
surements obtained before and after the earthquake on major
roads and highways in Kumamoto city are used. It is worth
noting that the proposed method provides acceptable precision
for large projects. The average speed of car movement was 40
km/h, with a measured sampling frequency of 200 Hz. Moreover,
each lane of a multilane road was measured to achieve high
accuracy. In this article, 28 000 IRIs were collected before the
earthquake on July 14, 2013, and 28 000 IRIs were collected
after the earthquake on April 20, 2016. The index was measured
on both dates by BumpRecorder applications. According to
Karimzadeh and Matsuoka [19], the accuracy of the QC method
is acceptable for major roads. Still, it may reduce the quality of
simultaneous location and acceleration measurements on urban
streets, in areas with tall buildings, and in zones of heavy traffic.

For convenience, radar data were compared with the rough-
ness index measurements for system calibration. For all points
recorded in the universal transverse mercator (UTM) coordinate
system and the radar SAR images in ground coordinates, the
radiometric correction was performed based on the roughness
index in geographical information system (GIS) software. Then,
preprocessed SAR images were input into the proposed method,
and all possible points were extracted. Points, including those
from GPS receivers, with incorrect coordinates or there were
outside the selected range were removed, and the existing cases
were revised as needed. The overall study method is shown as a
flowchart in Fig. 2.

There are three main steps in the proposed method.
1) Preprocessing for IRI classification.
2) Preprocessing and generation of location change images

over time.
3) Deep learning-based forecasting.
This article has generally used two types of information:

remote sensing data and IRI data.
Remote sensing techniques are commonly used to extract

roads. SAR data can be applied to identify road roughness,
and the results can be compared with IRI data; however, road
engineers are not familiar with the application of such images.
Therefore, remote sensing has not been widely used to assess
road roughness. Radar images offer many benefits, such as high
sensitivity to physical objects in circadian images rather than
optical images, but image complexity can be increased [19], [46].

The sensitivity to roughness is the most important character-
istic of SAR images. Moreover, the high location resolution of

Fig. 2. Workflow of the proposed methodology.

SAR images maximizes the accuracy of classification results.
This article focuses on sentinel-1 satellite images from the
European Space Agency (ESA) and SAR observations from
the sentinel-1 project (two satellites). The sentinel-1 mission
began in 2014. This mission combined platforms A and B with
a 180° phase difference in a circuit board. Sentinel-1 carries a
C-band SAR sensor. This sensor can receive radar images as HH,
HV, VV, and VH signals with dual polarization. This mission
provides ground images using both sentinel-1 platforms every
six days [47], [48].

Here, images from sentinel-1 A in VV polarization were
used for comparison with obtain IRI values due to its high
backscattering sensitivity to roughness also, two images were
used before the earthquake and one image after the earthquake.
The incidence angle of the images is 39.4 °and the resolution
created from the multilooking procedure is 15 m (azimuth look
and range look are 1 and 4, respectively). More information is
given in Table I.

Sentinel-1 images were obtained before (two images) and
after (one image) the earthquake and used in this article, as
given in Table I. Notably, the information in SAR images has
high potential for roughness classification commonly used in
infrastructure monitoring [19], [24]. However, the detection of
damaged and affected roads after an earthquake could be very
rapid with such an approach.

As shown in Fig. 2, in this article, we collected two categories
of information, one of which is information related to IRI and
the other is related to radar images prepared before and after
the earthquake. Collected by the BumpRecorder application.
The length of the data collection route is 563 km and the same
route has been used to collect data after the earthquake. This
information was provided by BumpRecorder and provided to
our research team. After preprocessing IRI, they were divided
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TABLE I
REGISTRATION DATE AND OTHER DETAILS OF SAR IMAGES

into two categories of good and bad roads, and then the post-
earthquake data were divided into two categories: damaged
roads and intact roads. Good roads were less scattered before
the earthquake and were darker, and bad roads were reversed. In
addition, we used the InSAR method to identify changes and to
use the deep learning method with the help of SAR and InSAR
images; we predicted damaged roads and intact roads. Must
be noted, the roads whose IRI values become larger after the
earthquake are considered as “damaged roads” in this article.

After data are prepared, data calibration and outlier analysis
are key steps for preventing issues with the results. Radar images
are characterized by geometric and radiometric errors that must
be corrected. IRI data may also include some errors that should
be removed. These preprocesses are discussed herein.

