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A Spatio-Temporal Neural Network for Fine-Scale
Wind Field Nowcasting Based on Lidar Observation

Hang Gao ", Chun Shen

and Jianbing Li

Abstract—Fine-scale wind field nowcasting is of great signifi-
cance in air traffic management, power grid operation, and so on. In
this article, an indirect wind field nowcasting scheme based on lidar
observation is presented, which contains an encoder-forecaster
network based on the convolutional long short-term memory with
balanced structure and a mask branch. The proposed nowcasting
network is trained and evaluated based on the lidar observations
throughout 2020 at Hong Kong International Airport. Comprehen-
sive comparison with nine methods including the widely used opti-
cal flow technique and classic neural network show the good per-
formance of the new network. It can capture the spatio-temporal
features in the lidar observations and obtain better nowcasting
results up to 27 min with a resolution of 100 m. The nowcasting
errors are smaller than the retrieval errors reported in recent
literature, demonstrating that the lidar observation nowcasting
based on the new network can get fine-scale wind field nowcasting
results with high efficiency.

Index Terms—Lidar observation, nowcasting, spatio-temporal,
wind field.

I. INTRODUCTION

IND field has significant impacts in many aspects,
Wsuch as wind power generation, aviation safety, and
so on. For example, the wind flow drives the turbine and
directly determines the power capacity [1], [2], and most of
air traffic accidents can be attributed to the severe wind shear
or wake vortices encountering during the takeoff and landing
phases [3]-[7].

At present, lidar has been widely applied for wind field
measurement because of its high accuracy and resolution in
dry air condition [8]-[15]. However, a single lidar can only
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measure the Doppler velocities, say, the velocity components
along the line of sight (LOS), which are insufficient to describe
the 2-D or 3-D wind field. To estimate the wind vectors in specific
areas, such as the aircraft approach and takeoff corridors [16],
retrieval methods have been widely studied [17]-[22]. With the
existing wind field retrieval methods, the current or previous
wind field can be obtained with fine resolution, which can
provide instructive information for wind power plant design,
aviation safety management, and so on.

To further optimize the air traffic management and power
grid operation, accurate wind field prediction is of great signif-
icance [23], [24]. In particular, the very short-term nowcasting
is desired because hazardous phenomena, such as wind shear
and aircraft wake can appear, develop, and dissipate within
tens of minutes [23]. Generally, two types of wind field pre-
diction methods have been proposed in recent literatures as
follows.

1) Dynamic Physical Model-Based Methods: The wind, pres-
sure, density, and temperature in the atmosphere can be
described by the laws of fluid mechanics, which include
the Navier—Stokes equation, first law of thermodynam-
ics, the ideal gas law, and the mass continuity equation.
Numerical methods adopted to solve the equations (or
simplified ones) can be referred to as numerical weather
prediction (NWP). Data assimilation methods, such as
4-D variation method (4DVAR) [25], [26] and ensemble
Kalman filter (EnKF) [27], are broadly used to predict
the atmosphere states by combining the NWP with the
observations [28]. However, to predict the wind field with
fine resolution (~100 m), the required computation load
will be unmanageable for ordinary computers today [29].

2) Historical Data-Based Methods: They can be further
classified into two categories. The first category includes
the methods where only the temporal features are ex-
ploited. For example, Markov chain [30], [31], chaotic
oscillatory-based neural network (NN) [32], convolutional
NN (CNN) [33], Bayesian methodology [34], extreme
learning machine [35], Elman NN [24], and so on. How-
ever, the wind field varies spatio-temporally, where the
spatio-temporal dynamics are important [36] but have
yet to be effectively exploited by the approaches in the
first category. With the wind speeds measured in neigh-
boring wind farms, the spatio-temporal dependencies are
exploited by the methods in the second category, which
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includes hybrid methods based on long short-term mem-
ory (LSTM) and graph NN [37], [38], Copula theory [39],
and CNN [8], [40].

According to the above discussions, the existing historical
data-based methods are mainly based on the observations of a
single or several monitoring stations, where the observations
and predictions are sparsely distributed with low resolution.
Benefited from the lidar, it can be reasonably argued that
the high-density observations from the lidar can be used for
fine-scale wind field nowcasting, which has not been widely
studied.

Inspired by the precipitation nowcasting, where the radar echo
maps are first predicted, then the future rainfall rate is estimated
based on the predictions [41], it is promising to predict the wind
field indirectly from the lidar observations: first predict the lidar
observations, and then the future wind field is estimated by the
broadly studied wind field retrieval methods according to the
predictions.

