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Uncertainty Analysis of Digital Elevation Models
by Spatial Inference From Stable Terrain

Romain Hugonnet , Fanny Brun , Etienne Berthier , Amaury Dehecq , Erik Schytt Mannerfelt ,
Nicolas Eckert , and Daniel Farinotti

Abstract—The monitoring of Earth’s and planetary surface el-
evations at larger and finer scales is rapidly progressing through
the increasing availability and resolution of digital elevation mod-
els (DEMs). Surface elevation observations are being used across
an expanding range of fields to study topographical attributes
and their changes over time, notably in glaciology, hydrology,
volcanology, seismology, forestry, and geomorphology. However,
DEMs frequently contain large-scale instrument noise and varying
vertical precision that lead to complex patterns of errors. Here,
we present a validated statistical workflow to estimate, model, and
propagate uncertainties in DEMs. We review the state-of-the-art
of DEM accuracy and precision analyses, and define a conceptual
framework to consistently address those. We show how to charac-
terize DEM precision by quantifying the heteroscedasticity of ele-
vation measurements, i.e., varying vertical precision with terrain-
or sensor-dependent variables, and the spatial correlation of errors
that can occur across multiple spatial scales. With the increasing
availability of high-precision observations, our workflow based
on independent elevation data acquired on stable terrain can be
applied almost anywhere on Earth. We illustrate how to propagate
uncertainties for both pixel-scale and spatial elevation derivatives,
using terrain slope and glacier volume changes as examples. We
find that uncertainties in DEMs are largely underestimated in the
literature, and advocate that new metrics of DEM precision are es-
sential to ensure the reliability of future land elevation assessments.
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I. INTRODUCTION

D IGITAL elevation models (DEMs) are gridded, numerical
representations of surface elevation. DEMs have a long

history of interpolation from point measurements and digitized
historical maps [1], [2]. Nowadays, DEMs are mostly generated
from radar interferometry [3], [4], optical stereophotogramme-
try [5], [6], or laser scanning [7], [8] of a planetary surface.
When produced from these remote sensing techniques, DEM
grid cells essentially represent surface elevation observations
timestamped to the date of instrument acquisition. With the
ever-improving coverage and precision of satellite and airborne
sensors [9], land surface assessments based on DEMs are ad-
vancing toward estimates that are both more spatially and more
temporally resolved [10], [11]. Additionally, the recent unlock-
ing of historical optical archives has created unprecedented
potential for studying half a century of Earth’s surface elevation
[12]–[14].

Studies that harness elevation observations can generally
be divided into two groups. The first group relies on single-
acquisition and often gap-filled DEMs to extract essential topo-
graphic characteristics, e.g., in river discharge and flood mod-
eling [15]–[17], geomorphological terrain analysis [18]–[21],
tectonic monitoring [22]–[25], avalanche risk prediction [26],
land classification [27], [28], onshore inundation and sea-level
rise forecasting [29]–[31], and planetary surface characteriza-
tion [32], [33]. The second group requires multiple acquisitions
to study surface elevation changes over time, e.g., for landslide
and rock avalanche detection [34]–[36], seasonal snow depth
assessment [37]–[39], lava flow volume quantification [40], [41],
canopy height evolution [42]–[44], and glacier, ice sheet and ice
shelf mass balance estimation [45]–[47]. In both groups, and for
all applications, the interpretation of results and its robustness
are inextricably intertwined with the accuracy and precision of
the underlying DEMs.

Accuracy and precision are related to systematic and random
errors. In the case of DEMs, they have been the focus of specific
research [48]–[51], software development [52], and questioning
[53]–[56] since the beginning of the numerical era. Yet, these
efforts are dwarfed by the tremendous increase of studies that
rely on DEMs [57] and the processing of ever larger data
volumes [58]–[60]. Most critically, the analysis of many modern
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studies is still confined to simplified metrics for accuracy and
precision that mix systematic and random errors (e.g., [61]–[63])
and fail to describe the strong spatial variations and correlations
in errors observed in DEMs (e.g., [64]–[66]).

Here, we present a statistical workflow to robustly estimate
and propagate uncertainties in DEMs; most specifically, we:

1) perform a literature review of analyses dealing with DEM
accuracy and precision;

2) propose a framework based on spatial statistics to consis-
tently address DEM accuracy and precision;

3) present robust inferential methods to estimate elevation
heteroscedasticity and spatial correlation of errors;

4) analyze the impact on the uncertainty of elevation deriva-
tives with terrain slope and glacier volume changes;

5) provide access to our methods through the open, tested,
and documented Python package xDEM.

II. LITERATURE REVIEW

A. Mitigating Poor DEM Accuracy Before Studying Precision

The term accuracy has been used to describe either systematic
errors or, in some instances, both systematic and random errors,
leading to some confusion. In the present article, we define
accuracy as the description of systematic errors only, also
known as “trueness” [67], which is related to elevation biases.
Poor accuracy is common in DEMs and has been a major source
of error in land elevation assessments, particularly during the
advent of space-borne DEMs. Limitations in instrument posi-
tioning, orientation, or postprocessing often lead to erroneous
horizontal referencing [66], [68], vertical shifts [69], [70], or
tilts [71], [72] that propagate into elevation biases [see Fig. 1(a)].
By utilizing terrain with elevation assumed stable over time,
methods performing three-dimensional alignment of DEMs
have flourished, relying on either generic registration methods
[73]–[75], least squares approaches [71], [76] or specifically
developed DEM registration based on terrain constraints [77],
[78]. These methods proved robust for aligning a DEM either
to an external reference DEM, or to accurate geolocated point
elevation data such as space-borne laser altimetry [79], [80].

The above registration methods are only successful at correct-
ing elevation biases common to the entire DEM grid, however.
Other biases remain present once 3-D alignment is attained and
can arise from resolution [81], [82], specific image deforma-
tions, and instrument biases [13], [66] or physical properties
of the observed terrain such as radar penetration into snow
and ice [83], [84] or into forest canopy [43]. Most of these
biases are instrument- or application-dependent and, therefore,
require specific considerations. Notwithstanding those, poor
DEM accuracy has been largely addressed by the robustness of
registration methods that have become increasingly widespread,
thereby shifting the focus towards the next limiting factor: better
quantifying DEM precision.

