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Long Time-Series Glacier Outlines in the
Three-Rivers Headwater Region From 1986 to 2021

Based on Deep Learning
Longfei Chen , Wanchang Zhang , Member, IEEE, Yaning Yi, Zhijie Zhang , and Shijun Chao

Abstract—The deep-learning-based approach has drawn signif-
icant attention in glacier extraction due to its advantages over
traditional techniques. In this study, to verify the feasibility and
effectiveness of LandsNet architecture for glacier extraction, we
applied a modified LandsNet (M-LandsNet) to extract the glacier
outlines in the Three-Rivers Headwater Region. The band ratio
method, U-Net, U-Net++, GlacierNet, SaU-Net, U-Net+cSE, and
LandsNet, and two scenes were used for comparison. Analysis
of the two scenes indicated that the M-LandsNet had the best
performance and generalization ability among the eight methods.
Weather conditions had the greatest negative impact on the eight
methods, followed by geographic environment and geographic lo-
cation. We further extracted the glacier outlines in the Three-Rivers
Headwater Region in 1986−2021 in a total of 12 periods using the
M-LandsNet and through manual adjustments. The glacier area
in the Three-Rivers Headwater Region has decreased by 416.40 ±
102.71 km2 (16.53 ± 4.08%) in 1986−2021. The reduction rate
(16.13 ± 5.63 km2 a−1) in 2003−2021 was almost twice that (7.42
± 5.97 km2 a−1) in 1986−2003. The reduction rate of the glacier
area varied among different periods and areas. Comparison with
previous results indicated that the obtained glacier outline dataset
in this study is reliable, and can effectively reflect the glacier area
and spatio-temporal glacier changes in the Three-Rivers Head-
water Region. A long time-series dataset of glacier outlines in
the Three-Rivers Headwater Region in 1986−2021 is available
at https://doi.org/10.5281/zenodo.5512064. This study can provide
data support for the estimation of regional water resources storage.

Index Terms—Deep learning, long time-series glacier outlines,
M-LandsNet, three-river headwater region, U-Net.
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I. INTRODUCTION

MOUNTAIN glaciers are very sensitive to climate change,
and widely recognized as an amplifier of climate change

on regional and even global scales [1]. In the context of global
warming, most glaciers have retreated and have exhibited nega-
tive mass balances since the 1990s [2], which affects the regional
runoff and global sea level [3], [4]. Glacier mass loss has been
confirmed to contribute to 30% of global sea level rise [5].

The Tibetan Plateau contains the largest volume of moun-
tain glaciers in the mid-latitude regions due to its very high
elevations [6]. As the headstream of the Yangtze, Yellow, Lan-
cang, Brahmaputra, Ganges, and Indus rivers, Tibetan Plateau
is known as the water tower of Asia [7]. The contributions of
meltwater originating from snow and glaciers to the Yangtze,
Yellow, Brahmaputra, and Ganges rivers are 8%, 8%, 27%, and
10%, respectively [8]. The food security of more than 63 million
people living in these drainage basins will be threatened as a
result of reduced water availability [8]. Therefore, it is significant
to observe the dynamics of glaciers and explore their responses
to climatic change.

Glacier outline extraction is the basis of studying glacier
volume and mass changes [3]. Traditional methods of obtain-
ing glacier information rely on field surveys, which are very
time-consuming and not feasible because glaciers are usually
located in remote and inaccessible high-mountain terrain [9].
The development of remote sensing techniques provides a more
feasible method of rapid glacier extraction [10]. In general,
the methods of glacier outline extraction from remote sens-
ing images can be summarized into two categories: 1) visual
interpretation and 2) automated and semi-automated methods,
including the band ratio, normalized difference snow index,
supervised classification, and decision tree methods [11]. Fully
visual interpretation is widely considered to be the most accurate
approach and is usually used to evaluate the accuracy of other
automatic extraction approaches. However, visual interpretation
is very time consuming and expensive, and the results have a
large time lag [12]. For example, the First Chinese Glacier In-
ventory was performed by fully visual interpretation in 24 years
(1978–2002). The Second Chinese Glacier Inventory (SCGI),
obtained by band radio method and visual interpretation, inte-
grated into Randolph Glacier Inventory (RGI 6.0) released in
2017, is currently the latest and most accurate glacier outlines in
China. But it was still performed in 7 years (2006–2013) and only
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obtained the glacier outlines for 2008 [13]. The current auto-
mated and semi-automated methods can effectively extract clean
glacier areas, but fail to accurately extract glaciers contaminated
by snow cover, clouds, and shadows [14]. Moreover, glacier
systems are complex, as conditions such as weather, surround-
ing environment, and glacier dynamic behaviors greatly vary
among different places and seasons [15]. The optimal threshold
for traditional automatic segmentation of glaciers also varies
among different regions, environments, and even at different
times, which limits large-scale and long-term glacier extraction.
Therefore, it is necessary to explore a more accurate and general
method for large-scale and long-term glacier extraction that can
adapt to different environments and times.

The vigorous development of deep learning methods has
provided a new method for glacier extraction [16], [17]. The
application of deep learning in glacier extraction can be sum-
marized in two categories: applying or modifying existing net-
works, and developing novel networks. Baumhoer et al. [18]
applied a modified U-Net to extract Antarctic glacier and ice
shelf front from Sentinel-1 images. Mohajerani et al. [19] used
a convolutional neural network (CNN) with a U-Net architec-
ture to automatically detect glacier calving fronts in Greenland
from Landsat images. Zhang et al. [20] also applied the U-Net
architecture to extract ice sheet in Greenland. Zhang et al. [21]
evaluated the performance of DeepLabv3+ and U-Net combined
with three histogram modification strategies, aimed to find the
best combination of deep learning networks and histogram
modification methods. These research focused on improving
the original network by modifying the network parameters or
the strategies for classification. Xie et al. [22] developed a
GlacierNet based on SegNet model for mapping complex glacier
boundaries. Robson et al. [23] developed a novel CNN method
in conjunction with object-based image analysis (OBIA), named
CNN–OBIA method, for identifying rock glaciers from satellite
data. He et al. [24] proposed a self-attention U-Net (SaU-Net)
network to extract glacial lakes in the Alatau mountains. Tian et
al. [25] developed an improved U-Net with channel squeeze and
excitation (cSE) model, named U-Net+cSE, to extract glacier
in the Pamir Plateau. These research developed novel networks
based on existing machine learning methods to extract glacier
outlines. The above studies showed that the modified network
or the proposed novel network can accurately and efficiently
extract the glaciers in the study area. However, they only tested
the feasibility of the method but did not further extract long
time-series glacier outlines which are important to study glacier
mass balance and climatic change.