SAR images are obtained in the radar coordinate system,
which must be converted to a standard ground coordinate system.
The radiometric ground correction was applied to eliminate the
effects of steep areas on the SAR backscattering values. A digital
elevation model (DEM) was used in the conversion process, and
a simulated SAR image was produced from the DEM data. In this
article, location filters were used to remove noise in images and
reduce the noise excitation in images [47]–[49]. Resampling was
performed 3× 3 windows size. All SAR images were calibrated
with a radiometric technique to compare radar brightness and
roughness index values.

When preprocessing the statistical IRI data recorded by the
application, a different coordinate system is used, and infor-
mation is stored in a template that is not necessarily suitable
for some analyses, such as those that involve GIS applications.
The recorded data are also influenced by certain errors. From
the high volume of data, incorrect information was identified
and excluded from the analysis. If these data were not removed,
incorrect results might have been obtained. After this informa-
tion was removed, the UTM universal coordinate system was
selected to allow in-app recall and support different statistical
and spatial analyses. SAR images were then preprocessed in
one coordinate system. IRI values overlap in some areas of the
SAR image. Therefore, we transferred the information for IRI
pixels with the same coordinates using GIS techniques [19]. This
step was performed for all three images, and the two obtained
coherence images were stored in a database.

Fig. 3(a) depicts the pixels extracted from the roughness index
information, for which the average backscattering coefficient
equaled -7.5 before the earthquake on March 3, 2016, -7.9 (with
a standard deviation of 5.09) on March 27, 2016, and -6.48
after the earthquake on April 20, 2016. As seen, the histogram
was wider before the earthquake, but became compressed with

higher roughness values after the earthquake. Fig. 3(b) illus-
trates the pixels in the study area and the backscattering co-
efficient at decibel values ranging from -77 to 35 before the
earthquake and -73 to 37 after the earthquake; these results
show a higher backscattering coefficient in areas with brighter
pixels and a lower backscattering coefficient in areas with darker
pixels. Moreover, Fig. 3(c) indicates the correlation between the
backscattering coefficient and the roughness index, which is a
partial correlation. Because the radar image was obtained in the
C-band, the local resolution is moderate, and as the resolution
increases, the effects of other phenomena decrease.

Fig. 4 shows the backscattering quantiles for the three radar
images. The average values for the initial images on March 3,
2016 and March 27, 2016 equaled -7.548 and -7.98, respectively,
and the backscattering value increased to -6.48 after the earth-
quake, implying an increase in the intensity of backscattering
with increased roughness caused by the earthquake. The figure
shows that the backscattering range of the images becomes wider
after the earthquake.

The radar interferometry technique was used to identify
changes in SAR images and indicate visual and spatial changes
over time. Spatial changes in SAR images over time were
measured based on the estimation of the correlation between the
interferometry phases of pairs of images taken before and after
the earthquake. The pixel-scale cross-correlation of two SAR
image phases at different times before and after the earthquake
is called the coherence of the SAR images [43]. To extract a map
of spatial changes over time, interferometry values produced by
a comparative method were filtered based on the coherence of
local scenes and the Goldstein filter [50]. This technique filters
areas with large differences from coherent areas to enhance
the visualization of deformation margins and reduces the noise
levels of temporal and spatial baselines. The coherence tech-
nique is valuable in specific applications, such as displacement
measurement and the identification of deformation and plate
displacement due to earthquakes. As roads are infrastructure
components that may change, they are used as forecasting met-
rics in this article, and radar images are used. The correlation of
coherence in the interferometry phase is based on the complex
phase values of two SAR acquisition, varies between 0 and 1 and
serves as a criterion for evaluating the quality of the generated
interferogram. Coherence is defined based on two Gaussian
variables a and b, with a mean value of 0 [51]

γ =
E (ab∗)

√
E (aa∗)E (bb∗)

. (1)
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Fig. 3. (a) Histogram of backscattering in the study area. (b) SAR intensity images used in this article. (c) Scatter plot of IRI measurements and the coefficient
of determination (r2).

Fig. 4. Quantiles for the three SAR intensity images.

In (1), a represents the relative integrated value for the orig-
inal image, and b indicates the relative integrated value for
the dependent image. In interferometry analysis, represents a
complex image, and E is the expectation operator. In this article,
multitemporal analysis was applied to descending datasets (VV
polarization) to identify spatial changes in affected areas over
time. Additionally, a coherence map was used based on a simple
random distinction method [52]

γdif = γpre − γco. (2)

The results obtained from (2) can be interpreted as follows:
a high coherence value indicates no change over the selected
period and vice versa. This method is used to assess changes,
but it requires at least three SAR images extracted from a certain
path and with a certain geometry. In general, the shorter the
distance between images is, the more observable the changes at
a small level, such as natural changes and plant growth.