B. Inherent Variability of Vertical Precision

Precision describes random errors [67] and is related to el-
evation measurement variance. One aspect of DEM precision
consists of the pixel-scale dispersion of elevations that we refer

Fig. 1. Patterns of errors in DEMs. (a) Elevation differences of hori-
zontal shifts (left) and after alignment (right) with terrain hillshade (top),
from the DEMs in Table I. The horizontal shift between Pléiades and
SPOT-6 DEMs is of 2 m east and 4 m north, creating large biases de-
spite being relatively small (half a pixel). (b)–(c) Noise owed to (b)
along-track undulations in a Pléiades–Pléiades DEM difference and to (c)
digitization artefacts in a KH-9–ArcticDEM DEM difference [13], after
alignment.

to as “vertical precision.” DEMs are generated from acquisitions
that possess intrinsic, random measurement errors. At the pixel
scale, instrument resolution, spectral range, and encoding depth
of optical sensors directly affect the quality of stereo-correlation
[5], [6], [85], radar slant angle, and height of ambiguity play an
important role in interferometric coherence [86], [87] while laser
wavelength, sunlight background radiation, target reflectivity,
and backscattering properties modulate laser signal-to-noise
ratio [88], [89]. Many instrument- or processing-related metrics
constitute quality indicators of the estimated elevations. These
indicators have been almost exclusively used for the filtering of
observations of lesser quality, however, and only occasionally as
a tool toward improved modelling of sensor-specific variability
in vertical precision (e.g., [90]).

Besides, the geometry of instrument acquisition can exac-
erbate random errors depending on the relief of the observed
landforms [see Fig. 1(a)]. Vertical precision has indeed been long
shown to decrease with terrain slope [48], [91]–[94]. Several
assessments account for this variability by partitioning the eleva-
tion variance into categories of flat and steep terrain (e.g., [59]).
Most studies use a single metric to describe vertical precision,
however, often reporting a standard deviation (e.g.,± 2 m). Such
simple metrics are insufficient in describing the heteroscedas-
ticity of elevation measurements, i.e., the variability in vertical
precision. Although some studies quantified and modeled this
heteroscedasticity [64], [95], [96], this modeling was generally
performed without validation of the underlying methodology
and, most critically, without considering the effect of spatial
correlations.
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C. Correlated Noises That Plague DEMs

Another aspect of DEM precision concerns the interpixel
spatial dependency of random errors, here referred to as “spatial
correlations.” Spatial correlations describe structures of noise
that show a location-dependent pattern, which can often be
traced back to limitations during acquisition or postprocessing.
Along-track undulations have been observed in many DEMs
generated from air- and space-borne sensors [see Fig. 1(b)],
including the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) [47], [66], the Satellite Pour
l’Observation de la Terre (SPOT) [97], [98], Pléiades [39], [99],
and the Shuttle Radar Topography Mission (SRTM) [58], [100],
[101] [see Fig. S1]. Processing noise is common in DEMs
requiring image digitization including aerial photographs [102],
[103] or historical satellite imagery such as Hexagon KeyHole-9
(KH-9) [13], [104] [see Fig. 1(c)]. To mitigate these correlated
noises, DEM correction methods have emerged [82], [105] but
are still burgeoning for specific types of errors [66], [106], [107],
and their performance is highly dependent on the type of terrain.

Furthermore, nearly all DEMs contain structural short-range
correlation of errors. The degree to which a DEM grid spacing
represents its native resolution [108], [109] and how that reso-
lution has possibly been degraded through interpolation [110]
determine the severity of these short-range correlations. When
upsampled to a larger grid spacing, vertical precision improves
directly as a function of the underlying spatial correlations
[111]. Spatial correlations are generally quantified using an
empirical variogram [112], [113] estimated either on the basis of
differences with independent elevation observations [2], [114]
or those with simulated elevation surfaces [115], [116]. Many
studies have used variograms, but have almost exclusively used
short range models (i.e., 5–20 times the pixel size). Few studies
modeled long-range correlations, that is, correlations that persist
over distances several orders of magnitude larger than the pixel
size [13], [47], [65]. The widespread occurrence of long-range
noise in DEMs thus constitutes a critical limitation in the analysis
of DEM precision, and one that directly affects uncertainty
propagation.

D. Uncertainty Propagation to Elevation Derivatives

To propagate elevation variance into uncertainties of elevation
derivatives (i.e., variables that are derived from elevations), a
large set of methods has been applied that generally relies on
spatial statistics. Spatial statistics, also known as geostatistics
[112], [113], [117], provide a large body of theories and methods
that, among others, can address spatial uncertainty analyses
[118]–[120] by characterizing spatial correlations that depend
only on the distance between observations. These uncertainty
propagation methods can be subdivided into two groups: 1)
Monte Carlo techniques that simulate multiple random realiza-
tions of correlated error fields [121]–[123], notably including
Sequential Gaussian simulation [117] and Fourier randomiza-
tion [124]; and 2) gradient techniques that analytically approx-
imate the variance of a derivative through simplified equations,
that can be either based on Taylor series expansion [121] for

any derivative of elevation, or approximations of variogram
integration [65] for spatial derivatives.

The first group has been widely used for topographic vari-
ables, notably in hydrology [16], [57], [125], [126] and occa-
sionally for spatial derivatives in glaciology [127]. The second
group is used less frequently, both for Taylor series expansions
developed in few applications [128]–[131], and for variogram
integration implemented mainly in glaciology and geomorphol-
ogy [65], [132]. Although both groups are expected to perform
similarly, Monte Carlo techniques are computationally expen-
sive, especially at fine resolution. Analytical approximations,
instead, require a theoretical description of variance propagation
that can reach a high degree of complexity for some derivatives
[133]. To our knowledge, few studies [132] constrained these
propagation methods with estimates of heteroscedasticity and
spatial correlation of errors into a single framework for DEMs,
and none tested the underlying assumptions of spatial statistics.
In the following, we propose such a framework, and later de-
scribe methods to robustly estimate its key components.