Yi and Zhang [26] developed a novel deep learning net-
work named LandsNet, based on U-Net architecture. Land-
sNet has been shown to have a higher accuracy than ResUNet
and DeepUNet when used to distinguish between landslides
and nonlandslides. But this network has not yet been applied
to glacier extraction. In fact, similar to landslide extraction,
glacier outline extraction can also be regarded as an image
segmentation task that only contains two categories (glacier and
nonglacier). Therefore, to verify the feasibility and effectiveness
of LandsNet architecture for glacier outline extraction, this
study applied a modified LandsNet (M-LandsNet) to extract the

Fig. 1. Location of the study area. The six digit numbers in purple boxes
represent the Landsat images’ numbers following the Worldwide Reference
System 2 (WRS2). The first and last three numbers indicate the path and row
numbers in the WRS2, respectively.

glacier outlines in the Three-Rivers Headwater Region (THR)
of the Tibetan Plateau. Meanwhile, the band ratio method and
six deep learning approaches (U-Net, U-Net++, GlacierNet,
SaU-Net, U-Net+cSE, and LandsNet) were also used for the
same extraction task. The optimal model for glacier outline
extraction was finally obtained through comparison using two
scenes. We further extracted the glacier outlines in the THR
during 1986–2021 in a total of 12 periods using M-LandsNet,
and analyzed the temporal and spatial changes in the glacier area
in this region over the past 35 years, which is also the innovation
of this study. This article can provide a long time-series dataset
of glacier outlines for the estimation of regional water resources
storage in the THR.

II. MATERIALS AND METHODS

A. Study Area

The THR (89°24’–102°27’E, 31°32’–37°8’N), situated in the
eastern part of the Tibetan Plateau (see Fig. 1), is the origin of
the Yangtze River, the Yellow River, and the Lancang River. It is
also an important supply of fresh water resources in China. The
THR spans about 1183 km from west to east and 634 km from
south to north, with an area of about 3.63×105 km2. Its elevation
ranges from 1955 to 6822 m and decreases from west to east.
According to the SCGI data for 2008, the THR contains 1555
glaciers and covers an area of 2297.93 km2, and these glaciers
are distributed in the northwest, southwest, central, and eastern
parts of this region. The annual mean temperature and annual
precipitation are about 2 °C and 423 mm [27], respectively. The
climate of the THR is dry and cold in the west but warm and
humid in the east, which causes the rates of glacier ablation
to greatly vary among the western, middle and eastern areas,
so glaciers in these regions exhibit very different surface and
geometric properties [28].

B. Data Sources and Preprocessing

Obtaining a reliable glacier inventory is the first step to
training a deep learning network. In this study, the SCGI was
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TABLE I
LANDSAT-5 IMAGES’ NUMBERS, TIMES, AND CLOUD COVER PERCENTAGES

USED FOR DEEP LEARNING NETWORKS, AND THE GLACIER AREA IN THE

CORRESPONDING IMAGES

Note: The total glacier areas in the 13 images is much larger than the area of the glaciers
in the THR due to the overlap between adjacent images.

used as the true glacier outlines, and it was treated as the ground
truth. The SCGI investigated by Liu et al. [13] was derived from
the National Tibetan Plateau Data Center.1 The SCGI in the THR
was obtained using the band ratio method followed by manual
adjustment based on Landsat-5 Thematic Mapper (TM) images
[29]. Thirteen Landsat-5 images were used to identify the glacier
outlines in the THR (see Fig. 1). However, affected by clouds
and seasonal snow cover, the glacier outlines were actually
extracted based on satellite images from 2006 to 2010, not
images taken in one year (see Table I). Field global positioning
system measurements and verification through high-resolution
remote sensing images revealed that the glacier area of SCGI
has a high accuracy, with a relative error of 3.20% [13]. The
SCGI can meet the accuracy requirements of scientific research,
and has been widely used for research on glaciers [29], [30].

The Landsat-5 (TM) and -8 (Operational Land Imager) im-
ages were acquired from the Global Visualization Viewer web-
site of the United States Geological Survey.2 The Landsat Col-
lection 2 Level-1 product was used in this study. This product
consists of quantized and calibrated scaled Digital Numbers
(DN) representing the multispectral image data [31]. This prod-
uct has been registered by the Landsat Ground Control Points
from the Global Land Survey database [32]. The geo-registration
is consistent and within prescribed image-to-image tolerances
of ≤12 m (about half a pixel) radial root mean square errors
[33]. In this study, to ensure consistency with the SCGI, we
used the same Landsat-5 images as the images used for SCGI in
the THR when training the deep learning networks (see Table I).
When performing long time-series glacier outline extraction, the
Landsat-5 and Landsat-8 images taken during 1986–2012 and
2013–2021 were used, respectively.

1[Online]. Available: http://data.tpdc.ac.cn
2[Online]. Available: https://glovis.usgs.gov/

Fig. 2. Data preprocessing workflow. The red “×” indicates that the sub-
images contain no glacier (useless samples) and were not used in the subsequent
steps. The contents of the blue dashed boxes indicate the detailed explanations
of this step.

The data needed to be preprocessed using the following steps
before it was used to train the deep learning models (see Fig. 2).

Step 1: The SCGI for the THR and the Landsat-5 images were
projected onto the same coordinate system, i.e., the 1984
World Geodetic System (WGS 84) with Universal Transverse
Mercator Zone 46 North.

Step 2: The SCGI was binarized to binary labels, with 1 and 0
representing glacier and nonglacier areas, respectively.

Step 3: The size of original satellite images was large. To make it
compatible with the network input requirements, the original
SCGI images were subset into subimages with the size of
128×128. One subimage only contained part of the glacier for
some large glaciers. The nonglacial area (3.63×105 km2) is
far greater than the glacial area (2297.93 km2) in the THR, so
the positive and negative samples are extremely unbalanced,
which has negative impacts on model performance [34]. To
maintain the balance of positive and negative samples as much
as possible, the subimages without glacier were removed from
the samples [35], [36] and were not used in the subsequent
steps. In this study, a total of 692 SCGI subimages were
retained and used for the networks and were regarded as the
ground truth.

Step 4: The original Landsat-5 images contained seven single
images corresponding to seven bands. To facilitate the corre-
spondence between the image and the label, the original seven
single images were combined into one 7-band image.

Step 5: The combined Landsat-5 images were extracted using the
retained SCGI subimages to obtain the Landsat-5 subimages.
In theory, we should have obtained 692 Landsat-5 subimages.
However, due to the overlap between adjacent images and
the use of images with multiple phases, we actually obtained
999 Landsat-5 subimages. These subimages were used as the
training samples of the networks.

Step 6: The number of Landsat-5 subimages was far greater
than the number of SCGI subimages as the Landsat-5 im-
ages for multiple phases were used for the interpretation

http://data.tpdc.ac.cn
https://glovis.usgs.gov/
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Fig. 3. Overview of the general workflow (a), the description of morphological
operations (b) and two scenes (c).

and the adjacent images usually partially overlapped. This
phenomenon means that one SCGI subimage may correspond
to multiple Landsat-5 subimages. We expanded the number of
SCGI subimages to 999 to achieve a one-to-one correspon-
dence between the SCGI and Landsat-5 sub-images. More
specifically, if an SCGI subimage named “A” corresponds to
two Landsat-5 subimages named “a2006-09” and “a2007-07,”
respectively, then we copy this SCGI subimage, and rename
them to “A2006-09” and “A2007-07,” respectively, so that
each Landsat-5 subimage can correspond to an SCGI subim-
age. The expansion method is shown in Fig. 2.

Step 7: To teach the network the desired invariance and ro-
bustness properties, the ground truth and training samples
were processed using the same data augmentation method
(including flipping, mirroring, and rotating). Finally, 3996
ground truth and training samples with a size of 128×128
were obtained.

C. Methodology

In this article, the glacier outlines in the THR were extracted
using eight methods: the band ratio method, U-Net, U-Net++,
GlacierNet, SaU-Net, U-Net+cSE, LandsNet, and M-LandsNet.
The extraction accuracies of the eight methods were assessed
using five evaluation metrics: the precision, recall, F1 score
(F1), Kappa coefficient (Kappa), and overall accuracy (OA) [37].
An overview of the general workflow of this study is shown in
Fig. 3(a).