The produced images, including three parameters, were used
to illustrate changes as a color composite. The first parameter
was forward change, i.e., change related to an event. The second
parameter was reverse change, or changes in human activities
and vegetation growth. The third parameter was fixed, indicating
that no change occurred over the study period. These parameters
were designed as follows. After the parameters were calculated,
the first, second, and third parameters were assigned to the red,
green, and blue channels, respectively [53]

Forward =
γpre − γpost

γpre + γpost
(3)

Reverse =
γpost − γpre

γpost + γpre
(4)

Constant =
γpost − γpre

2
. (5)
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Fig. 5. Distribution of roughness index measurements before and after the
earthquake.

Consequently, the result can be shown as a colored image with
three bands that vary in intensity. After the required information
was obtained from radar images and coherence information,
the road roughness index was classified for forecasting and
validation based on IRI values. Therefore, a classification tech-
nique was selected, and the available IRI points were divided
into training and validation sets to establish and validate the
developed IRI mapping algorithm.

C. IRI Classification

In this article, the threshold classification method based on
Jenks natural breaks optimization was used due to the lack
of information regarding road characteristics and the lack of
parameters available to evaluate the IRI forecasting accuracy,
before earthquake IRI measurements were used to classify roads
into two classes: good and bad. The Jenks natural breaks opti-
mization threshold approach was applied. This method is a data
classification technique and was used to determine the ideal
classes for IRI values for good and bad roads in this article.
Jenks optimization is based on univariate classification, which
maximizes the distinction between classes. Thus, this method
reduces in-class variance while maximizing inter-category vari-
ance [19]. In general, the roads located in the studied area are
suitable, except those in a few areas with very poor conditions.

Fig. 5 depicts the distribution of IRI measurements in before
and after the earthquake. Before the earthquake, the first and
third quartile values were 1.7 and 3.2 m/km, respectively, and
after the earthquake, they were 1.9 and 3.8 m/km.

D. Machine Learning

Forecasting or prediction is a process in which a set of inputs
is used to estimate the value of an output variable. Machine
learning is used in many fields and is commonly applied in
conjunction with remote sensing. Machine learning is a branch
of artificial intelligence, with a focus on prediction or clustering.
In machine learning, the developed algorithms can learn infor-
mation for modeling. This method can also be used to make
predictions. The core step in machine learning includes training
based on samples, and two types of information must be selected
by the user: inputs based on the data derived from analyses and
the output (road roughness here). The algorithm establishes an
effective model based on these data, and the model can be used
for prediction tasks. In this article, a deep learning technique

Fig. 6. Abstract description of the proposed deep learning process model.

is applied to predict road roughness using remote sensing data
[47], [54]–[56].

E. Deep Learning Model

Deep learning is a specific type of machine learning method
that uses neural networks, and the deep learning architecture
includes several layers. These different layers are used to extract
and manipulate features. The output of the previous layer is
used as the input of the next layer. Deep learning involves
many data conversion and processing steps from the input layer
to the output layer. Several hidden layers between the input
and output layers allow data from different training layers to
be learned. Thus, complex data structures can be identified to
adjust parameters in different layers. We suggest a multilayer
perceptron (MLP) based binary classifier. Neural networks are
used in target recognition and image classification in various
fields. To solve complex situations, more layers are needed in
a neural network that is fully connected to all neurons, called
the MLP neural network [57]. An MLP is a layered network of
artificial neurons in which data circulates in one way from the
input layer to the output layer, which includes an input layer, an
output layer, and hidden layers. The input layer contains network
input features. The first hidden layer receives weighted inputs
from the input layer and sends the data from the previous layer to
the next layer. The output layer contains the classification result.
The use of additional layers allows perceptron to solve nonlinear
classification problems. Hidden layer neurons use an activation
(nonlinear) function. In this article, RapidMiner software was
used for optimum MLP design. This software includes a con-
venient graphic visual environment that supports prediction and
classification. The architecture of the algorithm process is shown
in Fig. 6. To establish the deep learning model, several steps
must be taken: preprocessing and extracting features, producing
training and verification datasets, and evaluating model perfor-
mance. Deep learning has emerged as an important research
topic in recent years [58]–[62].