Unfortunately, compared with the wind field retrieval meth-
ods, the lidar observation nowcasting has been rarely studied.
Therefore, this article will focus on the spatio-temporal now-
casting of the lidar observations. The contributions of this article
are as follows.

1) We presented an indirect wind field nowcasting scheme
which first predicts the lidar observations, and then the
future wind field is estimated by wind field retrieval meth-
ods according to the predictions. The feasibility of the
scheme is verified by experiments, where the errors in
lidar observation nowcasting are found to be smaller than
the reported retrieval errors.

2) A novel NN composed of encoder-forecaster network
based on convolutional LSTM with balanced structure and
a mask branch is proposed for lidar observation nowcast-
ing. To the best of our knowledge, this is the first work that
introduces a spatio-temporal deep learning methodology
to predict the lidar observations for fine-scale wind field
nowecasting.

3) Compared with the traditional optical flow-based method,
the newly proposed NN can better capture the spatio-
temporal features of the lidar observations. Predictions
up to 27 min with a resolution of 100 m can be obtained
with higher accuracy.

The rest of this article is organized as follows. In Sec-
tion II, the NN which is capable to exploit the spatio-temporal
features of the lidar observations is described. The field ex-
periment is discussed in Section III. The prediction perfor-
mances of the NN and that of the traditional methods are
compared by comprehensive evaluation and case study in this
section.

II. SPATIO-TEMPORAL NOWCASTING OF LIDAR OBSERVATIONS
A. Related Work

To forecast the rainfall intensity in a local region, precip-
itation nowcasting based on the extrapolation of radar echo
maps has attracted much attention in meteorological community
and machine learning community. There are some similarities
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between the precipitation nowcasting and lidar observation now-
casting. For example, the two problems involve the complexity
of atmosphere, and their fine-scale nowcasting results cannot be
obtained by NWP with small calculation cost [42]; the radar echo
maps and the lidar observations are with the same dimension;
and the spatio-temporal features are important in their dynamics.
Therefore, the precipitation nowcasting methods can be helpful
for lidar observation nowcasting.

In operational precipitation nowcasting systems, the optical
flow-based methods are broadly used for radar echo extrap-
olation. For example, the variational optical flow technique
(VarFlow) [43] has been used to estimate the motion field in
the latest precipitation nowcasting system which is operated
by Hong Kong Observatory (HKO) [41]. To better utilize the
vast amount of historical data, deep learning techniques, such as
3-D CNN [44] and U-Net CNN [45], [46], have been applied.
Formulating the precipitation nowcasting problem as an image-
to-image translation problem and taking the spatio-temporal
features into account, convolutional LSTM (ConvLSTM) [47]
and trajectory gated recurrent unit (TrajGRU) [48] have been
proposed. ConvLSTM and convolutional GRU (ConvGRU)
have shown good performances in extracting spatio-temporal
features, and have been widely used in other works [49]-[52].
Apart from the similarities between the precipitation nowcasting
and lidar observation nowcasting, we highlight that there are
two significant differences between the two problems: 1) the
lidar observations present the Doppler velocities with positive
and negative values, which may change drastically near the
lidar. 2) The lidar or radar sights are inevitably blocked or
contaminated at specific areas, such as buildings or mountainous
areas, where the observations are unreliable and these areas
are referred to as “hole areas.” For the multiradar measure-
ment network, the hole areas of a radar may be accurately
observed by another one, therefore the hole areas in the radar
echo maps are convincingly eliminated by interpolation [53].
For the lidar observations, it is necessary to deal with the hole
areas since there is generally only a single lidar for wind field
measurement.

According to the above discussions, this article first trans-
forms the lidar observations to gray-level pixels and takes the
lidar observation sequences as frame sequences. Then a NN
composed of the encoder-forecaster network with balanced
structure and a mask branch is established, where the ConvL-
STM is adopted in the encoder-forecaster network to exploit
the spatio-temporal features. Unlike the past work [48], [54],
where the masks are preprepared and are only used to exclude
the outliers when computing the loss function, in our work, the
mask branch is embedded into the nowcasting network, which
is simple and easy to be implanted. We further demonstrate that
benefited from the balanced structure and the mask branch, the
nowecasting performance of the new model will be efficiently
enhanced.

