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Modeling and Predicting Land Use Land Cover
Spatiotemporal Changes: A Case Study

in Chalus Watershed, Iran
Sepideh Jalayer , Alireza Sharifi , Dariush Abbasi-Moghadam , Aqil Tariq , and Shujing Qin

Abstract—Land use and land cover (LULC) change is a main
driver of global environmental change and has destructive effects
on the structure and function of the ecosystem. This study attempts
to detect temporal and spatial changes in LULC patterns of the
Chalus watershed during the last two decades using multitemporal
Landsat images and predict the future LULC changes and patterns
of the Chalus watershed for the year 2040. A hybrid method be-
tween segment-based and pixel-based classification was applied for
each Landsat image in 2001, 2014, and 2021 to produce LULC maps
of the Chalus watershed. In this study, the transition potential maps
and the transition probability matrices between LULC types were
provided by the support vector machine algorithm and the Markov
chain model, respectively, to project the 2021 and 2040 LULC
maps. The achieved K-index values that compared the simulated
LULC map with the actual LULC map of the year 2021 resulted
in a Kstandard = 0.9160, Kno = 0.9379, Klocation = 0.9318,
and KlocationStrata = 0.9320, showing good agreement between
the actual and simulated LULC map. Analysis of the historical
LULC changes depicted that during 2001–2021, the significant
increase of agricultural land (14317 ha) and barren area (9063
ha), and the sharp decline of grassland (26215 ha), and forest
cover (5989 ha) were the major LULC changes in the Chalus
watershed. The model predicted that forest cover will continue to
decrease from 29.46 % (50720.2667 ha) in 2021 to 25.67 % of area
(44207.78694 ha) in 2040, as well as, unceasing expansion of barren
area, agricultural land, and built-up area will be expected by 2040.
Therefore, understanding the spatiotemporal dynamics of LULC
change is extremely important to implement essential measures and
minimize the destructive consequences of these changes.
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I. INTRODUCTION

LAND-USE/LAND-COVER (LULC) plays an important
role in environmental processes, climate features, and

biodiversity. Therefore, many studies have been carried out
on monitoring and forecasting of LULC dynamics [1]–[3].
LULC changes, including deforestation, agricultural expansion
because of population growth and more demand for crops,
residential area development, and reduction of pasture areas,
have destructive effects on the ecosystem. LULC changes,
especially in the form of deforestation, cause an increase in
greenhouse gas emissions and release large amounts of CO2

into the atmosphere, which contribute to global warming and
disrupt normal weather patterns [4]–[6]. In addition, deforesta-
tion and conversion of land from pasture to agricultural or
residential uses increase the occurrence of floods, soil degra-
dation, landslides, drought, air pollution, desertification, and
biodiversity loss and also affect the quantity and quality of
surface water and groundwater resources [7], [8]. Assessment of
LULC change detection and prediction can provide important
policy recommendations for advanced ecosystem management,
studying global environmental change, and monitoring natural
disasters [9].

Geospatial modeling of LULC changes and urban expansion
can be used by land use planners to determine and monitor the
future trend, rate, location, and magnitude of LULC changes
[10]–[13]. In recent years, RS and GIS have become important
geospatial tools for effective decision-making in sustainable land
management, city and regional planning, and natural resource
assessment. RS and GIS techniques are the most widely used
approaches for producing LULC maps of an area in different
years with acceptable accuracy to aid users in evaluating LULC
spatiotemporal changes to implement essential measures and
manage natural resources sustainably [14]–[18]. Therefore, it
is essential to classify and map LULC patterns and dynamics
using multitemporal satellite images to analyze the changes
in LULC for different decades and forecast the future pattern
of LULC types with different methods and techniques as the
land change modeler or (CA)-Markov chain model [19]. The
CA-Markov is a hybrid model which can predict the transitions
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or spatiotemporal dynamics of LULC classes [20], [21]. The
land change modeler (LCM) is based on transition probability
matrices produced by the Markov chain and transition potential
maps produced by training the support vector machine (SVM),
MLP, logistic regression, decision forest, WNL, or SimWeight
options.

Image classification is the most significant technique used
in remote sensing for creating thematic maps from satellite
imagery [22]. Several methods have been developed to clas-
sify LULC types. For instance, Talukdar et al. [3] utilized six
machine learning algorithms for LULC mapping, namely fuzzy
ARTMAP, RF, ANN, Mahalanobis distance, SAM, and SVM,
to evaluate the accuracy of different algorithms and identify
the best machine learning LULC classifier. Din and Mak [23]
analyzed the LULC changes in Hyderabad during the years
1979–2020, and SVM algorithm was applied for the supervised
classification of different acquired Landsat data. In their study,
Liu and Li et al. used Landsat images and a RF classifier based on
the GEE platform for LULC mapping in the Ganan prefecture.
In this article, spectral indexes (NDVI, NDBI, and MNDWI)
were calculated for each image and 11 potential factors were
specified to evaluate their influences on LULC dynamics [24].
Wang et al. [25] classified Landsat 5 and 8 images for the years
1990 and 2010 using MLC in the ERDAS imagine and ArcGIS.
Then LULC classified maps were imported to the CA-Markov
model to detect and predict LULC changes.