The original Landsat-5 and SCGI datasets required prepro-
cessing, the workflow of the data preprocessing is shown in
Fig. 2. The extraction results of the band ratio method were

processed using morphological operations to remove the noise
and improve the extraction accuracy. A filter matrix with a size
of 5×5 was applied in the morphological operations in this study
[see Fig. 3(b)]. To comprehensively compare the applicability of
the eight methods in different regions and under different sample
conditions, we selected two scenes to compare the extraction
performances of the eight methods [see Fig. 3(c)]. The two
scenes are described in detail below.

Scene 1: The dataset was randomly divided into 70% (2797)
training samples and 30% (1199) testing samples. The training
and testing samples were mutually exclusive. The parameter
optimization processes of models were performed by randomly
dividing the training samples into 80% training set and 20%
validation set, and did not use the testing samples. This scene
was used to evaluate the overall performances of the networks
in the THR. However, it failed to reflect the differences in the
generalization abilities of the networks since the testing and
training samples were randomly generated in the same area and
had a high similarity. To verify and compare the generalization
abilities of the networks, we set scene 2.

Scene 2: In this scene, the training and testing areas were
mutually exclusive. The dataset from the images with Worldwide
Reference System 2 (WRS2s) of 139 036, 137 036, 138 037, and
137 037 was selected for training, and then, the trained model
was applied to three testing areas. Testing area 1 was the images
with WRS2s of 139 035 and 138 035. In testing area 1, the
testing and training samples had similar geographic environ-
ments but different geographical locations compared to those
of the training area, and the glaciers were only slightly covered
by clouds and fog. This testing area was used to compare the
generalization abilities of the models when the testing samples
were similar to the training samples. Testing area 2 included
the images with WRS2s of 133 035, 133 036, and 132 037.
The glaciers in testing area 2 were also very clear. However,
compared with the training area, the ground of testing area 2
has more vegetation cover, and the glaciers in this area have
larger glacier ablation rate due to lower elevation, warmer and
wetter climate. So the geographic environment surrounding the
glaciers was quite different from that in the training area. Testing
area 3 consisted of four images with WRS2s of 136 037, 135
037, 134 037, and 133 038. In testing area 3, the geographic
environment surrounding the glaciers was quite different from
that in the training area. Moreover, most of the glaciers in
testing area 3 were covered by clouds and fog. Testing areas
2 and 3 were used to compare the generalization abilities of the
models when the testing samples were quite different from the
training samples. Therefore, the comparison of the two scenes
was used to comprehensively evaluate the performances of the
eight methods in different regions and under different sample
conditions.

D. Band Ratio Method

The band ratio method is considered to be the fastest, simplest,
most accurate, and most robust method of glacier extraction,
compared with other automated and semi-automated methods
[38]. This method is based on the low reflectance of ice and snow



5738 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

in the shortwave infrared (SWIR) and the high reflectance of ice
and snow in the visible spectrum . When a threshold is applied
in the band ratio method with equivalent bands TM3 (red) and
TM5 (SWIR), the small differences in the spectral features of
the objects are greatly enhanced and glacier extraction can be
accomplished. The formula is as follows:

Ratio =
Band3
Band5

(1)

where Band3 and Band5 indicate the DN of bands 3 and 5 in
the Landsat-5 images, respectively. Ratio is the result of the
band ratio method. The determination of the threshold is the
key to accurate glacier outline extraction. Typical values of
the threshold are 2.0 ± 0.5 [38]. That is, the areas with radio
> threshold and radio ≤ threshold are treated as glacier and
nonglacier areas, respectively.

E. U-Net and U-Net++

The U-Net was proposed by Ronneberger et al. [39] and is
a two-dimensional image segmentation network based on fully
convolutional network. Due to its ability to accurately segment
images based on very little training data [39], the network
attracted increasing attention in the field of remote sensing [16].
The network architecture consists of a contracting path and an
expansive path, and it contains a total of 23 convolutional layers.
The contracting path can be seen as the repeated applications of
two successive 3 × 3 convolutions, each followed by a rectified
linear unit and a 2 × 2 max pooling operation. The expansive
path consists of the repeated application of an up-sampling layer
and two 3 × 3 convolutions. In addition, the expansive path
is concatenated with the correspondingly cropped feature map
from the contracting path. Finally, each 64-component feature
vector is mapped to the desired number of classes through a 1 ×
1 convolution layer, and the image segmentation is performed.

One of the key ideas of U-Net is to skip connections. Skip
connections have shown to help recover the full spatial resolu-
tion at the network output, making fully convolutional methods
suitable for semantic segmentation [40]. On the basis of U-Net,
Zhou et al. [40] proposed a new segmentation architecture based
on nested and dense skip connections, named U-Net++. It
improves U-Net by adding dense convolution blocks between
encoder and decoder, and it reduces the semantic gap between
feature maps generated by the encoder module and those gener-
ated by the decoder module. In this study, U-Net and U-Net++
were used to compare the performance for glacier extraction
with M-LandsNet.

F. GlacierNet, SaU-Net, and U-Net+cSE

GlacierNet was proposed by Xie et al. [22] in 2020. It was
designed using SegNet as a reference model by appropriately
choosing the type, number and size of layers and filters, and
encoder depth. It was used to automatically delineate the debris-
covered glacier. The result indicated that the GlacierNet can
effectively extract the debris-covered glacier in Karakoram and
Nepal Himalayan, with F1 values ranging from 82% to 94%.

Fig. 4. Architecture of M-LandsNet. For 3× 3 convolutional layer, the default
dilation rate is 1. @2 denotes that the dilation rate is 2. In LandsNet, the dilation
rates are 2, 4, and 6, while in M-LandsNet, the dilation rates are 1, 2, and 3,
respectively.

SaU-Net was proposed by He et al. [24] in 2021 through inte-
grating a self-attention mechanism module into U-Net network.
The SaU-Net was used to extract glacial lakes from multispectral
image. The experimental results in the Alatau mountains indi-
cated that the proposed SaU-Net can effectively segment glacial
lakes. Compared with the standard U-Net network, the true
positive of SaU-Net increased by 15.95% for the combination
of 3, 5, and 6 bands and by 5.79% for all bands.

U-Net+cSE, developed by Tian et al. [25] in 2022, was used
to extract mountain glaciers. This network improved the original
U-Net by integrating a channel squeeze and excitation model.
Compared with U-Net and GlacierNet, the U-Net+cSE showed
higher accuracy when tested on glaciers in the Pamir Plateau.

These three networks were specially developed for the ex-
traction of glaciers or glacial lakes. In this study, GlacierNet,
SaU-Net, and U-Net+cSE were also used to compare the per-
formance for glacier extraction with M-LandsNet.

G. M-LandsNet

LandsNet was proposed by Yi and Zhang [26]. LandsNet is a
cascaded end-to-end deep learning network based on the U-Net
architecture. It has been used to intelligently detect and map
earthquake-triggered landslides on RapidEye satellite images.
Compared with the ResUNet and DeepUNet networks, which
have been commonly used for image segmentation, LandsNet
was demonstrated to have a higher accuracy for landslide detec-
tion in two test sites (the Ya’an-Lushan and Jiuzhaigou regions
in Sichuan Province, China).