B. Lidar Observation Nowcasting Model

According to the statistics of historical wind velocities, the
lidar observations are transformed to gray-level pixels by linear
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(a) Framework of the proposed network. (b) Framework of the encoder-forecaster NN with balanced structure. Zeros are fed as input to the ConvLSTMs

if the input link is missing. a® x b indicates that the kernel size is @ x a, and b is the number of kernels of the convolutional operations. To balance the performance

and computing time, the base kernel number c is empirically set as 8.

projection

VP 420
40
where “20” and “40” stand for the maximum value and the
maximum variation range of the lidar observations, respectively,
which are obtained by statistical analysis; V? is the lidar obser-
vation at a single time stamp, which contains all the observations
in a full scan. It is noted that the time required for the lidar to

conduct a full scan is neglected in this article.

In this way, the lidar observations at different time stamps can
be regarded as spatio-temporal frame sequences {I;,I5,---}.
Therefore, the lidar observation nowcasting can be formulated
as a problem of using k observations I;_j ., € RF*HxWx1
at a given time stamp ¢ to predict p steps ahead: it+1:t+p S
RP*HXWx1 where H and W indicate the height and width of
the frame, the last dimension of the frame represents its channel
number, which equals to 1 for the gray-level frames.

I=f(VP)=255x (D)

The network used for lidar observation nowcasting is com-
posed of two parts: 1) an encoder-forecaster NN and 2) a mask
branch. The framework is shown in Fig. 1(a).

1) Encoder-Forecaster NN: To exploit the spatio-temporal
features in the lidar observations, the ConvLSTM-based
encoder-forecaster NN is used, whose structure is similar to
that proposed in [47]. The input frame sequence I; j1. is
compressed as low-dimensional spatio-temporal features by
the encoder network, which is composed of convolution and
ConvLSTM layers. Then the encoded features will be unfolded
into the output frame sequence it+1:t+p by the forecaster net-
work, which is composed of deconvolution and ConvLSTM
layers.

According to [55], we have revised the structure of the
encoder-forecaster network in [48] to avoid redundant connec-
tions. The detailed illustration of the encoder-forecaster NN
is shown in Fig. 1(b). Balanced kernel sizes are, respectively,
adopted in the encoder and forecaster network, except for the
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Tlustration of the field campaign. (a) Geometry of the field campaign in HKIA. (b) Example of the lidar observation within (16 000 m)?, the cool (warm)

colors represent winds toward (away) from the lidar; the dark blue represent the null values.

output layer in the decoder network. In the revised network, the
kernel sizes are set as 3 x 3, 4 x 4, and 7 x 7. The variation
of the kernel sizes corresponds to multiscale receptive fields
in the convolution operator, they can be used to capture the
multiscale features in the lidar observations. In the last layer
of the forecaster network, an extra “fdconv4” layer is added,
where the 1 x 1 kernel is used to compress the channels of
“fdconv3” outputs. The 1 x 1 kernel has been commonly used
in deep learning models, and has been proved to be effective in
performance improvement.

2) Mask Branch: Generally, to be distinct from the reliable
observations, the pixel values in the hole areas are set as zeros
in the frame. If these zero-value pixels are directly used to train
the network, lots of effort will be used to make the prediction
results in these areas close to 0, which is unnecessary, and the
zero-value pixels can mislead other pixels due to the convolution
operation. In addition, distinguishing the hole areas from the
other areas will be helpful for postprocessing, such as future
wind field retrieval.

Therefore, in this article, a mask branch is embedded into the
nowcasting network to handle the hole areas. The elements of the
mask matrix are either one or zero, which are, respectively, used
to identify whether the corresponding observation is reliable.
The mask matrix is denoted as M; = (my, ),y » Whose
elements are determined by

t

my,= [[ 0Lnw )
j=t—k+1

0, if L, =0, B
513,,1@_{1’ T 2o, h=1,2,...Hw=1,2,...W
(3)

By multiplying the output sequence of the encoder-forecaster
NN with M; by elements, we can obtain the lidar observation
nowecasting results with a focus on the reliable areas in the lidar
observations.

TABLE I
OUTPUT SIZES OF THE LAYERS IN 2D-CONVLSTM+B+MASK

Encoder Out size Forecaster Out size
input 10 x 100 x 100 x 1 fronl 10 X 16 X 16 X 8¢
econvl 10 X 96 X 96 X ¢ fdconv1 10 x 32 x 32 X 4¢
ernnl 10 X 96 X 96 X ¢ frnn2 10 X 32 x 32 X 3¢
econv2 10 x 32 x 32 x 2¢ fdconv2 10 X 96 X 96 x 2¢
ernn2 10 x 32 x 32 x 3¢ frnn3 10 X 96 X 96 X ¢
econv3 10 X 16 X 16 X 4c¢ fdconv3 10 x 100 x 100 X ¢
ernn3 10 x 16 X 16 X 8¢ fdconv4 10 X 100 x 100 x 1

The input and output, both, have 10 frames in the experiment.