Many researchers have been applying various geospatial mod-
eling of LULC changes to evaluate the important impacts of
future LULC patterns [26]. For instance, Leta et al. [27] analyzed
the LULC spatiotemporal changes in the Nashe watershed using
the MLC technique and predicted LULC maps for the years 2035
and 2050 by considering the potential driver variables. Abijith
and Saravanan [28] applied random forest classification to pro-
duce the LULC maps on the Northern TN coast and employed
the CA-Markov modeling approach to simulate LULC maps of
2025 and 2030. This research aims to detect LULC changes
in the Chalus watershed during 2001–2021 using a hybrid ap-
proach between segment-based and pixel-based classification,
which provides more accurate results for large study areas. In
this research, the transition potential maps and the transition
probability matrices for the years 2021 and 2040 are provided by
the SVM algorithm and the Markov chain model, respectively, to
project the 2021 and 2040 LULC maps of the Chalus watershed.
Therefore, in this study SVM algorithm has been utilized to
produce the transition potential maps of this densely study area
which has the better results than other algorithms that have been
used in previous studies such as MLP, logistic regression, WNL,
or SimWeight.

II. MATERIALS AND METHODS

A. Study Area

The Chalus watershed, with an area of 1721.932 km2 , is
located in the west part of Mazandaran Province. Mazandaran
Province is the most populous province in Iran, which is located
in the south of the Caspian Sea. The Chalus watershed extends
between 36° 10′ 0′′ N to 36° 40′ 0′′ N latitudes and 51° 0′ 0′′

Fig. 1. Geographical location of the Chalus watershed in the province and
country.

E to 51° 40′ 0′′ E longitudes and this region is very sensitive to
both LULC change and climate change. The land cover includes
built-up area, forest, garden, barren area, agricultural land, water
body, grassland, and shrubland, and the annual rainfall ranges
from 600 to 700 mm. The minimum and maximum heights of the
Chalus watershed are −30 m and 4259 m, respectively, and the
average slope of the basin is 41.63°. Fig. 1 depicts the location
of the Chalus watershed in Iran.

B. Datasets and Preprocessing

In this study, three Landsat images of the ETM+ (for the year
2001) and OLI (for the years 2014 and 2021) sensors have been
used for LULC classification and analysis in the Chalus water-
shed (Table I). Landsat data archive having images sufficiently
consistent with data from the earlier missions allows assessing
long-term (since 1972) regional and global LULC changes. The
Landsat dataset were acquired in the same month for each year to
avoid extreme differences in the LULC reflectance dataset [27].
Other geospatial data including digital elevation model (DEM),
the study area boundaries, and geographic features such as
stream networks, road networks, built-up areas, and forest cover
of the Chalus watershed in the shapefile format (points, lines, and
polygons) collected from the Iran National Cartographic Center,
to produce topographic and distance driver variables for LULC
simulation of the study area. These datasets were imported in
ArcGIS 10.7.1, ENVI 5.3, ENVI Classic, and TerrSet software
to produce LULC maps and predict the LULC trends for the
study area. Then, the ground truth points of the Chalus watershed
obtained from the high-resolution images of the Google Earth
and field sampling were used for accuracy assessment. The flow
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TABLE I
LANDSAT DATA CHARACTERIZATION FOR LULC CHANGE ANALYSIS IN THE CHALUS WATERSHED

Fig. 2. Methodological framework for LULC classification.

chart for LULC classification to produce LULC maps of the
Chalus watershed has been shown in Fig. 2.

The projection systems of all Landsat images and shapefiles
were georeferenced to the WGS 84/UTM zone 39 N projec-
tion system [29], [30]. In ENVI 5.3 software, the radiometric
calibration was performed in order to transform data’s DN
values to spectral radiance (at the sensor). Then, an atmospheric
correction was done to all Landsat images by using FLAASH

algorithm in ENVI 5.3 software [23], [29]. Following that, we
used pixel-level image fusion to improve the spatial resolution of
multispectral satellite images from the ETM+ and OLI sensors
while retaining the multispectral image’s spectral information
in the fused image.

Thus, we used the Gram–Schmidt pan-sharpening approach
to combine the spectral information of a low-resolution mul-
tispectral image (30 m) with the spatial information of a
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Fig. 3. Schematic architecture of LULC classifiers. (a) Decision forest. (b)
Fuzzy ARTMAP.

high-resolution panchromatic image (15 m) to obtain a high-
resolution MS image with a spatial resolution of 15 m [31]. Due
to the problem of cloud cover in optical satellite imagery, which
causes to miss information in images, mosaicking the cloud-free
areas in the Landsat images for the years 2001 and 2021 was
conducted to generate cloud-free composite scenes. Then, the
spatial analyst extension was used to subset the cloud-free
Landsat images and shapefiles to the region of interest in ArcGIS
10.7.1 software. Afterward, the false color composite of images
(RGB= 43,2 for ETM+ and RGB= 54,3 for OLI) were created
in TerrSet software before LULC classification.