RapidMiner is a data science software platform that provides
an integrated environment for data preparation, analysis, and
visualization, and it was first published in 2006. This software
covers data mining algorithms and supports different neural
networks. The software eliminates the need for code writing and
relies on operators. Users can link operators without program-
ming knowledge by simply setting parameters for data analysis.
Each block includes a set of adjustable parameters related to
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TABLE II
MLP PARAMETERS FOR DEEP LEARNING

a selected algorithm. This software is highly developed and is
used in many fields, including remote sensing [63], [64].

Preprocessing includes various substeps, such as role setting
and initial transformation. IRI data after the earthquake was
processed as ground reference sets and then separated into
two categories, namely denoting intact and damaged roads.
The after-earthquake roughness value was assigned as 1 and 2,
indicating an intact and damaged road, respectively. All data
selected for prediction were normalized, and empty records
were replaced with suitable values. Then, the data were divided
into training and validation sets at a 70/30 ratio. Auto feature
engineering is a powerful process in RapidMiner, and a deep
learning MLP model is used to internally select a subset of
features from a full set of features. The MLP included default
parameters that were optimized to find the best set of features.
Based on the training dataset, the MLP model was trained to
obtain the final features, and optimized default parameter values
were obtained with the automodel RapidMiner extension [59].

After the best features were obtained through auto feature
engineering, a classification model was used to detect intact and
damaged roads. The classification model was a very deep learn-
ing MLP model, and it was also used for feature engineering.
Table II gives the parameter settings, including the optimized
default values, obtained with RapidMiner.

III. RESULTS AND DISCUSSION

In general, acceptable prediction results were obtained with
the deep learning algorithm for IRI measurement-SAR data
fitting. As mentioned, we classified information with a focus
on simple interpretability, and all measurements were classified
into two categories using a natural break algorithm. The result
suggested that the model could be effectively used to classify
roads based on the remote sensing parameters. Fig. 5 depicts
the IRI values before and after the earthquake and observable

TABLE III
THRESHOLD OF IRI VALUES FOR GOOD AND BAD ROADS BEFORE THE

EARTHQUAKE

changes after the earthquake. The thresholds applied in this
classification process are given in Table III.

After IRI measurements were classified, we built classifica-
tion maps to support the required analysis of road roughness
before and after the earthquake, as shown in Fig. 7(a) and (b).
Road roughness was generally observed in urban areas before
the earthquake in Fig. (7a), and major roads were less roughness
than smaller roads. In urban areas with many crossroads and
traffic routes, the degree of roughness was high. Before the
earthquake, road roughness was within an acceptable range,
but speed bumps, potholes, and other issues influenced parts of
routes. In some cases, routes were initially damaged and became
less rough after the earthquake. In such cases, the roughness class
was intact and not damaged. However, such areas were rare. In
general, high changes were observed after theM7 earthquake,
and these changes are shown in Fig. 7. The roughness index
increased after the earthquake, as shown in the zoomed black
box in Fig. 7(a1)-(2).

Additionally, Fig. 7(b1)-(2) depicts roads with relatively large
roughness changes after the earthquake. Notably, the area shown
in Fig. 7(b1), with roads passing through farmland zones, experi-
enced great changes. Rationally, the roads around farmlands are
less strong than major roads, leading to major post-earthquake
changes. Elsewhere, changes were generally minor. Moreover,
some crossroads areas changed, perhaps because they were old.
In addition, urban roads changed, out-of-town roads generally
remained in good condition, and only small roads displayed
notable increases in roughness.

Moreover, low roughness values do not necessarily suggest
that no change in roughness occurred; in many cases, roads
remained intact with only minor changes that did not influence
the road class. For example, on section of road had an initial
roughness index of 0.4, which reached 1.6 after the earth-
quake, but this change was not sufficient for the roading being
classified as damaged. Some roads displayed initial roughness
index values of 3.2 and were classified as intact, but this value
increased to 4.1 after the earthquake, leading to a “damaged”
classification. However, most roads remained intact after the
earthquake, and only rough routes were severely influenced.
Major roads experienced fewer changes than side streets for
various reasons, such as enhanced construction, more thorough
road maintenance, stronger substructures, and other factors.