III. EXPERIMENT
A. Dataset

To train and evaluate the nowcasting models, a collection
of lidar observations throughout 2020 is used. In the field
campaign, the lidar was set up near the north runway in the
Hong Kong International Airport (HKIA) by HKO. The lidar
performs plan position indicator (PPI) scans with an elevation
angle of 3°. It is a long-range lidar whose maximum detection
range can reach 10 km, as shown by the red circle in Fig. 2(a).
Taking the lidar position as the center, a rectangular grid of
100 x 100 pixels is established, with each pixel representing
an area of (100 m)2. The rectangular grid covers the north
and south runways and corridors, which are the most notable
regions in HKIA. The boundary of the grid is shown by the
blue rectangle ABCD in Fig. 2(a). The lidar observations are
identified by a signal-to-noise ratio (SNR) threshold empirically:
if the SNR is lower than the threshold, indicating that the
corresponding observation is unreliable and its value will be
set to null. An example of the lidar observation is shown in
Fig. 2(b). Then the lidar observations are linearly interpolated
onto the rectangular grid. It is noted that the interpolation is
reliable and accurate since the lidar observations are densely
distributed and the null values remain unchanged during the
interpolation. Finally, the observations are linearly projected
to pixel values by (1), and the null values are set as zeros.
Since the transformation is linear for the reliable observations,
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it is easy to project the predicted pixel values back to the lidar
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The time interval between two PPI observations is about
2 min 45 s, therefore, there are about 525 observations in a day.
According to [50], for each month, observations in the first day
are assigned to the validation set; observations in the last seven
days are assigned to the test set; and all other days are assigned
to the training set. In the experiment, we aim to predict 10 frames
based on 10 input frames, that is to say, k = p = 10. As in [47],
a 20-frame-wide sliding window is used to generate training,
validation, and test sequences from the training, validation,
and test sets, respectively. Finally, our lidar observation dataset
contains 82 144 training sequences, 4418 validation sequences,
and 26 140 test sequences.

B. Comparison Models

To verify the performance of the presented model in li-
dar observation nowcasting, we have evaluated ten nowcast-
ing methods. They include six baselines and four variants
based on 2-D CNN and ConvLSTM layers (abbreviated as
2DCNN-ConvLSTM). The baseline methods include: 1) the
Eulerian persistence method, which assumes that the last frame
is the prediction for all future states; 2) the traditional VarFlow
method, which estimates the motion field from the last two
frames; 3) VarFlow method with the mask branch (abbreviated
as VarFlow+mask); 4) the original encoder-forecaster network
in [48], which is realized by 2-D CNN layers (abbreviated as
2DCNN) or 5) 3-D CNN layers (abbreviated as 3DCNN); and 6)
the original encoder-forecaster network in [48] based on the 3-D
CNN and ConvLSTM layers (abbreviated as 3D-ConvLSTM),
where the convolution and deconvolution are realized by the
corresponding 3-D derivations.

For ablation study, the four 2DCNN-ConvLSTM-based
variants contain: 1) the original encoder-forecaster network
in [48] based on 2DCNN-ConvLSTM (abbreviated as
2D-ConvLSTM); 2) the 2D-ConvLSTM along with the
mask branch (abbreviated as 2D-ConvLSTM+mask); 3) the
2DCNN-ConvLSTM with the balanced structure (abbreviated
as 2D-ConvLSTM+B); and 4) the 2DCNN-ConvLSTM with
the balanced structure and the mask branch (abbreviated as
2D-ConvLSTM+B+mask).

The detailed descriptions of the 2DCNN, 3DCNN, 2D-
ConvLSTM, and 3D-ConvLSTM are illustrated in the
Appendix Table II-V, respectively. With k = p = 10, the output
sizes of each layer in the 2D-ConvLSTM+B-+mask model are
listed in Table I.

C. Training

Since the pixel values and the observations are linearly cor-
related, the mean square errors (mses) are directly calculated
according to the pixel values during the training process. The
mse is defined as follows:

(&)
where Nyan = 82144 is the number of training sequences,
im', I, ; € RT*W indicate the prediction and the ground
truth of the jth frame in the <th training sequence,
respectively.