C. LULC Classification

In this study, a hybrid approach between segment-based and
pixel-based classification [32] was applied in TerrSet software
to classify eight land use/cover categories including built-up
area, forest, garden, barren area, agricultural land, water body,
grassland, and shrubland in the Chalus watershed for the years
2001, 2014, and 2021. In this research, decision forest and fuzzy
ARTMAP algorithms were implemented to produce pixel-based
classified maps of Landsat images (Fig. 3). Decision forest is a
supervised machine learning algorithm based on the concept of
ensemble learning that can be used for both classification as well
as regression. This algorithm consists of many decision trees and

predicts the final output based on majority voting or averaging
of the predictions from trees in the entire forest [33]. In addition,
in the LULC classification of satellite images, it is difficult to
demarcate between some pairs of land use/cover types; hence, a
strategy of pattern classification based on fuzzy logic has been
conducted for LULC classification. In recent years, an adaptive
resonance theory (ART) map consists of two ART modules
(ARTa, ARTb) based on neural networks incorporating fuzzy
learning, namely fuzzy ARTMAP has been utilized for pattern
classification [3], [34].

The hybrid approach between segment-based and pixel-based
classification consists of three modules: Segmentation, SEG-
TRAIN, and SEGCLASS. In the first stage, the segmentation
module was used to group pixels with a homogeneous spectral
similarity into specific segments to create an image comprised of
segments [32]. A moving window (3∗3) evaluated the variance
and segments were demarcated relying on a specified similarity
threshold. A larger similarity threshold will result in more gener-
alized, less homogeneous segments, and the number of segments
in the output image will be fewer [32]. In the second stage,
the SEGTRAIN module was applied to create training sites
and signature classes from the image segments. This module
assigned the segments to specific land use/cover types to develop
training sites and signatures. Once the training sites were de-
fined, we started the classification stage. In our case, we imported
the segment-based signatures we just created to run decision
forest, and fuzzy ARTMAP classifiers to use the pixel-based
classified images as our reference images for the SEGCLASS
module. In the last stage, the SEGCLASS module was used
to classify segments based on a pixel-based classified image
obtained through decision forest, and fuzzy ARTMAP methods.
The SEGCLASS module applied a majority rule algorithm to
assign the majority class within each segment from the reference
images. The SEGCLASS module can improve the accuracy of
the pixel-based classified images and create smoother classified
maps. Therefore, we employed a segmentation classification
procedure by combining two pixel-based classifiers (decision
forest and fuzzy ARTMAP) with segment-based classification
for each Landsat image in 2001, 2014, and 2021 to create LULC
maps of the Chalus watershed.

D. Accuracy Assessment of Classified Maps

The accuracy assessment of the segment-based classified
maps using decision forest, and fuzzy ARTMAP is required
before LULC change detection and future prediction. The vali-
dation of segmentation classification was implemented using the
Confusion Matrix tool in ENVI Classic 5.3 through the ground
truth points of the Chalus watershed obtained from Google
Earth and field sampling. Therefore, kappa coefficient, overall
accuracy, user’s, and producer’s accuracy of the classified LULC
maps were computed for assessment [27], [35].

OA =

∑r
i=1 Dii

N
(1)

UA =

∑r
i=1 Dij

X+i
(2)
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PA =

∑r
i=1 Dij

Xi+
(3)

K =
N

∑r
i=1 Xii −

∑r
i=1(Xi+ ∗X+i)

N2 −∑r
i=1(Xi+ ∗X+i)

(4)

where N: total number of values, r: number of rows,Dii : number
of total correct values, Dij : number of correct values in row i,
Dij : number of correct values in column j,Xii: number of values
in row i and column i, X+i and Xi+: the column total and row
total, respectively [18], [27].

E. Modeling and Predicting LULC Spatiotemporal Changes

TerrSet is an extensive set of procedures for image restoration,
enhancement, transformation, and classification of remotely
sensed imagery. In this study, the LCM in TerrSet software [36]
was used to analyze LULC dynamics between two periods and
predict the future pattern of LULC by using transition potential
maps and transition probability matrices. Therefore, simulation
and prediction of LULC changes in the Chalus watershed for the
years 2021 and 2040 were carried out by following these four
steps: first, LULC change assessment, second, LULC transition
potential modeling, third, LULC change prediction, and fourth,
validation of SVM-MC model output.

F. LULC Change Assessment

The LULC maps of 2001 with 2014, 2014 with 2021, and
2001 with 2021 were compared with analyze LULC changes
in the Chalus watershed. The change analysis evaluates the
quantitative changes, by charting gains and losses, between
various LULC classes [36], [37]. Thus, the dominant transitions
among different LULC types between two different years, and
net changes for each LULC class were calculated [35], [36].

G. LULC Transition Potential Modeling

LULC transitions in the Chalus watershed that existed be-
tween the two LULC maps were grouped into submodels. Then,
several driving factors such as DEM, slope, distance from road,
distance from stream, distance from built-up area, distance from
forest, and evidence likelihood rasters were selected as the poten-
tial driver factors that influence LULC changes and were tested
based on Cramer’s V coefficient [27], [35], [38]. Geographic
features such as stream networks, road networks, built-up areas,
and forest cover of the Chalus watershed in the shapefile format
were imported into ArcGIS 10.7.1 to extract distance driver
variables using Euclidean distance procedure. The evidence
likelihood rasters were prepared based on a Boolean map of areas
that have gone through the transition between two different years
and a categorical variable that has been binned into classes. The
importance of each variable was determined using Cramer’s V,
that a high Cramer’s V demonstrates the potential explanatory
value of the variable is acceptable [39]. Afterward, the model-
ing of transition submodels was implemented by using SVM
algorithm in TerrSet software to generate transition potential
maps. They are the pixels that underwent the transitions from
one LULC type to another being modeled also the pixels that
had the potential to change in certain periods [40].