III. PROBLEM FORMULATION

A. Elevation Bias and Variance at Each Location

We consider the elevation observation ĥ(x, y, t) located at
(x, y) in space and t in time, and pertaining to the DEM D.
Annotating the true unknown elevation at the same location
h(x, y, t), we can state that the elevation observation has a bias
δh(x, y, t) if, over a large number of repeated measurements
i ∈ I of elevation ĥ(x, y, t)i at (x, y, t), we have

ĥ(x, y, t)i|I − h(x, y, t) = δh(x, y, t). (1)

The repeat elevation measurements around the bias δh(x, y, t)
are subject to random measurement errors εh(x, y, t) with vari-
ance σ2

h(x, y, t), whose distribution is not necessarily normal
and might depend on time and location:

ĥ(x, y, t) = h(x, y, t) + δh(x, y, t) + εh(x, y, t). (2)

In practice, acquiring a large number of repeat measurements
at both the same location and time is not feasible, and we
therefore turn toward inferential methods to estimate these biases
and variance.

B. Inference From Stable Terrain

DEMs benefit from a great asset, largely uncommon to other
remote sensing data, which is that large proportions of planetary
surface elevations remain virtually unchanged through time.
In fact, elevation changes caused by erosion, short vegetation
growth, or continental drift are typically small compared to the
precision of the measurement. Terrains such as bare rock or
grasslands—later referred to as “stable terrain”—thus provide
the means of analyzing multiple elevation measurements ac-
quired at different points in time as if they were acquired from
simultaneous measurements ĥ(x, y, t)i:

dh(x, y, t)

dt
≈ 0 for (x, y) ∈ stable terrain. (3)
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Fig. 2. Framework for uncertainty analysis of DEMs. Analysis of accuracy and precision by spatial inference from stable terrain, with accuracy divided into
affine and specific biases (see Section III-C), and precision divided into heteroscedasticity and spatial correlation of errors (see Section III-F).

While this temporal consistency unlocks the potential to
analyze elevation acquisitions independently of time t, it is
impeded by the number of required DEMs. For each location
(x, y), the number of samples to perform the statistical analysis
would always be at best equal to the total number of independent
acquisitions, requiring a large number of DEMs. Therefore, we
investigate the spatial properties of elevation biases and variance.

C. Spatial Homogeneity After Affine Alignment

Elevation biases and variance are inherent to instrumental lim-
itations, to the physical properties of the observed terrain, as well
as its topography (see previous Sections II-A—II-B). Among
many types of location-specific biases, a general exception is that
of grid misalignment to the true elevations h(x, y, t) that follows
specific geometric distributions linked to the gridded nature of
DEMs [see Fig. 1(a)]. In our framework, we therefore split
elevation biases into two categories: affine biases δhA that are
common to the entire DEM (e.g., translation, rotation, scaling),
and nonaffine “specific” biases δhS that occur at the grid cell
level and vary with instrumental and topographical effects [see
Fig. 2]:

δh(x, y, t) = δhA(x, y, t) + δhS(x, y, t). (4)

Once an alignment is attained by the affine transformation
A giving A(x, y, t) = δhA(x, y, t), we assume that, for a single
DEM D, specific elevation biases δhS and elevation variance σ2

h

have a spatial distribution that is homogeneous with the prop-
erties of the instrument and the observed terrain P . We use this
spatial homogeneity to substitute space for time. For example,

we consider that elevations h(x1, y1, t) and h(x2, y2, t) of D
acquired on the same surface type (e.g., bare rock), and under
the same topographical attributes (e.g., flat) will have similar
specific biases and variance

δhS(x1, y1) ≈ δhS(x2, y2)
σh(x1, y1) ≈ σh(x2, y2)

}
forP(x1, y1) = P(x2, y2). (5)

Combining the assumptions of (3) and (5), and provided
that we describe all the properties P of spatial homogeneity,
a large sample size can be used to infer δh and σh at each
location (x, y) from a single difference between a DEM and an
independent source of elevation data. The properties of spatial
homogeneity P could differ between biases and variance. In
the following, we assume that specific elevation biases, if they
exist, are independently corrected and focus on characterizing
the elevation variance σ2

h.

D. Elevation Difference With an Independent Source

After performing affine alignment of elevations ĥ1(x, y, t1)

from a first source D1 and elevation ĥ2(x, y, t2) of a second
source D2, we subtract them to derive elevation differences
dh1−2(x, y). Assuming independence between the error of each
elevation source, the variance of the difference is

σ2
dh1−2

(x, y) = σ2
h1
(x, y) + σ2

h2
(x, y). (6)

By selecting a second source to observe ĥ2 that is of higher
precision than the first source that observes ĥ1, the analysis of
the differences ĥ2 − ĥ1 will largely capture the variance of the
first source. For example, if the second source is three times
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more precise than the first, (6) implies that about 95% of the
variance of the elevation difference will originate from the first
source, yielding

σh1
(x, y) ≈ σdh1−2

(x, y). (7)

Alternatively, if h1 and h2 originate from independent acqui-
sitions of the same instrument and processing, we have

σh1
(x, y) =

σdh1−2
(x, y)√
2

. (8)

Thus, we use elevation differences to infer on σh, which can
be converted from either (7) or (8).

E. Discriminating Elevation Bias From Variance in Spatial
Statistics

To further analyze elevation variance, we need to discrimi-
nate bias from variance. When analyzing elevation differences,
what appears as a bias at the local scale could also be a form
of long-range correlation at larger scales [see Fig. 1(b)–(c)].
This distinction is directly related to the assumption of second-
order stationarity of spatial statistics. For elevation differences,
second-order stationarity implies that the following assumptions
should be fulfilled (see Supplementary Section II-A):

1) a first assumption of stationary mean, i.e., that the average
of elevation differences dh(x, y) is constant over large
areas;

2) a second assumption of stationary variance, i.e., that the
variance of elevation differencesσdh(x, y) is constant over
large areas;

3) a third assumption of spatially consistent covariance, i.e.
that the correlation between random errors of elevation
differences only depends on the distance between obser-
vations.