LandsNet mainly consists of a residual block (ResBlock), an
attention module, and multiscale fusion operations (see Fig. 4).
The ResBlock was designed by Yi et al. [41], and it is mainly
used to alleviate the vanishing gradient. The ResBlock contains
two successive 3 × 3 convolutional layers and a 1 × 1 convo-
lutional layer, and both the stride and dilation rate of the three
convolutional layers are 1. The operation processes of LandsNet
are as follows.

Step 1. The input image is processed through three repeated
applications of the ResBlock, and each application is followed
by max pooling. The max pooling uses a 2 × 2 convolutional
layer with a stride of 2.
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Step 2. Three 3 × 3 dilated convolutional layers with dilation
rates of 2, 4, and 6 are adopted to obtain three images. The
first two images are fused and then processed by a 1 ×
1 convolutional layer. The fusion result is fused with the
third image and then processed by a 1 × 1 convolutional
layer. It should be noted that the different dilated convolution
results are not fused directly but are sequentially aggregated
from local to global instead, which maintains the hierarchical
dependencies. [42].

Step 3. The result of step 2 is processed through three repeated
applications of the up-sampling layer, and each application
is followed by a concatenation layer and a ResBlock layer.
The up-sampling uses a 2 × 2 convolutional layer. Three
concatenation layers are obtained by concatenating the third
result of the max pooling with the result of step 2 through
an attention gate, concatenating the second result of the max
pooling with the fourth ResBlock result through an attention
gate, and concatenating the first result of the max pooling with
the fifth ResBlock result through an attention gate.

Step 4. The sixth ResBlock result is mapped to between 0 and
1 through a softmax layer, and then, the final output binary
image is obtained. The values of 1 and 0 indicate glacier and
nonglacier areas, respectively. Refer to paper [26] for more
details about the LandsNet architecture and the parameters.

The original LandsNet used three 3 × 3 dilated convolu-
tional layers with dilation rates of 2, 4, and 6 when performing
multiscale fusion. Using dilated convolution can enlarge the
receptive field without reducing the resolution [43], [44]. A
larger dilation rate is more effective for the segmentation of
large objects, but it may not be able to extract some of the small
objects [45]. Compared with earthquake-triggered landslides,
the sizes of glaciers in different regions can vary significantly.
There are many small glaciers in the THR, and these glaciers are
fragmented. Most glaciers only occupied a small proportion in
the subimages with the size of 128 × 128. A large dilation rate
may not be able to extract these small and fragmented glaciers.
Therefore, in this study, we modified the dilation rates from 2,
4, and 6 to 1, 2, and 3, named M-LandsNet, when performing
the multiscale fusion based on the characteristics of the glaciers
in the THR.

The deep learning methods were implemented based on Keras
using the Tensorflow framework as the backend in the Windows
system. The networks were trained in the Kaggle platform,3

which provides high-performance graphic processing unit cloud
servers for free. In this study, the glorot normal initializer [46]
was adopted to initialize weights and parameters of networks,
the cross-entropy loss was employed in the training process,
and the Adam optimizer [47] was employed to optimize the
training loss. When training the networks, a batch size of 4 was
adopted in the experiment. We set the initial learning rate to
0.001, but it was divided by a factor of 10 after every ten epochs.
This variable learning rate was adopted because the step size
should decrease as the result approached an optimal value [48].
To prevent overfitting, all deep learning models were trained

3[Online]. Available: https://www.kaggle.com/

using early stopping with a patience parameter of ten epochs
[49], which means that if the validation accuracy is not improved
after a period of ten epochs, the training will stop. In this study,
the models were approximately converged within 80 epochs.
The model with the highest validation accuracy was saved, and
used to identify the glacier from the testing samples. It should
be noted that the networks used the same data, and the training
and testing samples were mutually exclusive.

H. Evaluation Metrics and Glacier Area
Uncertainty Estimation

In this article, five evaluation metrics, including the preci-
sion, recall, F1, Kappa, and OA, were used to compare the
accuracies of the eight methods of glacier outline extraction.
First, we specified that the glacier and nonglacier areas were
positive and negative samples, respectively. The formulas for
the precision, recall, and F1 are given in (2)–(5), respectively.
The precision is the proportion of correctly predicted positive
samples among the total predicted samples, and the recall is the
proportion of correctly predicted positive samples among the
total actual positive samples. It is one-sided to merely compare
the precision and recall. F1, Kappa, and OA are usually used
to comprehensively evaluate the goodness of the model. F1 is
actually the geometric mean between the precision and recall
[50]. Kappa is a robust metric used to measure the agreement
between the predicted and actual classification results. OA is the
proportion of correctly predicted samples to the total samples

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision× Recall

Precision + Recall
(4)

OA =
TP+ TN

TP + FN+ FP + TN
(5)

where TP, FP, FN, and TN denote true positive, false positive,
false negative, and true negative, respectively.

Glacier area uncertainty estimation is necessary to assess the
significance of the results and to avoid misinterpretation of the
mapping of the glacier area [51]. The potential error of glacier
mapping mainly arises from positional error [52]. The error
can be calculated based on a buffer drawn around the glacier
outlines as suggested by Bolch et al. [52] and Granshaw and
Fountain [53]. Spatial resolution of Landsat images is 30 m and
the registration error of these images is about half a pixel [33], so
a 15 m buffer size was used to calculate the mapping uncertainty
of the glacier area. The uncertainty of the change in the glacier
area (ε) can be estimated using the following equation proposed
by Hall et al. [54]:

ε =

√
(e1)

2 + (e2)
2 (6)

where e1 and e2 denote the estimated errors associated with the
glacier area of two different time periods.

https://www.kaggle.com/
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TABLE II
PRECISION, RECALL, F1, KAPPA, AND OA OF THE BAND RATIO METHOD FOR

GLACIER OUTLINE EXTRACTION IN THE THR FOR 12 THRESHOLDS

Note: The numbers in bold indicate the maximum values for the 12 thresholds, and ∗
indicates the optimal threshold.

III. RESULTS

A. Determination of the Optimal Threshold for the Band
Ratio Method

In this study, according to the typical threshold of 2.0 ± 0.5
suggested by Paul et al. [38], the accuracy of the band ratio
method for glacier outline extraction was evaluated for 12 dif-
ferent thresholds (1.5 to 3.7 with an interval of 0.2). The optimal
extraction result was used for the subsequent comparison.

The precision of the extraction results increased from 84.98%
to 93.96% and the recall decreased from 98.01% to 92.60%
as the threshold increased from 1.5 to 3.7 (see Table II). F1,
Kappa, and OA initially increased and then decreased. When the
threshold was 3.1, F1, Kappa, and OA reached their maximum
values of 93.77%, 91.87%, and 97.08%, respectively. The F1,
Kappa, and OA of the extraction results ranged from 91.03% to
93.77%, from 88.07% to 91.87%, and from 95.53% to 97.08%,
respectively. This indicates that the selection of the optimal
threshold can contribute about 2.74% to the F1, 3.8% to the
Kappa, and 1.55% to the OA. The optimal threshold for the band
ratio method was determined to be 3.1 in the THR. Therefore,
the extraction results of the band ratio method for a threshold of
3.1 were used for the comparison with the seven deep learning
methods.