Fig. 4. Flowchart for LULC simulation.

H. LULC Change Prediction

The Markov chain model determines the chance of transi-
tioning from one LULC type to another and creates a transition
probability matrix utilizing the earlier and later LULC maps,
as well as the date supplied as the prediction date, based on a
future projection of the transition potentials [27], [40]. LCM
provides two kinds of change prediction, namely soft and hard
prediction [36]. Hard prediction is based on multiobjective land
allocation module [36], [40], [41], and soft prediction provides
a continuous mapping of vulnerability to change, in which each
pixel is dedicated a value between 0 and 1 [27], [41]. In this
study, the hard prediction was used to create LULC maps of
the Chalus watershed with the same categories as the inputs for
the years 2021 and 2040. The simulated LULC map of 2021
was produced by using 2001 and 2014 classified maps, and the
LULC maps of 2001 and 2021 were utilized to predict the LULC
map of the Chalus watershed for the year 2040.

I. Validation of SVM-MC Model Output

The classified LULC maps of the 2001 and 2014 years were
utilized to produce the simulated LULC map for 2021. Then, the
simulated and the actual LULC map of 2021 were compared with
calibrate and validate the LCM model. Kstandard, Klocation,
Kno, and KlocationStrata [27] were calculated to evaluate the
overall accuracy both in terms of location and quantity. The
flowchart for LULC change detection during 2001–2014 and
simulation the future pattern of LULC in the Chalus watershed
for the year 2021 has been illustrated in Fig. 4.
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Fig. 5. LULC classified maps based on decision forest for the years 2001, 2014, and 2021, and the area of LULC classes (ha).

III. RESULTS AND DISCUSSION

A. Accuracy Assessment of LULC Classification

The LULC classified maps of the Chalus watershed for the
years 2001, 2014, and 2021, and the area of LULC classes (ha)
are shown in Figs. 5 and 6. The accuracy assessment of LULC
maps can provide the degree of confidence in the results to
evaluate different classification methods. For accuracy assess-
ment, the segment-based classified maps using decision forest
and fuzzy ARTMAP pixel-based classification were compared
with the ground truth points of the Chalus watershed obtained
from the high-resolution images of the Google Earth and field
sampling. Therefore, kappa coefficient, overall accuracy, user’s
and producer’s accuracy of the LULC maps were produced by
generating confusion/error matrix (Tables II and III). The results
show that combining decision forest pixel-based classifier with
segment-based classification has the highest accuracy in LULC
classification, as shown in Table II, the overall accuracy was

95.4286 %, 96.1631 %, and 97.1429 % for the years 2001,
2014, and 2021, respectively. Therefore, in the next stages of
the research, the segment-based classified maps using decision
forest have been used to analyze LULC changes for different
periods and forecast the future pattern of LULC in the Chalus
watershed.

B. Analyzing LULC Changes

The area coverage of different LULC categories in the Chalus
watershed for the years 2001, 2014, and 2021 were calculated
(Table IV). Grassland is the main LULC class in the Chalus
watershed which covered 48.85 % of the area in 2001, 38.48
% in 2014, and 33.64 % in 2021. Forest covered an area of
32.93 % (56709.21 ha) in 2001 but decreased substantially to
31.70 % (54598.95 ha) in 2014 and 29.46 % (50720.26 ha)
in 2021, respectively. Agricultural land increased from 2.75 %
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Fig. 6. LULC classified maps based on fuzzy ARTMAP for the years 2001, 2014, and 2021, and the area of LULC classes (ha).

TABLE II
ACCURACY OF THE SEGMENT-BASED CLASSIFIED MAPS USING DECISION FOREST FOR THE YEARS 2001, 2014, AND 2021
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TABLE III
ACCURACY OF THE SEGMENT-BASED CLASSIFIED MAPS USING DECISION FOREST FOR THE YEARS 2001, 2014, AND 2021

TABLE IV
AREA COVERAGE OF LULC CLASSES IN THE CHALUS WATERSHED FOR THE YEARS 2001, 2014, AND 2021

(4748.54 ha) in 2001 to 6.823 % (11747.04 ha) in 2014 and
11.07 % (19065.31 ha) in 2021, respectively. Similarly, Barren
area increased from 4.237 % of the study area (7292.7746 ha)
in 2001 to 9.498 % (16355.6959 ha) in 2021. Built-up area
covered an area of 0.863 % (1486.509 ha) in 2001, and increased
substantially to 1.322 % (2277.3742 ha) in 2014 and 1.394 %
(2401.9659 ha) in 2021, respectively (Table IV). In addition, the
spatiotemporal changes between different LULC categories in
the Chalus watershed during the period 2001, 2014, and 2021
were analyzed (Table V). During 2001–2021, the net change
area of built-up area, forest, garden, barren area, agricultural
land, water body, grassland, and shrubland were 915, −5989,
1229, 9063, 14317, −42, −26215, and 6721 hectares (Table V).
Grassland to agricultural land (12548 ha), grassland to barren
area (9157 ha), and forest to shrubland (5611 ha) changes had
the highest LULC transition area for 2001–2021 (Fig. 7). During
2001–2021 period, the spatial coverage of grassland continued to
decrease. Moreover, the development of built-up area is differed
from 53.2 % (790.86 ha) during 2001–2014 to 5.47 % (124.59
ha) during 2014–2021. This increase (61.55 %) in built-up area
during 2001–2021 leads to a decrease in grassland (511 ha),

agricultural land (201 ha), garden (197 ha), shrubland (71 ha),
forest (20 ha), and water body (16 ha) (Fig. 8).