Large areas here refer to areas slightly smaller than the size
of the study domain, typically within an order of magnitude. As
such, a correlated error with a correlation range that is orders
of magnitude larger than the size of the study domain might be
considered a vertical bias common to the entire DEM grid [see
Fig. 2]. And, inversely, such a bias placed in the context of a
larger study domain might be considered as a correlated error,
if the elevation differences fulfill the above assumptions.

Thanks to the affine alignment of our elevation differences,
we verify the first assumption of stationary mean. However, the
heteroscedasticity of elevations (see Section II-B) invalidates
the second and third assumptions, and therefore a nonstationary
framework needs to be defined.

F. Nonstationary Spatial Framework for DEM Analysis

To perform spatial statistics with a nonstationary variance,
transformation of the data toward a stationary variance is nec-
essary. The transformation depends on the nature of the spatial
variability and correlations. In DEMs, we identify two types
of correlation: short-range ones related to resolution, and long-
range ones related to correlated noise. While the latter ap-
pear unrelated to the heteroscedasticity of elevation, the former
are similarly linked to local instrument- and terrain-dependent

Fig. 3. Mont-Blanc case study. Hillshade of Pléiades DEM and land cover at
the Mont-Blanc massif. Example glaciers serve to illustrate Section VI-C.

variables (see Sections II-B–II-C). We thus subdivide elevation
variance into elevation heteroscedasticity and spatial correlation
of errors [see Fig. 2] assuming that longer-range correlations are
independent of elevation heteroscedasticity, which yields

σ2
dh(x, y) = σ2

dhsr
(x, y) + σ2

dhlr
(9)

where σ2
hsr

(x, y) is the variable short-range variance at (x, y),
σ2
hlr

is the constant long-range variance.
Using the variable spread σdh(x, y), the elevation differences

can be standardized into a standard score zdh with unit variance,
which fulfills the second assumption of second-order stationar-
ity:

zdh(x, y) =
dh(x, y)

σdh(x, y)
. (10)

Additionally, the spatial covariance Czdh of zdh, related to
the variogram γzdh = 1− Czdh , is also free of the influence
of heteroscedasticity and now fulfills the third assumption of
second-order stationarity:

γ2
zdh

(d) =

(
σdhsr

|D
σdh

)2

γsr(d) +

(
σdhlr

σdh

)2

γlr(d) (11)

where d is the spatial lag, i.e., the distance between two given
observations, σdhsr

|D is the average of σdhsr
in the DEMD, and

γsr and γlr are the short- and long-range variogram functions.
With all the assumptions in our framework fulfilled, we can

now reliably use spatial statistics for uncertainty propagation.
To this end, we require an estimate of the elevation dispersion
σdh(x, y) and of the variogram of the standard score γzdh(d),
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TABLE I
NEARLY SIMULTANEOUS PLÉIADES AND SPOT-6 DEMS USED

FOR THE MONT-BLANC CASE STUDY

which describe the heteroscedasticity and the spatial correla-
tion of errors, respectively. We also need to ensure that our
assumption of spatial homogeneity remains valid when using
stable terrain as an error proxy to infer heteroscedasticity and
spatial correlations on moving terrain. In the following, we
address these aspects by utilizing near-simultaneous data and
implementing robust methods.

IV. DATA

A. Mont-Blanc Case Study: Simultaneous DEMs

To demonstrate the methods associated with our proposed
framework, we present a case study of two DEMs generated
one day apart in the Mont-Blanc massif, French Alps [see Fig. 3,
Table I]. These DEMs were produced with a spatial posting of
5 m from SPOT-6 and Pléiades stereo images using the Ames
Stereo Pipeline [134]. We utilize the temporal closeness of the
two acquisitions to assess if stable terrain can be used as a proxy
for moving terrain, considering a negligible elevation change on
moving terrain.

We present an additional case study in the Northern Patag-
onian Icefield to illustrate the influence of the quality of
stereo-correlation, a sensor-dependent variable, on elevation het-
eroscedasticity (see Supplementary Section I-A with additional
refs. [66], [135], [136]). This case study is based on simulta-
neously acquired ASTER [47] and SPOT-5 images [see Table
S1]. Furthermore, the DEMs used to illustrate noise patterns [see
Figs. 1 and S1] are described in the Supplementary Section I-B
with additional refs. [137]–[139].

B. Inventory and Land Cover Products

We define moving terrain as glacierized, forested, and sea-
sonally snow-covered terrain, and exclude water bodies from our
analysis. The remaining terrain is assumed to be stable. We mask
glaciers using the Randolph Glacier Inventory 6.0 (RGI 6.0)
outlines [140], which are delineated from images with a typical
resolution of 15–30 m. We mask forests and water bodies
using the ESA Climate Change Initiative Land Cover version
2.0.7 [141], which has a resolution of 300 m. Forested terrain
corresponds to either broadleaved, needleleaved, evergreen, or
deciduous tree cover classes.

We identify specific elevation biases over forested terrain
between the SPOT-6 and Pléiades DEMs—likely owing to
different native resolution, orientation, and spectral bands [see
Fig. S3(a)]—and thus exclude this terrain from our analysis.
Our end-of-summer acquisitions contain little snow outside of
glacierized surfaces. Therefore, we did not mask off-ice snow

cover. Ultimately, in our analysis, moving terrain corresponds
to glacierized terrain.

V. METHODS

A. Robust Statistics and Alignment

We use the median instead of the mean as a robust estimator of
central tendency, and the normalized median absolute deviation
(NMAD) instead of the standard deviation as a measure of
statistical dispersion. Both choices are to mitigate the effects
of frequent outliers in DEMs [142]. Combining these estimators
with the dense sampling of stable terrain also ensures robustness
to elevation changes of potentially unmasked moving terrain.
This includes rare events such as landslides or ground sub-
sidence, or events that can occur over a small portion of the
analyzed terrain such as volcanic uplift or sediment transport.
We coregister DEMs on stable terrain for horizontal and vertical
shifts following the aspect-slope relation described in [77] and
we correct for possible tilts through least squares optimization
of a plane [71].