The Adam optimizer with learning rate equal to 10~% is
used to optimize the mse during the training process. The
mse decreases very quickly, therefore, the number of train-
ing epochs is set as 30. All layers except the last one are
activated by the leaky ReLU [56] with a negative slope of
0.2.
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Fig. 4. Comparison between the ground truth and predictions. (a) Ground truth from 11:23 to 12:12 on April 29, 2020, where I, ..., I;g represent the ground

truth of 1,...,19 frames, respectively. (b) Predictions obtained by VarFlow (first row) and 2D-ConvLSTM (second row), where i‘l’ar, L. ,i‘l’gr represent the
VarFlow predictions; i‘l‘ew, ceey irllew represent the 2D-ConvLSTM predictions. All the ground truth and predictions are subsampled one every two images to
improve representation clarity. In the pseudocolor map, the cool (warm) colors represent winds toward (away) from the lidar. (c) Absolute errors between the
ground truth and the predictions, where the errors are calculated in terms of the Doppler velocities, EY?", ..., EY§" represent the absolute errors of the VarFlow
predictions; E}Y, ... E}g" represent the absolute errors of the 2D-ConvLSTM predictions. (d) Ground truth from 13:16 to 14:07 on April 29, 2020. (g) Ground
truth from 16:43 to 17:32 on October 30, 2020. (e), (h) and (f), (i) have the same meaning as that in (b) and (c).
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Fig. 5. RMSEs obtained by four methods. For simplification, the
VarFlow+mask method and 2D-ConvLSTM+B+mask method are abbreviated
as VarFlow and 2D-ConvLSTM method in the comparison. (a)—(c) correspond
to Cases 1-3, respectively.

D. Performance Evaluation

According to the test dataset, the nowcasting performance is
evaluated by the root mse (RMSE) of the lidar observations

Nt P H

e [FETES o ) ]

i=1j=1h=1w=1
(6)

where N = Ny X p X H x W, with Ny = 26140 being the
number of test sequences; VB ;€ R7*W is the real lidar obser-
vation of the jth frame in the ith test sequence, mask(-) indicates
to only take the predictions in the reliable areas into account.
f71(-) indicates to project the predicted pixel values back to the
lidar observations, which is defined in (4).

The RMSEs obtained by the ten methods are illustrated in
Fig. 3(a), from which, the following are observed.

1) The RMSE obtained by Eulerian persistence is smaller
than that obtained by the other six baseline methods except
for the 3D-ConvLSTM, because most of wind fields in the
dataset are uniform and stable during the leading time.

2) Exceptfor the 3DCNN method, the NN models can predict
the lidar observations with a higher accuracy than the
traditional VarFlow method. The poor performance of the
VarFlow method may be caused by the errors introduced
by the motion field estimation.

3) Without the mask branch and the balanced structure, the
2D-ConvLSTM and 3D-ConvLSTM can obtain the most
accurate predictions among the first seven nowcasting
methods in Fig. 3(a). It indicates that the ConvLSTM
framework can help to exploit the spatio-temporal fea-
tures in the sequences, which can efficiently improve the
nowcasting performance.

4) Based on the 2D-ConvLSTM, we have studied the perfor-
mance enhancement provided by the balanced structure
and the mask branch, respectively. It is found that the
RMSE obtained by the last model is the smallest one com-
pared to that of the other models in Fig. 3(a). Therefore, the

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

2D-ConvLSTM with the balanced structure and the mask
branch (2D-ConvLSTM+B+mask) is more favorable in
lidar observation nowcasting.

The RMSEs of the four 2D-ConvLSTM variants over time
are further compared in Fig. 3(b). We find that the RMSEs
obtained by the 2D-ConvLSTM+B+mask model over time are
the smallest ones compared with that obtained by other variant
methods; that is to say, the 2D-ConvLSTM+B+mask model out-
performs other models. The relevance between the future wind
field with the lidar observations decreases over time, resulting
in the performance decline of the four nowcasting methods,
which is common and reasonable in nowcasting and prediction
problems. Specifically, itis noted that, compared with the models
with the original structure, the new balanced structure can slow
down the accumulation of the errors over time; for example,
the yellow line has a smaller slope than the blue dashed line in
Fig. 3(b); compared with the models without the mask branch, a
general reduction of the RMSE:s is a benefit of the mask branch;
for example, the purple line has an overall reduction compared
with the blue dashed line in Fig. 3(b).

In our earlier work, the same lidar observations and syn-
chronous in situ observations were assimilated to retrieve the
wind field [57]. The reported retrieval RMSE is about 1.5 m/s,
which is obviously bigger than the nowcasting RMSE in
Fig. 3(b). Therefore, it can be reasonably deduced that, the future
wind field can be predicted indirectly through lidar observation
nowcasting, and the prediction error will largely depend on the
retrieval methods.