Thus, 12548 ha, 9157 ha, 2445 ha, 1382 ha, 511 ha, and 180 ha
of grassland have been converted into agricultural land, barren
area, shrubland, garden, built-up area, and forest, respectively,
between 2001 and 2021. During the same time period, the
proportion of water body has decreased from 307.20 ha to
265.39 ha, with 16 ha, 8.5 ha, 16 ha, and 1.5 ha areas have
been converted into built-up area, grassland, barren area, and
shrubland, respectively.

Furthermore, the area being determined as garden decreased
from 3922.3669 ha to 3787.9473 ha during the 2001–2014
period, and increased to 5151.3268 ha in 2021. Between 2001
and 2021, the majority of garden areas were being converted into
agricultural land and (511 ha) and built-up area (197 ha), while
part of grassland (1382 ha), forest cover (361 ha), and Shrubland
(222 ha) have been converted into garden during these years.
The gains and losses of different LULC categories in the Chalus
watershed between 2001 and 2021 were calculated, as shown
in Fig. 8. The significant increase of agricultural land, built-up
area, barren area, shrubland, and the sharp decline of grassland,
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TABLE V
NET CHANGES OF EACH LULC CATEGORY FOR 2001–2014, 2014–2021, AND 2001–2021

and forest cover were the major LULC changes in the Chalus
watershed. During 2001–2021, gain and loss in forest cover was
3038 ha (5.1 %) and 9027 ha (−15.66 %), with a net loss of
5989 ha (−10.56 %). Grassland lost 30208 ha (−35.91 %) and
gained 3993 ha (4.76 %), with a net loss of 26215 ha (−31.15
%). Built-up area increased with a net gain of 915 ha. Gain
and loss in agricultural land was 15888 ha and 1571 ha, with
a net gain of 14317 ha. The significant increase of barren area
(9063 ha) between 2001 and 2021, has resulted in a decline in
both grassland and agricultural land. The results show that rapid
population growth has led to residential area development and
agricultural expansion in the Chalus watershed. As well as, de-
forestation and reduction of pasture areas such as grassland in the
study area due to human activities have affected all the functions
of the watershed. For instance, deforestation and conversion of
grassland to agricultural land in the Chalus watershed have led to
barren area expansion, soil degradation, landslides, floods, and
biodiversity loss. These LULC changes in the Chalus watershed
have negatively affected the quantity and quality of surface water
and groundwater resources of the basin. Therefore, the analysis
of LULC changes is required to implement essential measures
and minimize the destructive consequences of these changes.

C. LULC Transition Potential Modeling

Based on the observed LULC changes in the Chalus watershed
for both study periods (2001–2014 and 2001–2021), the transi-
tion from forest to shrubland, forest to built-up area, agricultural
land to barren area, garden to built-up area, garden to agricultural
land, garden to grassland, barren area to built-up area, barren
area to agricultural land, grassland to garden, agricultural land
to built-up area, agricultural land to garden, grassland to built-up
area, shrubland to garden, grassland to barren area, shrubland to
forest, grassland to agricultural land, and shrubland to grassland
were used to produce transition potential maps and predict
LULC maps of the Chalus watershed for the years 2021 and
2040. The driver variables as static and dynamic components, in-
cluding DEM, slope, distance from roads, distance from streams,
distance from built-up areas, distance from forest, and evidence

likelihood rasters (Fig. 9), were added to the model for both
study periods, and the potential power of each driving factor by
Cramer’s V was examined (Table VI).

Then, the driver variables that had a Cramer’s V value of
about 0.15 or higher were used for LULC change modeling. In
this research, variables as slope and distance from stream with
low Cramer’s V values 0.0134 and 0.1062 for 2001–2014, and
0.0155 and 0.1096 for 2001–2021, respectively, were not utilized
as useful variables of transitions. Afterward, the modeling of
transition submodels was applied by using the SVM algorithm
to produce transition potential maps for both periods 2001–2014
and 2001–2021. Figs. 10 and 11 indicate the transition potential
maps that show how much each LULC type has the potential to
change to another LULC in certain periods.

A. Simulation and Prediction

The transition probability matrix for 2021, which predicts the
likelihood that each LULC type would convert to another LULC
type in 2021, was produced using the Markov chain model with
2001 and 2014 LULC classified maps. Then, LCM in TerrSet
software was utilized to simulate the future pattern of LULC in
the study area for the year 2021 by using the transition potential
maps according to the changes between different LULC cate-
gories during the period 2001–2014, and transition probability
matrix for the year 2021. The real and simulated LULC maps of
the Chalus watershed for 2021 are shown in Fig. 12.