B. Visual Comparison Between Ground Truth and the
Extraction Results of the Eight Methods

In this article, we selected two scenes to compare the perfor-
mance of the eight methods, i.e., the band ratio method, U-Net,
U-Net++, GlacierNet, SaU-Net, U-Net+cSE, LandsNet, and
M-LandsNet, for glacier outline extraction in the THR. The
results of the glacier outline extraction obtained by applying
the eight methods to the two scenes are shown in Fig. 5–8.

When the extraction results of the eight methods for scene 1
were visually compared, it was found that except for GlacierNet,
the false positive (red) and false negative (yellow) areas of

the other six deep learning methods were significantly smaller
than those of the band ratio method [see Fig. 5(a)–(i)]. This
result indicated that except for GlacierNet, the other six deep
learning methods performed better than the band ratio method
even though the optimal threshold was selected for the band
ratio method. Fig. 5(j)–(t) show the results of the eight methods
of glacier outline extraction for scene 1 in more detail. The
band ratio method tended to identify snow cover and water
as glaciers, and the identified glaciers were usually larger than
the actual glaciers. U-Net, U-Net++, and U-Net+cSE had the
same problem as the band ratio method when the snow cover
was thick [see Fig. 5(n)–(p)]. However, GlacierNet, SaU-Net,
and LandsNet tended to omit some glaciers on the edge of
the glaciers [see Fig. 5(l) and (r)]. M-LandsNet distinguished
between snow, water, and glaciers better, and the obtained glacier
outlines were more consistent with the ground truth.

In testing area 1, the band ratio method, U-Net, U-Net++,
and U-Net+cSE tended to identify snow cover as glaciers, while
LandsNet tended to omit some glaciers. GlacierNet and SaU-Net
had these two problems [see Fig. 6(j)−(t)]. When the glaciers
were partly covered by thin clouds [see Fig. 6(n)], the eight meth-
ods were affected by the clouds to some extent. The band ratio
method, U-Net and SaU-Net were nearly completely unable to
extract the glaciers, while U-Net++, GlacierNet, U-Net+cSE,
LandsNet, and M-LandsNet could extract part of the glaciers.
When there are water and thick snow cover near the glaciers
[see Fig. 6(p), (s), (t)], the band ratio method, U-Net, U-Net++,
and LandsNet identified a large area of water as glaciers, and
the GlacierNet and SaU-Net identified a large area of snow
as glaciers. U-Net+cSE and M-LandsNet were able to better
distinguish between the water, snow cover, and glaciers.

In testing area 2, the performances of the eight methods
decreased to a certain extent compared to their performances
in testing area 1, that is, the proportions of false positive and
false negative areas increased [see Fig. 7(a)–(i)]. However, the
comparison of the eight methods showed that M-LandsNet still
had a higher accuracy based on a visual comparison. More
specifically, for areas covered by snow, the performances of
the seven deep learning methods were better than that of the
band ratio method [see Fig. 7(j)−(t)]. GlacierNet, SaU-Net, and
LandsNet tended to seriously omit the ends of some glaciers
and areas where the color of the glacier’s surface was different
from that of the surrounding area, and U-Net also had this
problem but not as seriously as LandsNet [see Fig. 7(k), (p),
(s), and (t)]. The glaciers identified by U-Net++, U-Net+cSE,
and M-LandsNet were closer to ground truth, but U-Net++ and
U-Net+cSE tended to identify more snow cover as glaciers [see
Fig. 7(k) and (s)]. However, in the debris-covered glacier areas,
the eight methods failed to effectively extract the glacier outlines
[see Fig. 7(m) and (q)]. Compared with the seven deep learning
methods, the band ratio method identified more glaciers in these
debris-covered glacier areas. Nevertheless, for the entire testing
area, M-LandsNet still performed better.

In testing area 3, the performances of the eight methods de-
creased significantly compared to their performances in testing
area 1 [see Fig. 8(a)−(i)]. The band ratio method tended to
identify snow cover as glaciers when the areas were covered
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Fig. 5. Comparison of the ground truth and the results of the eight methods of glacier outline extraction for scene 1. (a) A false color composite Landsat-5
image (band7-SWIR, band4-near infrared (NIR), and band3-Red for R/G/B); (b) Band ratio method; (c) U-Net; (d) U-Net++; (e) GlacierNet; (f) SaU-Net; (g)
U-Net+cSE; (h) LandsNet; (i) M-LandsNet; (j–t) More detailed comparison of the ground truth and the results of the eight methods.

by snow [see Fig. 8(k), (q), and (r)]. When the clouds were thin
and the glaciers could still be easily interpreted visually, the
band ratio method could only identify part of the glaciers, while
U-Net, GlacierNet, U-Net+cSE, and LandsNet significantly
overestimated the glacier areas [see Fig. 8(n)]. The glaciers
identified by U-Net++, SaU-Net, and M-LandsNet were almost
identical to the ground truth in this situation. When the cloud

cover reached a certain thickness and it was difficult to interpret
the glaciers visually, the band ratio method completely failed
to extract the glacier outlines [see Fig. 8(o)]. The seven deep
learning methods could identify parts of the glaciers, but their
performances were unsatisfactory. Among them, the glaciers
identified by M-LandsNet were closer to ground truth. There-
fore, compared with the other seven methods, M-LandsNet still
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Fig. 6. Same as in Fig. 5 but for testing area 1 in scene 2.

had better performance in this situation. As can be seen from
Fig. 8(p)–(t), when the clouds were very thin and had almost no
effect on the glacier outline extraction, the pros and cons of the
eight methods were the same as aforementioned.

C. Accuracy Assessment of the Eight Methods

To quantitatively evaluate the performances of the eight meth-
ods, we further used five evaluation metrics to compare the
accuracies of the eight methods for glacier extraction. The results
of the accuracy evaluation are presented in Table III.

For scene 1, except for GlacierNet, the performances of the
other six deep learning methods were better than that of the
band ratio method (see Table III). M-LandsNet (F1 = 96.01%,
Kappa = 94.81%, OA = 98.16%) had the best performance,

followed by U-Net+cSE, U-Net, U-Net++, SaU-Net, Land-
sNet, the band ratio method, and GlacierNet. Although Glacier-
Net had the highest precision (97.03%) and U-Net had the
highest recall (96.60%), the performance of M-LandsNet was
still better than that of GlacierNet and U-Net when comparing
the three comprehensive evaluation metrics (i.e., F1, Kappa, and
OA).

For scene 2, the F1, Kappa, and OA values of the U-Net+cSE
(F1 = 95.46%, Kappa = 93.43%, OA = 97.72%) were slightly
higher than that of the M-LandsNet (F1 = 95.36%, Kappa =
93.28%, OA = 97.12%) in testing area 1. However, in testing
areas 2 and 3, the F1 values of the M-LandsNet were 93.63%
and 80.48%, respectively; the Kappa values were 91.63% and
78.82%, respectively; the OA values were 96.95% and 96.94%,
respectively; and they were the maximum values among the eight
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Fig. 7. Same as in Fig. 5 but for testing area 2 in scene 2.

methods. Therefore, M-LandsNet still had the best performance
in scene 2. However, compared with scene 1, the performances
of the eight methods decreased in scene 2. Particularly in testing
area 3, the F1 values of the eight methods decreased by >15%
compared to those for scene 1. Among them, the performance of
U-Net exhibited the largest decrease, with F1, Kappa, and OA
decreasing by 24.84%, 26.43%, and 3.44%, respectively, fol-
lowed by GlacierNet (21.50%, 21.74%, and 1.09%), LandsNet
(19.88%, 20.62%, and 1.79%), U-Net+cSE (17.76%, 18.33%,
and 1.31%), SaU-Net (17.54%, 17.98%, and 1.23%), U-Net++
(17.51%, 17.91%, and 1.13%), the band ratio method (16.68%,
16.58%, and 0.46%), and M-LandsNet (15.53%, 15.99%, and
1.22%). Therefore, when the testing samples were different from
the training samples to a certain extent, the performances of the
seven deep learning methods decreased. M-LandsNet was the
most accurate and stable model, and it had the best generalization
ability among the eight methods.