B. Heteroscedasticity

We estimate elevation heteroscedasticity by sampling an em-
pirical dispersion of elevation differences σ̂dh using the NMAD
of binned categories along the terrain slope α [143] and the
terrain maximum absolute curvature c [see Figs. 4(a)-(c) and S4].
Maximum absolute curvature is defined as the maximum of the
absolute profile curvature and the absolute planform curvature at
each location [144]. All terrain attributes are estimated from the
Pléiades DEM that contains the least data gaps. When available,
the binning can also include an instrument quality factor q,
such as the quality of stereo-correlation [see Figs. S5–S7] or
interferometric coherence.

We numerically model the empirical dispersion σ̂dh as a func-
tion σdh of the terrain- and sensor-dependent variables (α, c, q)
by multidimensional linear interpolation of the binned data [see
Fig. S8]. The modeling of this variability can also be performed
by fitting parametric models, for example, an exponential model
with the slope or a linear model with the maximum curvature
[see Fig. S9]. These are more robust in the case of small sample
sizes of elevation differences.

We standardize the elevation differences dh following (10),
using the modeled dispersion σdh(α, c, q):

zdh =
dh

σdh(α, c, q)
. (12)

After standardization, we verify that the standard score of the
elevation differences matches a normal distribution by quantile-
quantile plotting, and by comparison to a normal distribution
fit [142], [145] [see Fig. S10]. The substantial improvement
validates our choice of terrain slope and maximum curvature as
key variables to describe elevation heteroscedasticity, as those
largely explain the departure of random elevation errors from
normality.
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Fig. 4. Heteroscedasticity inference from stable terrain as function of slope and curvature for the Mont-Blanc case study. (a)–(b) Violin plots of elevation
differences on stable and moving terrain by bins of (a) slope and (b) maximum curvature. Dispersion inferred from stable terrain is showed by a thick line with
color matching other panels. Note the logarithmic scales of histograms. (c) Heatmap of stable terrain dispersion for slope and maximum curvature. Bins with a
relative dispersion difference between stable and moving terrain greater than 30% (dark gray and black dots) contain less than 1% of samples. (d) Inferred spatial
distribution of vertical precision for all terrain, with inset that matches Fig. 1(a).

C. Spatial Correlations

We estimate spatial correlations by sampling an empirical
variogram γ̂ on the standard score zdh using Dowd’s estimator
[146], [147] [see Fig. 5(a)]:

2γ̂zdh(d) = 2.198 · median(zdh(x, y)− zdh(x
′, y′))2 (13)

where zdh is the standard score of elevation differences, and
locations (x, y) and (x′, y′) are separated by a spatial lag d.

Dowd’s estimator is based on median absolute deviations, and
consequently more robust than the Matheron [148] or Cressie–
Hawkins [149] estimators classically used (see Supplementary
Section II-B based on additional ref. [150]). We verify the
increased robustness of Dowd’s estimator for the Mont-Blanc
case study [see Figs. S11 and S12].

To improve the variogram estimation, we introduce a pairwise
subsampling method based on iterative subsetting of pairwise
combinations between a disk and multiple rings centered on a
random point (see Supplementary Section II-C). As variograms
were historically sampled from point measurements [112],
traditional sampling methods are less computationally efficient
on large grids. Most critically, they are inefficient at sampling
pairwise distances evenly across spatial scales, which is substan-
tially improved by our method to estimate more reliably both
short-range and long-range correlations [see Fig. S13]. Finally,
we derive empirical variograms for 100 independent realizations
with the same binning. We estimate our final empirical vari-
ogram by the mean of all realizations at each spatial lag with, as
an empirical uncertainty, the standard error of the mean.

To derive a spatially continuous representation of the var-
iogram, we calibrate an analytical model γzdh with the em-
pirical variogram γ̂zdh . We fit a sum of k variogram models
V (sk, rk, d), optimizing their partial sills sk (i.e., correlated
variance) and ranges rk (i.e., correlation length) simultaneously

by weighted least squares, using as weights the squared inverse
of the empirical uncertainties previously detailed [see Fig. 5(a)]:

γzdh(d) =
∑
k

Vk(sk, rk, d). (14)

For the Mont-Blanc study, we find no significant improve-
ment in least-squares residuals when fitting more than three
models, which are capable of capturing one short-range and
two long-range correlations [see Fig. S14, Table S2]. The two
long-range correlations match the along- and cross-track lengths
of low-amplitude undulations in the elevation differences [see
Fig. 5(b)]. We thus use three models to avoid the possible
overfitting of a larger number of summed models. Generally,
k should be chosen to reflect the number of distinct ranges in
the patterns of DEM noise. For instance, ASTER undulations
are characterized by two wavelengths of 1–2 km and 5–10 km
in the along-track direction, and a cross-track distance of 60 km
[see Fig. S1], which better fits three distinct long-range models
[47] for a total of four ranges.

We also identify a low sensitivity to different variogram
model types [see Fig. S15, Tables S3, and S4], which shows
that adequately modelling the multirange nature of the spatial
correlations is more important than refining that of their spa-
tial form [see Fig. 5(b)]. For the Mont-Blanc case study, we
reached the smallest least-squares residuals using a gaussian
model G(s, r, x− x′) at short ranges, and spherical models
S(s, r, x− x′) at long ranges [151] and used those henceforth:

G(s, r, d) = s
(
1− e−(

2d
r )

2)
, and (15)

S(s, r, d) =

{
s
(

3
2
d
r − 1

2

(
d
r

)3)
if 0 < d < r

s if d ≥ r.
(16)
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Fig. 5. Spatial correlation inference from stable terrain for the Mont-Blanc case study. (a) Spatial variogram of standardized elevation differences on stable
and moving terrain. The empirical variogram is based on Dowd’s estimator [146] and modelled by either a short-range spherical model or the sum of short- and
long-range spherical models. (b) Excerpt of the standardized elevation difference map, which highlights the correlated signals at both short-range (30 m) and
long-range (3.9 km in the along-track direction, 11.2 km in the cross-track direction). (c) Standardized elevation uncertainty with increasing circular averaging
area, computed using (18) and validated by empirical Monte Carlo sampling. Note the logit scale of the Y-axis.