E. Case Study

It is noted that the RMSEs are comprehensively evaluated
on the whole test dataset, where most wind fields are stable
and calm. In particular, for the most concerned wind fields in
aviation safety, the performances of the VarFlow+mask method
and 2D-ConvLSTM+B+mask model under three typical wind
shear conditions are further compared. Wind shear is recognized
as one of the most common aviation hazards. It can lead to drastic
changes in the wind field within tens of minutes. Case 1 and 2
show a complete evolution process of wind shear from formation
to dissipation, Case 3 shows the dissipation process of wind shear
along with significant wind speed enhancement. For simplifica-
tion, the VarFlow+mask method and 2D-ConvLSTM+B+mask
method are further abbreviated as VarFlow and 2D-ConvLSTM
method in case study.

1) Case 1: The ground truth from 11:23 to 12:12 on April
29, 2020 is shown in Fig. 4(a). From I;, we find that the wind
field is almost uniform at the beginning, and it flows from the
left to the right of the frame. Later, the wind shear is initiated,
which is shown by the inverse Doppler velocities in the left
side of the frames. The center of the wind shear moves to the
lidar position in I;9. The prediction results obtained by VarFlow
and 2D-ConvLSTM are shown in the first and second rows in
Fig. 4(b), respectively. We can find that, compared with the
ground truth, the predictions obtained by VarFlow are all similar
to the last input frame, which indicates that the predictions failed
to capture the spatio-temporal features of the wind shear due
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to the underestimated motion field. However, the predictions
obtained by 2D-ConvLSTM can represent the evolution of wind
shear to some extent, because a certain amount of complex
spatio-temporal patterns are contained in the training dataset
during the training process of 2D-ConvLSTM. It should be noted
that, the predictions of the 2D-ConvLSTM model are blurred,
which may be caused by the mse loss in model training [58]
and the inherent uncertainties of the lidar observations due to
the randomness in the wind field evolution [47]. The blurry
phenomenon can be handled by modifying the loss function and
the network framework, which will be studied in the future work.

The absolute errors between the ground truth and the predic-
tions are compared in Fig. 4(c). We can find that the prediction
errors of the two methods increase over time, which coincides
with Fig. 3(b). The errors of each frame mainly come from
the front part of the warm area, where the observations are
drastically changed. In the traditional VarFlow method, the
errors also occur at the edges of the hole areas. The reason is that
the pixel values in the hole areas are zeros, which are distinct
from the others and may introduce errors in the motion field
estimation.

The RMSEs obtained by the methods are compared in
Fig. 5(a), where four methods are used for comparison according
to their good performance in Fig. 3(a), these methods include Eu-
lerian persistence, VarFlow (VarFlow+mask), 3D-ConvLLSTM,
and 2D-ConvLSTM (2D-ConvLSTM+B+mask). From the com-
parison, it can be found that all the RMSEs obtained by the
four methods are slightly bigger than that in Fig. 3(a). This is
reasonable because wind shear events, which can be recognized
as extreme events, are rarer than stable wind fields, resulting in
a small proportion of extreme events in the training dataset. This
statement can be verified by Fig. 4(c), from which we can find
that the nowcasting errors mainly come from the areas where the
observations change drastically. Moreover, the 2D-ConvLSTM
consistently outperforms the baseline methods. It is noted that
the first two baseline methods have the same RMSE, because
in the VarFlow method the nearest interpolation always ignores
the changes brought by the underestimated motion field.

2) Case 2: After the wind shear in Case 1 is fully evolved,
it gradually dissipates, which is depicted in case 2. Comparing
I, in Fig. 4(d) with Fig. 4(a) I, it is obvious that, caused by the
evolution of wind shear, the direction of the uniform wind field
was completely reversed within 11:23 to 14:07. The reversion
can seriously impact the aircraft takeoff and landing phases, and
its accurate prediction is of great significance in aviation safety.
As the conclusion in Case 1 shows, the 2D-ConvLLSTM can bet-
ter capture the spatio-temporal dynamic features of wind shear
than the VarFlow method. Moreover, the absolute errors mainly
occur at the areas where the observations change dramatically.

The RMSEs obtained by the four methods are compared in
Fig. 5(b), which is similar to that shown in Fig. 5(a) for Case 1.