In testing area 1, the F1, Kappa, and OA values of the
seven deep learning methods decreased slightly, while the F1
of the band ratio method increased compared to that in scene
1. This result implies that changes in the geographic location
have little impact on the performances of the eight methods.
LandsNet had the highest precision (96.79%), while U-Net
had the highest recall (95.91%). However, neither of them

was the best model. U-Net+cSE (F1 = 95.46%, Kappa =
93.43%, OA = 97.72%) slightly outperformed the M-LandsNet
(F1 = 95.36%, Kappa = 93.28%, OA = 97.12%), and was the
best model.

In testing area 2, the F1, Kappa, and OA values of the eight
methods decreased compared to that in testing area 1, except for
the Kappa and OA values of the band ratio method. The band
ratio method achieved good performance, only worse than the
M-LandsNet. LandsNet had the highest precision (97.76%), but
the recall (81.20%) was the lowest among the eight methods,
which indicates that LandsNet tends to seriously omit glaciers.
Compared to testing area 1, the F1, Kappa, and OA values of
M-LandsNet decreased by 1.73%, 1.65%, and 0.17%, respec-
tively; while the F1 and Kappa values of the band ratio method
only decreased by 0.67% and 0%, respectively, and the OA
value even increased by 0.59%. However, the performance of
M-LandsNet (F1 = 93.63%, Kappa = 91.63%, OA = 96.95%)
was still slightly better than that of the band ratio method
(F1 = 93.39%, Kappa = 91.29%, OA = 96.81%). These results
suggest that changes in the geographical environment have an
impact on the performances of the eight methods, and the deep
learning methods are more affected than the band ratio method.
Nevertheless, M-LandsNet was still the best method in testing
area 2.
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Fig. 8. Same as in Fig. 5 but for testing area 3 in scene 2.

In testing area 3, the eight methods had unsatisfactory perfor-
mances. The best model was still M-LandsNet, with F1, Kappa,
and OA values of 80.48%, 78.82%, and 96.94%, respectively,
followed by U-Net++, SaU-Net, U-Net+cSE, the band ratio
method, LandsNet, U-Net, and GlacierNet. The SaU-Net and
U-Net had the highest precision (80.12%) and recall (87.88%),
respectively. However, neither of these methods was the best.
This indicates that the SaU-Net tends to omit glaciers, while
U-Net tends to identify other objects as glaciers. Therefore,
clouds and fog had a greater impact on the performances of
the eight methods, and M-LandsNet still performed best in this
situation.

In the three testing areas, the precision of LandsNet in testing
areas 1 and 2 and the precision of the SaU-Net in testing area
3 were the maximum values among the eight methods, but
neither of them was the best method, which suggests that they
tend to identify glaciers as other objects and underestimate the
glacier area. The recall values of U-Net in testing areas 1 and 3
were the maximum values, but U-Net was not the best model,

and the same situation occurred for the band ratio method in
testing area 2. This phenomenon suggests that U-Net and the
band ratio method tend to identify more objects as glaciers and
overestimated the glacier area. Expect that, the F1, Kappa, and
OA values of the U-Net+cSE were slightly higher than that of the
M-LandsNet in the testing area 1, the F1, Kappa, and OA values
of M-LandsNet in the testing areas 2 and 3 were the maximum
values among the eight methods. Therefore, M-LandsNet had
the best performance and generalization ability in scene 2.

D. Long Time-Series of Glacier Outlines From 1986 to 2021

In the previous section, it was demonstrated that M-LandsNet
had the highest accuracy and the best generalization ability. In
this study, we used M-LandsNet to extract the glacier outlines in
the THR from 1986 to 2021 in a total of 12 periods. Affected by
clouds and seasonal snow cover, satellite images with less cloud
and snow cover within three years were combined and used to
extract the glacier outlines for one period. Thus, we obtained
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TABLE III
ACCURACY COMPARISON OF THE EIGHT METHODS FOR THE GLACIER OUTLINE EXTRACTION IN THE TWO SCENES

Note: The values in bold indicate the maximum values of the corresponding metrics

the glacier outlines for 12 different periods (see Table IV). To
improve the accuracy, the dataset was further processed through
manual adjustments as the extraction of some glaciers may
require the use of multiple images and may be affected by clouds,
seasonal snow cover, and shadows.

The glacier areas in the THR and its four subareas during
12 periods indicate that the total glacier area in the entire
study area during 1986–1998 was 2518.65 ± 72.69 km2 [see
Table V(a)], and by 2021, the glacier area had reduced to 2102.25
± 72.56 km2, with a reduction of 416.40± 102.71 km2 (16.53±
4.08%) over the past 35 years [see Table V(b)]. The total glacier
area in the THR exhibited a decreasing trend (see Fig. 9), with
a reduction rate of about 11.90 ± 2.93 km2 a−1 (0.47 ± 0.12%
a−1) from 1986 to 2021 [see Table V(b)]. The reduction rate of
glacier area varied during the different periods. From 1986 to
2003, the total glacier area reduced by 126.11 ± 101.47 km2

(5.01 ± 4.03%), with a reduction rate of about 7.42 ± 5.97 km2

a−1 (0.29 ± 0.24% a−1). However, the total glacier area reduced
from 2392.54 ± 70.80 km2 in 2001−2003 to 2102.25 ± 72.56
km2 in 2019–2021, with a reduction of 290.29 ± 101.38 km2

(12.13 ± 4.24%). The reduction rate from 2003 to 2021 was
about 16.13± 5.63 km2 a−1 (0.67± 0.24% a−1), which is almost
twice that from 1986 to 2003. In the four subareas, the reduction
rate in 2003−2021 was also higher than those in 1986−2003.

The glacier area exhibited a decreasing trend in the four sub-
areas (see Fig. 9). However, the reduction rate varied among the
different areas. The glacier area in the training area reduced from
1405.86 ± 37.77 km2 in 1986−2003 to 1173.83 ± 38.70 km2

in 2003−2021, making it the largest reduction (232.03 ± 54.08
km2) and reduction rate (6.63± 1.55% a−1), followed by testing
area 3 (103.83 ± 22.63 km2 and 2.97 ± 0.65% a−1), testing area
1 (52.28 ± 19.94 km2 and 1.49 ± 0.57% a−1), and testing area
2 (28.28 ± 61.15 km2 and 0.81 ± 1.75% a−1). Although the
reduced area in testing area 3 was less than that in the training
area, it had the largest proportional reduction (37.08 ± 8.08%)
and reduction rate (1.06 ± 0.23% a−1), followed by testing area
2 (23.70 ± 51.25% and 0.68 ± 1.46% a−1), the training area
(16.50 ± 3.85% and 0.47 ± 0.11% a−1) and testing area 1 (7.33
± 2.80% and 0.21± 0.08% a−1) [see Table V(b)]. Similar results
were also found during 1986−2003 and 2003−2021.
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TABLE IV
LANDSAT IMAGES USED TO EXTRACT THE GLACIER OUTLINES

Note: The numbers in parentheses indicate cloud cover percentages. The bold numbers indicate the main reference images among the multiple images, and the underlined
number indicates that the image taken on September 22, 1994 was used because no image was available in scene 138037 during 1995–1997.