D. Uncertainty Propagation

1) Simulation Methods for Elevation Derivatives: For
derivatives of elevation with a complex spatial gradient, such as
terrain slope and aspect later analyzed, we use simulation meth-
ods. We find similar results using Fourier randomization [124],
[152] and unconditional Gaussian simulation [117], [153], and
thus only use the former in the following. For 1,000 realizations,
we simulate a random correlated error field of the standard
score zdh based on the modeled spatial correlation γzdh in (14).
We then de-standardize zdh using (12), and add the resulting
elevation error field to the studied DEM. For each of these
DEM realizations with an added error field, we then compute
the terrain attribute of interest (e.g., terrain slope or aspect), for
which we can study the distribution of errors.

2) Theoretical Approximation Methods for Spatial Deriva-
tives: For spatial derivatives such as the average dh of elevation
changes dh in an area A, we derive an exact analytical solution
of the uncertainty in the spatial average σdh:

σ2
dh

=
1

N2

N∑
i=1

N∑
j=1

ρijσdhi
σdhj

(17)

where N denotes the number of samples i falling in the area A,
σdhi

is the vertical precision of pixel i, and ρij = (1− γzdh(d))
is the spatial correlation between pixel i and pixel j based on
their distance d.

In practice, (17) raises the issue of scaling exponentially
with the number of samples, possibly resulting in trillions of
calculations. To remedy this, we propose an approximation for
spatially contiguous areas, inspired by the approach of [65] that
computes a single aerial integral by approximating the areaA by
a disk of the same area. Here, for each pixel k of a random subset
of K pixels within the N pixels, we compute the single aerial
integral of the variogram numerically. We then approximate
the variogram integral by the average of these subset aerial
integrations (see Supplementary Section II-E):

σ2
dh

≈ σ2
dh|A

1

N

1

K

K∑
k=1

N∑
i=1

(1− γzdh(xk − xi)) (18)

where σ2
dh|A is the average variance of the elevation differences

of pixels i in the area A:

σ2
dh|A =

1

N

∑
i

σ2
dhi

. (19)

We show that our method improves the accuracy of the
theoretical approximation of [65] by accounting for more com-
plex area shapes than disks while maintaining computational
efficiency [see Fig. S16]. Additionally, these formulations can
be linked to a number of effective samples, which describes
the number of samples among the N pixels in area A that
are statistically independent based on the spatial correlations
modelled by γzdh (see Supplementary Section II-D).
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Once uncertainties have been integrated from a spatial support
(e.g., pixels) to a larger spatially contiguous ensemble (e.g.,
glaciers), they can be propagated again to a larger ensemble
(e.g., all glaciers in a region) following Krige’s relation of
transitivity [112], [154]. For this, (17) can be applied for each
pair of spatially contiguous ensembles i and j of area Ai with
the same variogram γzdh composed of the k summed models
Vk(sk, rk, d):

σdh =
1

(
∑

i Ai)2

∑
k

∑
i

∑
j

(
σdhk,i

σdhk,j

−Vk(σdhk,i
σdhk,j

, rk, di−j)
)
AiAj (20)

where di−j is the distance between the centroids of ensemble
i and j, and σdhk,i

is the spatially integrated uncertainty of
ensemble i associated to the variogram model Vk, partial sill
sk and range rk with pixel pairs n and m:

σdhk,i
=

1

N2

N∑
n=1

N∑
m=1

(sk − Vk(sk, rk, xn − xm))σdhn
σdhm

. (21)

Furthermore, we use a Monte Carlo spatial sampling method
to validate our uncertainties of spatially averaged elevations,
thus indirectly verifying the robustness of our modeled spatial
correlations [see Fig. 5(c)]. We randomly sample up to 10,000
circular patches of area A without replacement. We compute the
mean dh inside circular patches, keeping only those with more
than 80% valid elevation differences dh to mitigate the effects
of missing data. We use the NMAD of 10,000 realizations to
empirically estimate the uncertainty of the spatially averaged
dh of area A, and repeat this procedure for varying area sizes
A [see Fig. 5(c)]. This method substitutes repeated correlated
simulation of Fourier randomization or Gaussian simulation by
a repeated spatial sampling, relying on the assumption of spatial
homogeneity of variance on stable terrain (see Section III-C).
As it requires a large number of independent patches to produce
a robust estimate, the area size A for which it can estimate an
uncertainty is limited to sizes much smaller than that of the
spatial domain. It is also highly dependent on the availability of
stable terrain. Therefore, we use it only for validation purposes.

VI. RESULTS AND DISCUSSION

In Section VI-A below, we discuss the use of stable terrain
as an error proxy based on the methods applied to the Mont-
Blanc case study. In Sections VI-B and VI-C, we then analyze
the impacts of heteroscedasticity and spatial correlations when
propagating elevation variance into uncertainties of pixel-scale
elevation derivatives such as terrain slope, or spatial derivatives
such as glacier volume changes. In those two sections, we
provide examples based on the Mont-Blanc case study and
determine the impact of our methods for a set of assumptions
on the variance properties during uncertainty propagation:

1) either homoscedastic elevation (constant variance, short-
ened “homosc”) or heteroscedastic elevation (variable
variance, “heterosc”); and

TABLE II
ESTIMATED VARIOGRAM MODEL PARAMETERS FOR THE SPATIAL

CORRELATIONS OF ELEVATION ERRORS IN THE MONT-BLANC CASE STUDY

Model parameters

Note: Stable and moving terrain is distinguished (columns). Gaussian
components are listed for the short-range model and spherical components
for the long-range ones, as in Fig. 5. Partial sills are expressed as a
percentage of the total variance.

2) either no spatial correlation (shortened “no corr.”), or only
short-range correlations (“short-range”), or both short-
and long-range correlations (“long-range”).

In this exercise, the most realistic case refers to the one that
accounts for potential elevation heteroscedasticity and potential
short- and long-range correlations. Uncertainties are reported as
a symmetric confidence interval of 1σ (68% confidence level)
or 2σ (95%), specified in each case.