Table VII represents that forest and water body are the most
stable LULC categories with respective probabilities of 0.9342
and 0.9048. Garden, shrubland, and agricultural land are the
most dynamic LULC categories with transition probabilities of
0.5308, 0.6399, and 0.6636. In these LULC categories, grassland
was mainly converted into agricultural land and barren area,
whereas forest cover was primarily transformed into shrubland.
Afterward, the transition probability matrix for 2040 was pro-
duced by the Markov chain model using 2001 and 2021 LULC
layers (Table VIII). Then, LCM in TerrSet software was utilized
to forecast the future pattern of LULC in the Chalus water-
shed for the year 2040 by using the transition potential maps
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Fig. 7. Distribution of the LULC categories that transitioned between 2001–2014, 2014–2021, and 2001–2021.

TABLE VI
CRAMER’S V FOR EACH OF THE DRIVER VARIABLES

according to the changes between different LULC categories
during the period 2001–2021 and transition probability matrix
for the year 2040. Fig. 13 depicts the predicted LULC map for
2040, and the area of LULC classes (ha) for the years 2021
and 2040.

Table VIII represents that forest and barren area are the
most stable LULC categories with respective probabilities of
0.8923 and 0.8519. Garden, shrubland, and grassland are the
most dynamic LULC categories with transition probabilities of
0.6079, 0.6213, and 0.7456. In these LULC categories, grassland
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Fig. 8. Net change graph between (a) 2001–2014, (b) 2014–2021, and (c) 2001–2021. (d) Gains and losses graph between 2001 and 2021. (e) Contributions to
net change (ha) in built-up area. (f) Forest. (g) Garden. (h) Barren area. (i) Agricultural land. (j) Water body. (k) Grassland. (l) Shrubland between 2001 and 2021.
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Fig. 9. Maps of the variables.

TABLE VII
TRANSITION PROBABILITY MATRIX OF LULC CLASSES FOR THE YEAR 2021
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Fig. 10. Transition potential maps according to the changes between different LULC categories in the Chalus watershed during the period 2001–2014.
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Fig. 11. Transition potential maps according to the changes between different LULC categories in the Chalus watershed during the period 2001–2021.
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Fig. 12. Actual and simulated LULC maps.

TABLE VIII
TRANSITION PROBABILITY MATRIX OF LULC CLASSES FOR THE YEAR 2040

Fig. 13. Predicted LULC map for 2040 in the Chalus watershed, and the area of LULC classes (ha) for the years 2021 and 2040.
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TABLE IX
AREA COVERAGE OF LULC CLASSES IN THE CHALUS WATERSHED FOR THE YEAR 2040, AND NET CHANGES OF EACH LULC CATEGORY

BETWEEN 2021 AND 2040

TABLE X
AREA COVERAGE OF LULC CLASSES IN THE ACTUAL AND SIMULATED LULC

MAPS OF THE CHALUS WATERSHED FOR 2021

was primarily transformed into agricultural land and barren
area with respective transition probabilities 0.1121 and 0.0769,
whereas forest cover was mainly converted into shrubland with
a transition probability of 0.1017.

During 2001–2021, agricultural land increased to 11.072 %
of area from 2.758 %, and predicted results represent that it will
continue to increase to 16.30 % of area in 2040. As well as,
Table IX shows that unceasing expansion of barren area will be
expected from 9.498 % of area (16355.69 ha) in 2021 to 12.86
% of area (22157.032 ha) in 2040. In addition, built-up area and
shrubland will show a positive growth till 2040 (0.32 % and 1.37
% of area). The model predicted that forest cover will continue
to decrease to 44207.78 ha (25.67 % of area) in 2040. Between
2001 and 2021, the spatial coverage of grassland decreased to
57915.52 ha from 84130.3842 ha in 2001, and the predicted

Fig. 14. Area of LULC classes (ha) graph in the actual and simulated maps.

results show that it will continue to decrease to 47717.36 ha in
2040. These unintended modifications to LULC have a detri-
mental effect on ecosystem services. Thus, the expected results
aid land-use planners to determine the future trend, location,
and size of LULC changes in order to mitigate their damaging
consequences.

B. Model Validation

Table X summarizes the area data for the various LULC
categories in the actual and modeled LULC maps of the Chalus
watershed for the year 2021. As well as, the graph showing the
area coverage of LULC types in the actual and simulated maps
is illustrated in Fig. 14. To determine the model’s correctness,
the quality of the simulated LULC map was compared with
the actual LULC map. The k-index values that compared the
simulated LULC map with the actual LULC map of the year
2021 resulted in a Kstandard=0.9160, Kno=0.9379, Klocation
= 0.9318, and KlocationStrata = 0.9320. The achieved k-index
values are greater than 90 %, showing good agreement between
the simulated and actual LULC maps.

Table XI represents statistical agreement information [23]
between the actual and modeled LULC maps of the Chalus
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TABLE XI
ANALYSIS OF VALIDATION RESULTS

watershed. Quantity disagreement indicates that cell quantity of
the same LULC category of the simulated map differs from the
actual map. GridCell disagreement occurs when cell’s location
[9] of the same LULC type of the simulated map differs from the
actual map. In this research, the value of disagreement quantity
(0.0112) is lower than disagreement GridCell (0.0440), which
shows the model is more capable to forecast the LULC changes
in quantity than in location. The agreement measures represent
the overall proportion correct (94.48 %) for SVM-MC model.