More intuitively, we mapped the glacier outlines in the THR
from 1986 to 2021 in a total of 12 periods (see Fig. 10). It was also
showed that the glacier area has been shrinking since 1986, and
the rate of shrinking increased over time. The comparison of the
four subareas indicated that the glacier area in the training area
had the largest reduction. However, the glacier area in testing
area 3 had the largest proportional reduction, as the glacier was
small in this subarea. Some small glacier almost completely
disappeared.

IV. DISCUSSION

A. Comparison of the Eight Methods for Glacier
Outline Extraction

In this article, we compared the performances of eight meth-
ods, i.e., the band ratio method, U-Net, U-Net++, GlacierNet,
SaU-Net, U-Net+cSE, LandsNet, and M- LandsNet, for glacier
outline extraction in the THR using two scenes. The results
indicate that M-LandsNet performs best in the two scenes.
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TABLE V
GLACIER AREA (A) AND AREA CHANGES (B) IN THE THR AND ITS FOUR SUBAREAS DURING 1986−2021

However, some issues deserve to be discussed further when
comparing the eight methods.

First, for the band ratio method, we found that the F1, Kappa,
and OA values initially increased and then decreased with
increasing threshold. This phenomenon implies that when the
threshold is too small, the band ratio method tends to identify
more objects as glaciers. As the threshold increases, this problem
is improved. However, when the threshold is too large, the
band ratio method tends to identify glaciers as other objects.
Moreover, many studies have used the typical values (2.0 ±
0.5) of the threshold [38], [55]. However, in this study, it was
found that the optimal threshold was 3.1 in the THR, which is far
greater than the typical threshold range. When we simply used
1.5 as the threshold for the band ratio method, the F1, Kappa,
and OA values decreased by 2.74, 3.8, and 1.55%, respec-
tively. This indicates that the optimal threshold varies greatly in
different regions, and the determination of the optimal threshold
is difficult.

Second, the comparison of the eight methods revealed that
the band ratio method tends to identify snow cover and water
as glaciers, and it fails to extract some glaciers when covered
by clouds or fog. This phenomenon explains why the band
ratio method has the highest recall (92.59%) in testing area 2
and the second highest precision (78.26%) in testing area 3,
but it is not the best of the eight methods. Many studies have
confirmed that the band ratio method will obtain confusing
results when snow, water, shadows, clouds, and fog are present
in conjunction with glaciers [56], [57]. U-Net tends to identify
snow cover, water, and even some relatively thick clouds and
fog as glaciers, which explains why its recall values in scene 1
(96.60%), testing area 1 (95.91%), and testing area 3 (87.88%)
are the highest, but it is not the best of the eight methods. This
result indicates that U-Net tends to identify other objects with
very small spectral differences from those of glaciers as glaciers,
so as to overestimate target objects, which is consistent with
several previous studies [41], [58], [59]. The performance of
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Fig. 9. Change in the glacier area over time in the THR (a) and the four
subareas [training area (b), testing area 1 (c), testing area 2 (d) and testing area
3 (e)] from 1986–2021. The error bars denote the uncertainty in the respective
years, and the dashed red lines are the linear fitting lines of the glacier area.

Fig. 10. Changes in glacier outlines in the THR from 1986 to 2021. The four
rows of figures represent the training area, the testing area 1, the testing area 2
and the testing area 3, respectively. The base maps are the Landsat images in the
period of 2019−2021.

GlacierNet and SaU-Net was worse than the U-Net, as they were
developed for debris-covered glacier and glacial lake extraction,
respectively, but not for bare glacier extraction. The U-Net+cSE
developed for extracting bare glaciers performed better than the
U-Net. Similar results were obtained in the study conducted
by Tian et al. [25], and their results showed that GlacierNet
performed worse than U-Net, while U-Net+cSE outperformed
U-Net for bare glacier extraction. In contrast to U-Net, LandsNet
is too strict in identifying glaciers, so it tends to omit the ends of
some glaciers and areas where the color of the glacier’s surface
is different from that of the surrounding area. This explains why
LandsNet has the highest precision but is not the best model
in testing areas 1 and 2. U-Net++ had the same problems
as LandsNet and U-Net, but was not as seriously as them.
Therefore, U-Net++ has better performance than LandsNet
and U-Net in scene 2. However, when we modified the dilation
rates of LandsNet, these problem was greatly improved. When
we decrease the dilation rates, M-LandsNet can capture the
features and improve its ability to recognize smaller objects,

so the extraction results are not as fragmented as those of
LandsNet. Therefore, it has the best performance among the
eight methods for scenes 1 and 2. These results indicate that
M-LandsNet, which is based on the LandsNet architecture but
with a reasonable modification, is able to extract the glacier
outlines in the THR well.

Third, compared to scene 1, the extraction accuracies of the
eight methods in the three testing areas in scene 2 decreased
to some extent, except for that of the band ratio method in
testing area 1. For scene 1, the dataset was randomly divided
into training and testing samples, so the testing and training
samples had almost exactly the same distribution. For scene
2, the testing areas were different from the training area in
terms of geographic location, geographic environment around
the glacier, and weather conditions to some extent. The phe-
nomena of different objects with the same spectral reflectance
and the same objects with different spectral reflectance are often
observed, especially when the environment of the object is quite
different [41], which increases the difficulty of identification.
For the band ratio method, when affected by changes in the
geographic environment and weather conditions, the optimal
threshold for this area may no longer be 3.1 since the optimal
threshold of 3.1 was obtained for the entire THR. For the deep
learning models, the changes in the geographic environment and
the weather conditions directly led to large spectral differences
in the images, so some of the features learned in the training
areas may not have been applicable in the testing areas. These
phenomena are primarily responsible for the decreases in the
accuracies of the methods in scene 2.

Fourth, the performances of the eight methods decreased from
testing area 1 to testing area 3. Among them, the eight methods
performed best in testing area 1, almost the same as in scene 1,
which indicates that the eight methods have good generalization
abilities when the testing area is highly similar to the training
area. In fact, most previous studies verified or compared the
performances of deep learning models using the dataset division
method used in scene 1 and in testing area 1 in scene 2 [26],
[60], [61]. In testing area 2, when the glaciers were very clear
but the surrounding geographic environment of the glaciers was
quite different from that in the training area, the performances of
the eight methods decreased to a certain extent. The changes in
the geographic environment should be partly responsible for
these decreases. Moreover, several debris-covered glacier areas
were distributed in testing area 2. The extraction of the debris-
covered glacier areas was much more difficult than the extraction
of the bare glacier areas because of the spectral similarities
between the debris-covered glaciers and the adjacent areas [62].
More data types [i.e., digital elevation model, slope angle, profile
curvature, tangential curvature [22], and/or images with a high
spatial resolution (≤1 m)] and a high radiometric resolution
(i.e., Quickbird-2, GeoEye-1, WorldView-1, and WorldView-2)
are usually required to train a model [56]. However, the debris-
covered glaciers were not considered in this study since we only
used optical images. Additionally, the area of the debris-covered
glaciers in the THR is very small, and they are mainly distributed
in the image with a WRS2 of 133 036, so we did not have enough
debris-covered glacier samples to train the model. When the
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TABLE VI
COMPARISON BETWEEN OUR GLACIER OUTLINES DATASET WITH PREVIOUS

GLACIER RESEARCH WITHIN THE STUDY REGION

geographic environment surrounding the glaciers was different
from that in the training area and the glaciers in the testing area
3 were covered by clouds and fog, the performances of the eight
methods decreased significantly. The large area of cloud and
snow cover was primarily responsible for this phenomenon.
Though M-LandsNet still performed the best in this scene,
the extraction results were almost meaningless due to the low
accuracy. In fact, there is currently no method to completely
eliminate the influences of thick clouds and fog during glacier
outline extraction. Therefore, in glacier extraction work, images
with less cloud cover and fog should be selected.