A. Validation of Stable Terrain as an Error Proxy

We test the validity of using stable terrain as a proxy of
elevation errors for moving terrain on the nearly simultaneous
DEMs of the Mont-Blanc case study. We find that elevations on
moving terrain exhibit the same heteroscedasticity with slope
and curvature than those on stable terrain, with less than 1% of
binned samples that differ by more than 30% [see Fig. 4(a)–(c)].
We additionally verify that this elevation heteroscedasticity is
continuous between neighboring bins when using robust esti-
mators, thereby consolidating our assumption of spatial homo-
geneity (see Section III-C). By extending this assumption to
the case of moving terrain, we infer a complete map of vertical
precision [see Fig. 4(d)].

We find similar spatial correlations of errors between stable
and moving terrain [see Fig. 5(a)]. Values of partial sills and
ranges of the variogram models that describe these correlations
are within the same orders of magnitude [see Table II], despite
greater differences at long ranges due to the limited pairwise
samples available on moving terrain. Using our Monte Carlo
sampling method, we validate the increased robustness of us-
ing multiple correlation ranges to estimate uncertainties across
spatial scales [see Fig. 5(c)]. Our results indicate that using a
short-range model alone underestimates elevation uncertainties
by several orders of magnitude for areas larger than 0.1 km2.

For elevation heteroscedasticity, our results highlight the
importance of elevation standardization to ensure an adequate
scaling when inferring on another type of terrain (e.g., from
steep, stable terrain to flat, moving terrain). Yet, our analysis only
exemplifies snow- and ice-covered terrain with high-resolution
stereophotogrammetric DEMs. The physical properties of the
observed terrain in relation to the utilized sensor might in some
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cases invalidate our assumption of spatial homogeneity. For
instance, we found that our standardization did not mitigate the
larger errors of elevation over forested areas [see Fig. S3(a)]. In
such a case, an upfront investigation of specific elevation biases
is required. After these biases are corrected, a refined model-
ing of elevation heteroscedasticity based on sensor-dependent
variables can help to reach a good description of the properties
of spatial homogeneity. We indeed found a strong relationship
with the quality of stereo-correlation for the case study of the
Northern Patagonian Icefield [see Figs. S6 and S7]. The rougher
resolution (15 m) and spectral range (8 bits) of the ASTER stereo
images, compared to those of SPOT-6 and Pléiades (metric res-
olution and 12-bits), leads to a significant variability in elevation
errors with terrain texture.

For spatial correlations, we highlight the value of standard-
ization to reduce variability for empirical variogram estimation
[see Figs. S3 and S12]. It is especially useful to deconvolve the
long-range correlations with small magnitude to the short-range
ones. Heteroscedasticity may indeed explain the short-range
variogram anisotropy found by previous studies [155]. We nev-
ertheless identify a slight difference in the well-constrained short
correlation range between stable and moving terrain (30 m vs.
38 m, respectively; Table II). This difference might be due to the
rougher interpolation of stereophotogrammetric block-matching
algorithms over bright, lower-texture glacierized terrain. In some
cases, sensor properties or processing schemes influence not
only the magnitude of spatial variability but also the scale of cor-
relations. Developing a statistical framework that continuously
includes these effects might be overly complex for most analyses
that, instead, could adjust estimates of short-range correlation
depending on the type of observed terrain.

We conclude that stable terrain is a valid proxy for error
analysis, provided that elevation heteroscedasticity is taken into
account. However, the quality of statistical inference from this
error proxy depends directly on the number of stable terrain
samples available. For some DEMs, these samples might be
scarce in the proximity of continuous expanses of moving terrain
(e.g., at the margins of ice sheets or large forests) and thus
insufficient to perform robust inference. To address this, the
stable terrain of independent DEMs, possibly located elsewhere,
could be utilized if they are generated from the same instrument
and processing chain. Many DEMs indeed have consistent error
properties between segments acquired under similar conditions
around the world (e.g., [47], [59], [156]). For instruments with
correlated noise of varying amplitude, such as Pléiades or
ASTER, long-range correlations can be more robustly inferred
from a multiple-acquisition average of variograms.

B. Impact on Pixel-Scale Derivatives of Elevation: Example
With Terrain Slope and Aspect

We illustrate the propagation of elevation uncertainty to the
terrain slope and aspect in a 4 km2 area around the Mont-Blanc
summit [see Fig. 6(a)]. We select this area due to its wide
range of slopes and aspects, and its small extent facilitating
computationally expensive simulations. To avoid the circularity
of the aspect variable when assessing uncertainty, we divide it

Fig. 6. Uncertainty propagation to terrain slope and aspect at the Mont-Blanc
summit. (a) Hillshade and terrain attributes based on the Pléiades DEM for a 4
km2 area centered on Mont Blanc. (b) Slope and aspect uncertainty estimated
by the half-difference between the 16th and 84th percentiles of 1,000 simulated
terrain attributes at each pixel. (c) Distributions of slope and aspect uncertainties
by category of terrain slope for each set of assumptions, with boxes denoting
the interquartile range and whiskers extending to the entire distribution.

into northness (i.e., cosine of the aspect) and eastness (i.e., sine
of the aspect) which denote, respectively, the north–south and
east–west tilt of the slope.

We propagate uncertainties in the Pléiades DEM by simulat-
ing random elevation error fields (see Section V-D) for every set
of assumptions [see Fig. S17]. For this example, we assume that
SPOT-6 and Pléiades have random errors of similar amplitude,
and estimate the random errors of the Pléiades DEM following
(8). We generally note a strong deviation from normality and
asymmetry in the simulated uncertainty distribution of terrain
attributes [see Fig. S18]. While this asymmetry requires specific
considerations for in-depth terrain analysis, we here provide a
simplified picture by estimating a symmetric 1σ uncertainty
derived from the half-difference between the 16th and 84th
percentile of the simulated slope, northness or eastness of each
pixel.
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Our analysis reveals that elevation heteroscedasticity plays a
major role in the spatial distribution of uncertainties in slope
and aspect. In particular, it exacerbates errors in steep and rough
terrain. Spatial correlations moderately affect uncertainties by
slightly reducing their amplitude [see Fig. 6(b)–(c)]. We inter-
pret the latter to be due to an increase in the spatial coherence
of terrain derivatives when the elevation errors are spatially
correlated. Since topographical attributes are derived over a 3
× 3 pixel window, the closer the short-range spatial correlations
are to a 3-pixel length, the larger the impact on the amplitude
change [see Fig. S19].