3) Case 3: Similar to Case 2, a dissipation process of wind
shear is recorded in Case 3. The difference is that besides the
dissipation, the wind speed is significantly enhanced, as shown
by the darker red in the last frames. Case 3 aims to evaluate
the nowcasting performance when there are significant changes
in wind speed and direction. From Fig. 4(g), we can find that
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the wind speed enhancement can be correctly predicted by both
the VarFlow method and 2D-ConvLSTM method. However, the
variation in wind direction, that is the dissipation of wind shear,
can only be predicted by the 2D-ConvLSTM method. Therefore,
the 2D-ConvLSTM method can successfully predict the dynam-
ical evolutions of wind direction and speed with small errors.

According to the RMSEs shown in Fig. 5(c), it is noted that
the VarFlow method has the biggest RMSE among the methods.
The reason is that although the mask branch is introduced in the
VarFlow method, the estimated motion field can affect the entire
frame including the hole areas. It indicates that the hole areas
in the lidar observations cannot be well handled by the VarFlow
method. This statement can be verified from Fig. 4(i), where
it is found that the big absolute errors of the VarFlow method
occur at the edge of the hole areas. Furthermore, as expected,
the 2D-ConvLSTM can best predict the lidar observations when
the wind field changes dynamically.

IV. CONCLUSION

To forecast the near future wind field with high resolution,
this article proposes to indirectly predict the wind field based
on lidar observation nowcasting. Regarding the speciality in
lidar observation nowcasting, a new NN is proposed, which
contains the ConvLSTM-based encoder-forecaster network with
balanced structure and a mask branch. Once trained, the network
can quickly predict the future lidar observations for the next
ten time stamps, that is up to 27 min in advance. To the best
of our knowledge, this is the first work that uses the spatio-
temporal NN for lidar observation nowcasting and successfully
validates the feasibility of fine-scale wind field nowcasting
based on lidar observations. The predicted lidar observations
can be directly used for wind hazard warning, and can be
further used to retrieve the future wind field for other prediction
products.

From the experiment results, we find that the 2D-ConvLSTM
with the balanced structure and the mask branch outperforms the
baseline methods and other 2DCNN-ConvLSTM-based variant
methods. It can well capture the spatio-temporal features and
provide more accurate predictions of the lidar observations.
The designed balanced structure and the mask branch can both
improve the nowcasting performance.

In our work, the network is trained on the historical observa-
tions provided by the long range lidar in HKIA. To extend the
framework to other measurement conditions, transfer learning
can be used to quickly adjust the trained nowcasting network
to make it suitable for actual conditions. Further studies in-
clude alleviating the blurry phenomenon in the predictions, and
optimizing the framework for better nowcasting performance
especially under extreme conditions.