B. Comparison With Previous Glacier Research Results
Within the Study Area

In this study, we extracted the glacier outlines in the THR from
1986 to 2021 in a total of 12 periods using M-LandsNet. The
obtained glacier outlines were then processed through manual
adjustments. Except for SGCI in 2008, there is currently no other
study of the glacier area in the entire THR, so we compared the
glacier areas in four different regions with the results of previous
studies (see Table VI). Compared with the SCGI, the relative
errors of the glacier area in our study were 1.38%, 0.58%, 0.03%,
and 0.11% in regions (a), (b), (c), and (d). We also compared our
results with four references. Wang et al. [63] obtained the glacier
area in region (a) through fully manual digitization, and the
glacier area were 109.21, 102.80, and 99.34 km2 in 1992, 2001,
and 2010, respectively. The relative errors between their results
and ours were 2.97, 4.09, and 2.77%, respectively. Jiang et al.
[64] obtained the glacier area in region (b) of 196.14, 192.81,
and 191.44 km2 in 1994, 2002, and 2010, respectively, using
supervised classification and manual interpretation. Compared
with our results, the relative errors were only 0.21, 0.23, and
0.09%, respectively. Ye et al. [65] used band ratio method and
manual interpretation to extract the glacier outlines in region

(c), with glacier area of 869.17 and 846.81 km2 in 1992 and
2002, respectively. The relative errors between their results and
ours were only 0.58 and 1.09% respectively. Zhang et al. [66]
manually digitized the glacier outlines in region (d) from Landsat
images, and obtained the glacier area of 613.90 km2 in 2018,
which was also close to our results, with a relative error of only
0.89%. These relative errors range from 0.09 to 4.09%, and
are larger than that of the SCGI. The major reasons for these
different results are that we used the same Landsat images as
the SCGI when extracting the glacier outlines in 2007–2009
in these regions, and the M-LandsNet model was trained using
the same images. Therefore, the predicted results are almost
the same as the training results. However, for the other four
references, the dates of the images used were different from
those used in this study, and some of the images were even more
than 2 years apart, which is mainly responsible for the larger
relative errors. Nevertheless, with the exception of region (a),
the relative errors of the other three regions were all less than
1.10%. Therefore, the glacier outline dataset obtained in this
article is reliable and can effectively reflect the glacier area in
the THR.

We further analyzed the temporal and spatial changes in the
glacier area in the study area and found that the rate of decrease
from 2003 to 2021 was higher than that from 1986 to 2003 in
the entire THR and its four subareas. Ye et al. [67] studied the
glacier changes on the Tibetan Plateau in the 1970s, 2000, and
2013, and they also found that compared with the period of
1970s–2000, the glacier area in the eastern part of the Tibetan
Plateau had a greater rate of decrease from 2001 to 2013. Duan
et al. [68] and Chen et al. [69] also obtained the same result
that the glacier area has been shrinking more rapidly in the last
20 years by studying the glaciers in the Tanggula Mountains,
which contain the training area and testing area 3. More specif-
ically, Duan et al. [68] found that the reduction rate of the
glacier area in the Tanggula Mountains was –1.3% a−1 during
2007−2015, which is more than twice of that during 1991–2007
(−0.5% a−1). In this study, the reduction rate of the glacier area
in the training area and the testing area 3 during 2003−2021
was also about twice of that during 1986−2003. Additionally,
Jin et al. [70] studied the glaciers in Geladandong region in the
training area, and found that the reduction rate of the glacier area
was 0.30% a−1 during 1986−2004. In our study, it was found to
be 0.24±0.22% a−1 during 1986−2003. Therefore, the glacier
outline dataset produced in this study can also effectively reflect
the temporal and spatial changes in the glacier area in the THR.

V. CONCLUSION

In this study, to verify the feasibility and effectiveness of
LandsNet architecture for glacier outline extraction, we applied
M-LandsNet to extract the glacier outlines in the THR. The
band ratio method, U-Net, U-Net++, GlacierNet, SaU-Net,
U-Net+cSE, LandsNet, and two scenes were used for compar-
ison. The optimal model was further used to extract the long
time-series glacier outlines in the THR.

The results indicate that the optimal threshold of the band
ratio method for glacier outline extraction varies greatly in
different regions and is difficult to determine. The band ratio
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method tends to identify snow cover and water as glaciers,
and it fails to extract some glaciers when they are covered by
clouds or fog. U-Net tends to identify other objects with very
small spectral differences from those of glaciers as glaciers.
GlacierNet and SaU-Net performed worse than U-Net, while
U-Net+cSE performed better than U-Net. LandsNet tends to
omit some glaciers when the color of the glacier’s surface is
different from that of the surrounding area. U-Net++ has the
same problems as U-Net and LandsNet, but is not as seriously
as them. M-LandsNet has the best performance among the
eight methods. However, when the testing samples are different
from the training samples to a certain extent, the performances
of the eight methods decrease. Weather conditions have the
greatest impact on the eight methods, followed by geographic
environment and geographic location. M-LandsNet is still the
most accurate and stable model, and it has the best generalization
ability among the eight methods. We further extracted the glacier
outlines in the THR from 1986 to 2021 in a total of 12 periods
using M-LandsNet and manual adjustments, and analyzed the
changes in glacier area. We found that the glacier area in the
THR reduced by 416.40 ± 102.71 km2 (16.53 ± 4.08%) from
1986 to 2021. The reduction rate (16.13 ± 5.63 km2 a−1 (0.67 ±
0.24% a−1)) from 2003 to 2021 was almost twice of that [7.42
± 5.97 km2 a−1 (0.29 ± 0.24% a−1)] from 1986 to 2003. From
1986 to 2021, the glacier area in the training area experienced the
largest reduction (232.03 ± 54.08 km2) and reduction rate (6.63
± 1.55% a−1), followed by testing area 3, testing area 1, and
testing area 2, while testing area 3 had the largest proportional
reduction (37.08 ± 8.08%) and reduction rate (1.06 ± 0.23%
a−1), followed by testing area 2, the training area, and testing
area 1. These results indicate that the reduction rate of the glacier
area varies among different periods and regions. Compared with
the SGCI and previous studies, the relative errors of glacier
areas in this study are 0.03–4.09%, which indicates that the
glacier outline dataset obtained in this study is reliable and can
effectively reflect the glacier area in the THR.

In summary, in this study, a more accurate and generalizable
method of glacier outline extraction was proposed and a long
time-series dataset of glacier outlines in the THR from 1986 to
2021 was presented. Our study can provide data support for the
estimation of regional water resources storage. The dataset is
now available.4
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