IV. CONCLUSION

The purpose of this research was to detect changes in the
LULC map of the Chalus watershed during the last two decades
using multitemporal Landsat data and to forecast the LULC
map for the study region in 2040 using the SVM-MC model.
Using a segmentation classification procedure by combining
two pixel-based classifiers (decision forest and fuzzy ARTMAP)
with segment-based classification, eight major LULC classes
were identified where, in general, grassland is the main LULC
class of the watershed that covered 33.64 % of the area in 2021.
During 2001–2021, the significant increase of agricultural land
(14317 ha) and barren area (9063 ha), and the sharp decline
of grassland (26215 ha) and forest cover (5989 ha) were the
major LULC changes in the Chalus watershed. Afterward, the
simulated LULC map of 2021 was produced by using 2001 and
2014 classified maps to compare with the actual LULC map of
2021 for model validation. Then, the transition potential maps
and the transition probability matrix for the year 2040 were
provided by the SVM algorithm and the Markov chain model,
respectively, to predict the LULC map for 2040. The predicted
results showed a considerable decrease in grassland from 33.64
% (57915.52 ha) in 2021 to 27.72 % of area (47717.36 ha) in
2040 with a significant increase in agricultural land from 11.072
% to 16.30 % of area and barren area from 9.49 % to 12.86 % of
area during 2021–2040. In addition, forest cover will continue
to decrease from 29.46 % (50720.2667 ha) in 2021 to 25.67 %
of area (44207.78694 ha) in 2040. Therefore, understanding the
spatiotemporal changes of LULC types is extremely important
in sustainable land management, monitoring natural disasters,
and natural resource assessment.
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Environ. Challenges, vol. 6, 2022, Art. no. 100399.

[21] E. Gidey, O. Dikinya, R. Sebego, E. Segosebe, and A. Zenebe, “Cellular
automata and Markov chain (CA_Markov) model-based predictions of
future land use and land cover scenarios (2015–2033) in Raya, Northern
Ethiopia,” Model. Earth Syst. Environ., vol. 3, pp. 1245–1262, 2017.

https://dx.doi.org/10.1109/JSTARS.2021.3099118


JALAYER et al.: MODELING AND PREDICTING LAND USE LAND COVER SPATIOTEMPORAL CHANGES: A CASE STUDY 5513

[22] H. Sha, L. Tang, J. P. Hupy, Y. Wang, G. Shao, and S. Kumar, “A
commentary review on the use of normalized difference vegetation index
(NDVI) in the era of popular remote sensing,” J. Forestry Res., vol. 32,
pp. 1–6, 2021, doi: 10.1007/s11676-020-01155-1.

[23] S. U. Din and H. W. L. Mak, “Retrieval of land-use/land cover change
(LUCC) maps and urban expansion dynamics of Hyderabad, Pakistan via
Landsat datasets and support vector machine framework,” Remote Sens.,
vol. 13, 2021, Art. no. 3337.

[24] C. Liu, W. Li, G. Zhu, H. Zhou, H. Yan, and P. Xue, “Land use/land
cover changes and their driving factors in the northeastern Tibetan plateau
based on geographical detectors and Google Earth engine: A case study
in Gannan prefecture,” Remote Sens., vol. 12, 2020, Art. no. 3139.

[25] S. W. Wang, B. M. Gebru, M. Lamchin, R. B. Kayastha, and W. K. Lee,
“Land use and land cover change detection and prediction in the Kath-
mandu district of Nepal using remote sensing and GIS,” Sustainability,
vol. 12, 2020, Art. no. 3925.

[26] T. Belay and D. A. Mengistu, “Impacts of land use/land cover and climate
changes on soil erosion in Muga watershed, upper blue Nile basin (ABAY),
Ethiopia,” Ecol. Process., vol. 10, 2021, Art. no. 68.

[27] M. K. Leta, T. A. Demissie, and J. Tränckner, “Modeling and prediction of
land use land cover change dynamics based on land change modeler (LCM)
in Nashe watershed, upper blue Nile basin, Ethiopia,” Sustainability,
vol. 13, 2021, Art. no. 3740.

[28] D. Abijith and S. Saravanan, “Assessment of land use and land cover
change detection and prediction using remote sensing and CA Markov in
the northern coastal districts of Tamil Nadu, India,” Environ. Sci. Pollut.
Res., 2021.

[29] H. Zhai et al., “Understanding spatio-temporal patterns of land use/land
cover change under urbanization in Wuhan, China, 2000–2019,” Remote
Sens., vol. 13, 2021, Art. no. 3331.

[30] E. Alcaras, C. Parente, and A. Vallario, “The importance of the coordi-
nate transformation process in using heterogeneous data in coastal and
marine geographic information system,” J. Mar. Sci. Eng., vol. 8, 2020,
Art. no. 708.

[31] G. Sarp, “Spectral and spatial quality analysis of pan-sharpening algo-
rithms: A case study in Istanbul,” Eur. J. Remote Sens., vol. 47, pp. 19–28,
2014.

[32] Y. Anteneh, T. Stellmacher, G. Zeleke, W. Mekuria, and E. Gebremariam,
“Dynamics of land change: Insights from a three-level intensity analysis
of the Legedadie-dire catchments, Ethiopia,” Environ. Monit. Assess.,
vol. 190, 2018, Art. no. 390.