APPENDIX
DETAILED STRUCTURE OF THE NEURAL NETWORKS

The details of the 2DCNN, 3DCNN, 2D-ConvLSTM, and
3D-ConvLSTM models are listed in Tables II-V, respectively.
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TABLE II
DETAILS OF 2DCNN MODEL WITH ¢ = 128
Name Kernel ~ Channel  Stride  Regularizer In/Out size
econvl Tx7 c (1,1) BN 100 x 100 x 10/96 x 96 x ¢
econv2 4x4 c (3,3) BN 96 X 96 X ¢/32x 32X ¢
econv3 4x4 2¢c (2,2) BN 32%32xc/16 %X 16 X 2¢
econv4 4x4 3¢ 2,2) BN 16 X 16 X 2¢/8 x 8 X 3¢
econv5 4x4 4c (2,2) BN 8x8x3c/4x4x4c
fdconvl 1x1 8c (1,1 - 4x4x4c/dx4x8¢
fdconv2 4x4 4c 2,2) - 4x4x%x8c/8x8x4c
fdconv3 4x4 3c (2,2) - 8x 8x4c/16x 16 X 3¢
fdconvd 4 x4 2c (2,2) - 16 X 16 X 3¢/32 x 32 X 2¢
fdconv5 4x4 c (3.3) - 32 % 32%2c/96 X 96 X ¢
fdconv6 5% 5 10 (1,1) - 96 x 96 x ¢/100 x 100 x 10
“BN” stands for batch normalization, and “econv” and “fdconv” are as illustrated in
Fig. 1(a).
TABLE III
DETAILS OF 3DCNN MODEL WITH ¢ = 64
Name Kernel Channel ~ Stride  Regularizer In/Out size
econvl TxTxT c (1,1,1) BN 100 x 100 X 10 x 1/96 X 96 x 4 X ¢
econv2  4x4x1 c (3,3,1) BN 96 X 96 x4 X c/32Xx32X6X%Xc
econv3 4x4x4 2c 2,2,2) BN 32x32Xx6Xc/16X16X%X2X%2¢
econv4 4x4x4 3¢ 2,2,2) BN 16 X 16 X2 X 2c/8x8x 1x%X3c
econvs 4x4x4 4c (2,2,2) BN 8x8Xx1x3c/dx4x1xdc
fdconvl 1x1x2 8c (1,1,1) - 4x4x1x4c/dx4x2x%x8c
fdconv2 4 x4 x4 4c (2,2,2) - 4x4x2%x8c/8%x8x4x4c
fdconvd 4x4x4 3c (2,2,1) - 8x8x4x4c/16x 16 x 8 x 3¢
fdconvd 4 x4x4 2c 2,2,1) - 16 X 16 X 8 X 3¢/32 x 32 % 8 X 2¢
fdconvs 4 x4x3 c (3,3,1) - 32x32%x8x%x2c/96 %96 x 10X ¢
fdconv6  5x5x1 1 (1,1,1) - 96 X 96 x 10 x ¢/100 x 100 x 10 x 1
TABLE IV
DETAILS OF 2D-CONVLSTM MODEL WITH ¢ = 8
Name Kernel ~ Channel  Stride  Regularizer In/Out size
econvl Tx7T c (1,1) BN 10 x 100 x 100 x 1/10 X 96 X 96 X ¢
ernnl 3x3 c (1,1) BN 10X 96 x 96 X ¢/10 X 96 X 96 X ¢
econv2 4 x4 2c (3,3) BN 10 X 96 X 96 X ¢/10 x 32 X 32 X 2¢
ernn2 3x3 3c (1,1) BN 10 X 32 x 32 X 2¢/10 x 32 X 32 X 3¢
econv3 4 x4 4c 2,2) BN 10 x 32 %32 % 3¢/10 X 16 X 16 X 4¢
ernn3 3x3 8c (1,1) BN 10x 16 X 16 x 4¢/10 x 16 X 16 X 8¢
fronl 3%x3 8c (1,1) BN 10x 16 x 16 x 8¢/10 x 16 X 16 x 8¢
fdconvl 4 x4 4c 2,2) - 10X 16 x 16 X 8¢ /10 x 32 X 32 x 4¢
fran2 3x3 3c (1,1) BN 10 X 32 x 32 x4¢/10 x 32 X 32 X 3¢
fdconv2 4 x4 2¢ (3.3) - 10 X 32 %32 x 3¢/10 x 96 X 96 x 2¢
frnn3 3x3 c (1,1) BN 10 X 96 X 96 x 2¢/10 X 96 X 96 X ¢
fdconv3 3x3 c (1,1) - 10 X 96 x 96 x ¢/10 x 100 x 100 X ¢
fdconv4 3x3 1 (1,1) - 10 x 100 x 100 x ¢/10 x 100 x 100 x 1

“ernn” and “frnn” are as Illustrated in Fig. 1(a).

TABLE V
DETAILS OF 3D-CONVLSTM MODEL WITH ¢ = 8

Name Kernel Channel ~ Stride  Regularizer In/Out size
econvl 3x7Tx17 c (1,1,1) BN 10 x 100 x 100 x 1/8 X 96 X 96 X ¢
ernnl 3x3 c (1,1) BN 8X 96 %96 X c/8x96x%x96xc
econv2  4x4x4 2c (2,3,3) BN 8X96x96xc/4%x32x%x32x2c
ernn2 3x3 3c (1,1) BN 4x32x32x2c/4%x32%x32x%3c
econv3 4x4x4 4c 2,2,2) BN 4%x32x32%x3c/1 x16x16x4c
ernn3 3x3 8c (1,1) BN 1x16x16x4c/1 x 16 x 16 x 8¢
frnnl 3x3 8c (1,1) BN 1x16x16x8c/1x16x 16 x 8¢
fdconvl 4 x4 x4 4c (4,2,2) - 1x16x16 % 8c/4x32x32x4c
frnn2 3x3 3c (1,1) BN 4%x32x32x4c/4x32%32x%3c
fdconv2 4x4x4 2¢c (2,3,3) - 4x32x32%3c/8%x96x96 %X 2c
frnn3 3x3 c (1,1) BN 8% 96 X 96 X 2¢/8 %96 %96 X ¢
fdconvd 1x3x3 c (1,1,1) - 8% 96 %96 x ¢/10 x 100 x 100 x ¢
fdconvd 3 x3x3 1 (1,1,1) - 10 x 100 x 100 x ¢/10 x 100 x 100 x 1
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