According to the identified results for each part of the road,
the cumulative percentage of IRI values was calculated before
and after the earthquake. Fig. 8 illustrates the statistical results
for roads before and after the earthquake. Notably, as roads
became displaced after the earthquake, the plot shifted to the
right. The IRI rates of roads reflect an ascending road roughness
trend. The roughness rate equaled 0.1 before the earthquake
but reached 0.8 after the disaster; additionally, the density was
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Fig. 7. Natural break classification results for intact roads (blue dots) and damaged roads (red dots) based on the IRI. (a) Before the earthquake. (b) After the
earthquake.

Fig. 8. Statistical results for roughness values before and after the earthquake.

approximately 1.5–2.5 before the earthquake and 1.9–2.3 after.
Changes were also observed for intact roads, but these were
not considered since these roads were assigned to class 2. The
roughness of intact roads also increased, but classifying these
roads as damaged yielded inaccurate results. The closer the
IRI value is to zero, the smoother the road is, and vice versa.
Among the 28 000 roads for which IRI values were obtained,
24 013 roads were good, and 3987 roads were bad. These values
changed to 21 515 intact and 6485 damaged roads after the
earthquake. Accordingly, 15% of all roads needed repair before
the earthquake, and this rate increased to 25% after the disaster.
After the information was classified in text form, the relevant
software was used for statistical analysis, and the data were
input into the software and labeled to classify and predict the
results.

As mentioned, five remote sensing parameters were used
in this article, and three preprocessed images were obtained
(two initial images before the earthquake and one final image
after the earthquake); all three images displayed no polarization
distortion. Although dual-polarized or full polarimetric images
can provide us more detailed information [66]–[69], but here
only VV polarization was used due to its acceptable performance
in tasks involving road roughness identification [20], [65]. Two

Fig. 9. SAR image-based RGB color combination to visualize changes to
roads in the study area.

coherence images obtained from the above-described images
were used to detect changes. The damage results were predicted
using remote sensing data and a deep learning model. The
findings are reported herein.

Fig. 9 depicts a colored coherence image composite that
indicates changes, with red pixels denoting extensive changes.
Southern areas were close to the earthquake epicenter, where
changes are clear. Interurban roads of low quality experi-
enced the greatest changes caused by the earthquake. Green
areas mainly indicate changes in vegetation. Plants grew, and
backscattering highly changed within temporal distance be-
tween images. In areas with out-of-town roads and farmland
areas, considerable changes were observed in the density of
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Fig. 10. Results of road damage prediction based on the proposed deep learning method.

TABLE IV
CONFUSION MATRIX OF THE PROPOSED MODEL

backscattering. Blue pixels indicate small changes. The results
are visually consistent with the measured IRI values, suggesting
that the model provides effective predictions.

In this article, the five mentioned remote sensing parameters
were input into the deep learning model for prediction. As noted,
the studied roads were divided into two classes. The applied
algorithm was used to predict changes after the earthquake
using training samples. A confusion matrix was used to evaluate
algorithm performance; this matrix indicates the relationship be-
tween actual and predicted values. Additionally, class precision
reflects the performance and accuracy of the algorithm, class
recall represents the percentage of classes correctly predicted
(%), and accuracy indicates the percentage of correctly predicted
based on observations (%), which is the most important criterion
used to assess a classification technique. This criterion measures
the overall accuracy of classification. The recall(x) criterion
represents the precision of class x classification considering
all records labeled x. The precision(x) criterion indicates the
precision of classification of x for all cases in which the x label
was predicted in classification for the considered record. Note
that recall(x) indicates the efficiency of classification based on
the number of class x occurrences, and precision(x) is related
to the prediction precision of classification, indicating to what
extent the classification output is reliable.

Moreover, in classification cases in which some records are
labeled as undetermined, the denominator of the recall(x) calcu-
lation must be considered equal to the total number of records
with label x. F-measure(x) is a combination of the recall and
precision criteria. This metric is used when it is not possible
to consider specific importance for either of these two criteria
separately. Area under the curve (AUC) represents the rate
of correct prediction, and the closer the AUC is to 100, the
higher the prediction precision. The numerical value of AUC
is a numerical resolution between 1 and 100 and indicates the
power of detection or accuracy of test results. The accuracy of

TABLE V
CLASSIFICATION PERFORMANCE OF THE PROPOSED MODEL

the test results depends on how well the test method is able show
the correct positive and negative results. If this number is close
to 100, it means that the data are generally above the bisector
line and the positive rate is high, and the test method has good
detection or accuracy. This matrix is a useful tool for analyzing
the performance of a prediction method when different data,
observations, or classes are considered. In the ideal case, the
majority of observation data fall along the main diagonal, and
the remaining values are zero or close to zero. Accordingly, the
prediction results are given in Tables IV and V.