[33] T. Adugna, W. Xu, and J. Fan, “Comparison of random forest and support
vector machine classifiers for regional land cover mapping using coarse
resolution FY-3C images,” Remote Sens., vol. 14, no. 3, 2022, Art. no. 574.

[34] B. Mannan, J. Roy, and A. K. Ray, “Fuzzy ARTMAP supervised classi-
fication of multi-spectral remotely-sensed images,” Int. J. Remote Sens.,
vol. 19, pp. 776–774, 1998.

[35] M. Zabihi, H. Moradi, M. Gholamalifard, A. K. Darvishan, and C. Fürst,
“Landscape management through change processes monitoring in Iran,”
Sustainability, vol. 12, 2020, Art. no. 1753.

[36] S. Hasan, W. Shi, X. Zhu, S. Abbas, and H. U. A. Khan, “Future simulation
of land use changes in rapidly urbanizing South China based on land
change modeler and remote sensing data,” Sustainability, vol. 12, 2020,
Art. no. 1350.

[37] B. Matlhodi, P. K. Kenabatho, B. P. Parida, and J. G. Maphanyane,
“Analysis of the future land use land cover changes in the Gaborone dam
catchment using CA-Markov model: Implications on water resources,”
Remote Sens., vol. 13, 2021, Art. no. 2427.

[38] A. Pérez-Vega, J. F. Mas, and A. Ligmann-Zielinska, “Comparing two
approaches to land use/cover change modeling and their implications for
the assessment of biodiversity loss in a deciduous tropical forest,” Environ.
Model. Softw., vol. 29, pp. 11–23, 2012.

[39] K. Islam, M. F. Rahman, and M. Jashimuddin, “Modeling land use change
using cellular automata and artificial neural network: The case of Chunati
wildlife sanctuary, Bangladesh,” Ecol. Indicators, vol. 88, pp. 439–453,
2018.

[40] R. J. Eastman, IDRISI TerrSet Tutorial. Worcester, MA: Clark University,
2015. [Online]. Available: https://clarklabs.org/download/terrset-service-
update/

[41] Y. Megahed, P. Cabral, J. Silva, and M. Caetano, “Land cover mapping
analysis and urban growth modelling using remote sensing techniques
in greater Cairo region-Egypt,” ISPRS Int. J. Geo-Inf., vol. 4, 2015,
pp. 1750–1769.

Sepideh Jalayer was born in Daregaz, Iran, in 1995. She received the M.Sc.
degree in remote sensing engineering from Shahid Rajaee Teacher Training
University, Tehran, Iran, in 2022.

Her research interests include geomatics, satellite image processing, and land
use/land cover mapping.

Alireza Sharifi was born in Tehran, Iran, in 1981.
He received the M.Sc. and Ph.D. degrees in remote
sensing engineering from the University of Tehran,
Tehran, Iran, in 2008 and 2015, respectively.

He is currently an Assistant Professor of Remote
Sensing with the Faculty of Civil Engineering, Shahid
Rajaee Teacher Training University, Tehran, Iran. In
particular, he is involved in GEOAI program for food
security and environmental monitoring.

Dariush Abbasi-Moghadam received the B.S. de-
gree in electrical engineering from Shahid Bahonar
University, Kerman, Iran, in 1998, and the M.S. and
Ph.D. degrees in electrical engineering from Iran
University of Science and Technology, Tehran, Iran,
in 2001 and 2011, respectively.

He was primarily with the Advanced Electronic
Research Center—Iran from 2001– 2003 and worked
on the design and analysis of satellite communi-
cation systems. In September 2004, he joined Ira-
nian Telecommunications Company, Tehran, as a Re-

search Engineer. He is currently with the Department of Electrical Engineering,
Shahid Bahonar University of Kerman, Kerman, Iran, as an Associate Professor.
His research interests include in the area of wireless communications, satellite
communication systems, remote sensing, and signal processing.

Aqil Tariq was born in Rawalpindi, Pakistan. He
received the Ph.D. degree in photogrammetry and
remote sensing from the State Key Laboratory of
Information Engineering in Surveying, Mapping, and
Remote Sensing (LIESMARS), Wuhan University,
Wuhan, China, in 2021.

He is currently working with LIESMARS, Wuhan
University. His research interests area are 3-D geoin-
formation, urban analytics, spatial analysis to ex-
amine land use/land cover, geospatial data science,
agriculture monitoring, forest fire, forest monitoring,

forest cover dynamics, spatial statistics, multicriteria algorithms, ecosystem
sustainability, hazards risk reduction, statistical analysis and modeling using
Python, R, and MATLAB.

Shujing Qin received the Ph.D. degree in agricultural
water-soil engineering from China Agricultural Uni-
versity, Beijing, China, in 2020.

She is currently with the State Key Laboratory
of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, China. Her re-
search interests include flux measurement and mod-
eling of terrestrial ecosystem, eco-hydrology, land-
atmosphere interaction, and climate change.

https://dx.doi.org/10.1007/s11676-020-01155-1
https://clarklabs.org/download/terrset-service-update/
https://clarklabs.org/download/terrset-service-update/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