Deep learning was used to analyze the obtained results and
produce a binary map. In Fig. 10, the same areas in the images
illustrated in Fig. 8 are magnified. The deep learning algorithm
displayed relatively high-quality performance. The predicted
changes were similar to the changes in the IRI, but there were
some incorrect predictions. Such changes are likely related to
the use of moderate-resolution images with features in mul-
tiple pixels. In addition, the studied area is a humid region
with extensive vegetation, so trees and their leaves that grew
during the study period negatively affected the backscattering
data collection. In particular, areas where interurban roads pass
through farmland zones and gardens, as shown in Fig. 10, or
with trees growing near roads and highways are often where
incorrect predictions occur. In general, the areas close to the
earthquake epicenter experienced changes in both coherence and
SAR images. The obtained results of the applied algorithm are
consistent with observations, indicating the good performance
of the approach based on SAR images. As given in Table IV,
two classes were designed for prediction using remote sensing
parameters and the measured reference IRIs. Classes 1 and 2
indicate intact and damaged roads, respectively. Because the
classifications results for class 2 roads were based on all roads
in the study area and damaged roads were less common than
intact roads, the classification precision was lower for damaged
roads than for intact roads. Although the learning model was
limited in some cases, 82.77% of the results were acceptable.
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Notably, precision was generally higher for intact roads, with
more iterations considered. These roads could be assessed under
different conditions, and model performance was acceptable.

The precision of predictions for the intact road class equaled
87.67%. According to Table V, the overall precision of the
proposed algorithm reached 87.1%, which was an acceptable
rate. The AUC indicated the probability of correct precision
and equaled 97.5, reflecting the high potential of the proposed
algorithm for new data prediction. Moreover, the recall and
F-measure values equaled 97.5% and 83.1%, respectively. We
found that C-band SAR data and coherence can serve as a
valuable bases to predict RI values at the road network level
and identify and rank roads in need of pavement maintenance
and repair. This method can be applied in crisis management
and road monitoring. Application of this strategy can accelerate
road work and the identification of rough roads, especially if
there is a lack of financial resources.

It should be noted that the relationship between the IRI and
SAR images may vary in different cases based on the interfer-
ometry process of the satellite at a moderate-spatial-resolution
power; images with higher spatial resolutions could enhance
model performance if considered in other cases. Therefore,
the results derived from moderate-resolution images and the
proposed deep learning algorithm can be used to effectively
evaluate vertical displacement in road networks.

Moreover, various issues may be encountered when identi-
fying changes in roads based on high-resolution images. As
given in Table V, the overall precision of the proposed algo-
rithm equaled 87.1%, which indicated good performance. The
results of this article were similar to those of Karimzadeh and
Matsuoka [19] using SAR images in the X- band for the Tabriz-
Iran highway, they were able to show the relationship between
backscattering and roughness index and Mayer et al. [24] using
SAR images in X-band and roughness index for Virginia showed
that there is a relationship between roughness index and SAR
data scatter and based on the designed classification, achieved
an overall accuracy of 92.6%, who used SAR images for IRI
detection. However, in this article, high-accuracy C-band images
were obtained with the proposed deep learning method.

IV. CONCLUSION

Collecting IRI data with traditional methods is a costly and
time-consuming process; therefore, it is difficult to use this
technique in practical crisis management and road monitoring.
In contrast, remote sensing provides high potential for such
tasks, and SAR can provide timely information about local
changes in road surface conditions and large volumes of road
data in a short amount of time. Therefore, the use of remote
sensing parameters to identify road roughness was explored in
this article, and a new machine learning method based on deep
learning was proposed. The roughness of intact and damaged
roads was accurately predicted based on IRI information before
and after an earthquake using deep learning and remote sensing
techniques. The precision of the proposed method reached 87,
suggesting that this approach can be used during crises to rapidly
collect data and identify critical areas. In this research, IRI values

were obtained using the quarter-car model and a smartphone
connected to the car, and C-band SAR images with a moderate
resolution were used. IRI values were considered references.
Although SAR images have some limitations, such as those re-
lated to the type of backscattering, they provided high precision
overall. The use of satellite-based SAR image for road roughness
assessment could minimize the data collection time and promote
the establishment of large road quality datasets. Further studies
will use the same method and images with higher resolutions to
explore other aspects of road roughness classification based on
remote sensing data.
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