By aggregating uncertainties into slope categories, we show
that uncertainties in flat terrain are overestimated when assuming
homoscedasticity and no spatial correlation, while those in steep
terrain are underestimated by up to a factor of 10 [see Fig. 6(c)].
Slope uncertainties decrease near slopes of 90 degrees, likely
because elevation errors tilt the terrain in different orientations
while generally maintaining a steep slope, which translates into
aspect uncertainties. We reach similar conclusions when aggre-
gating uncertainties by maximum absolute curvature categories,
our second variable that describes elevation heteroscedasticity
[see Fig. S20].

C. Impact on Spatial Derivatives of Elevation: Example With
Glacier Volume Changes

We consider 84 glaciers in the Mont-Blanc massif that have
at least 85% of their area covered by valid elevation differences.
We analyze the mean elevation changes within the outline of
each glacier, which can be converted to volume changes after
multiplication by the glacier area, and propagate uncertainties
for each set of assumptions.

We find that spatial correlations strongly hamper the decrease
in uncertainty with increasing glacier area [see Fig. 7(a)]. Long-
range correlations are the main contributor to uncertainty for
large areas, mirroring the validation of Fig. 5(c). While long-
range correlations account for only 7% of the variance in our case
study, uncertainties of mean elevation changes for glaciers larger
than 10 km2 are underestimated by a factor of about 25 when
based solely on short-range correlation. This is striking, and
even more so when realizing that the underestimation is nearly
by a factor of 150 when totally omitting spatial correlations.
This dramatic increase is explained by the fact that long-range
correlations essentially correspond to local biases.

Heteroscedasticity has a moderate influence on the uncer-
tainty of each glacier, impacting its amplitude by a factor of 1
to 3. The uncertainty of glaciers located in flat areas is overesti-
mated when using a homoscedastic assumption due to the larger
average variance over rougher, stable terrain. On the contrary,
the uncertainty of the steepest glaciers is underestimated [see
Fig. 7(b)]. Using the empirical comparison provided by the
nearly simultaneous volume changes, we show that the uncer-
tainties for the mean elevation change are most realistic when
accounting for long-range spatial correlation [see Fig. 7(c)]. In
such a case, 89% of the ranges intersect zero (the true volume
change) at the 2σ level (i.e., 95% confidence), in contrast to

Fig. 7. Uncertainty propagation to glacier mean elevation changes at the Mont-
Blanc massif. (a)–(b) Distributions of uncertainty of glacier mean elevation
change by category of area and average terrain slope for each set of assumption,
with boxes denoting the interquartile range and whiskers extending to the entire
distribution. (c) Empirical evaluation of uncertainty ranges for mean glacier
elevation changes in the Mont-Blanc case study. Correct uncertainty estimates
should cross the vertical zero line in 95% of the cases.

only 30% for short ranges and 7% for no correlation. Yet, our
uncertainties are slightly too low.

We identify the cause of this underestimation as the omission
of a longer-range correlation close to the size of the DEM
and thereby difficult to constrain. This longer-range correla-
tion arises from the fact that along-track undulations are fully
correlated in the 20-km-wide cross-track direction. Directional
variography could help characterize such correlations, but would
lead to a more difficult uncertainty propagation, with exac-
erbated complexity when combining several DEMs. Instead,
we maintain an omnidirectional variogram to describe corre-
lations, but assess a conservative estimate based on artificial
undulations [see Fig. S21]. This results in the replacement
of the 11.2-km correlation with a 20-km one (swath width)
and a partial sill twice larger. We then find that 93% of the
uncertainties for glacier larger than 0.2 km2 intersect zero at
the 95% confidence level, confirming the increased robust-
ness with these considerations. Only 87% do so for smaller
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TABLE III
SPATIAL UNCERTAINTY PROPAGATION AMONG GLACIERS

IN THE MONT-BLANC MASSIF

Mean elevation change uncertainties σ
dh

are propagated using (20).

glaciers, however. This discrepancy might be explained by un-
accounted heteroscedasticity from landform-projected shadows
that particularly affects small glaciers in steep and north-facing
slopes.

When uncertainties of volume change of several glaciers are
propagated into that of the massif, correlations also come into
play. We illustrate the propagation at different spatial scales by
considering several glacier groups: one group with the two small
neighboring glaciers of Griaz and Bourgeat, another group with
the two large neighboring glaciers of Bossons and Taconnaz,
and a third group including all 84 glaciers [see Fig. 3]. We
find identical uncertainties when considering no correlation,
or only short-range correlations [see Table III]. This reflects
the fact that all glaciers are separated by at least 30 m, i.e.
a distance larger than that of our short-range correlation [see
Table II]. Long-range spatial correlations have a large impact on
the total uncertainty, however, with a tenfold underestimation
of the uncertainty for all glaciers in the massif when omit-
ting them. Increased uncertainties from long-range correlations
mostly affect large neighboring glaciers, as shown for Bossons
and Taconnaz, but also affect smaller, disconnected glaciers such
as Griaz and Bourgeat. The latter is true as long as the glaciers
are within the correlation range of 11.2 km.

VII. CONCLUSION

In this study, we reviewed the literature on the accuracy and
precision of DEMs. On the basis of the raised considerations
regarding variable vertical precision and correlated noises, we
proposed a nonstationary spatial framework for DEM uncer-
tainty analysis. This framework allows to perform inference on
a single difference between a DEM and independent elevation
data on stable terrain, and to distinguish elevation biases from
elevation variance. We developed robust methods to estimate
and model both elevation heteroscedasticity and spatial corre-
lation of elevation errors. We then validated that stable terrain
is a reliable error proxy for other terrain types using pairs of
DEMs derived from nearly simultaneous acquisitions for the
Mont-Blanc massif and the Northern Patagonian Icefield.

We illustrated the impact of our methods when propagating
uncertainties to pixel-scale and spatial derivatives of elevation.
For the pixel-scale terrain slope, uncertainties are underesti-
mated by up to a factor 10 in rough and steep topography
when omitting elevation heteroscedasticity. For glacier volume
changes, the uncertainty of the volume change of a glacier of

10 km2 is underestimated by a factor of 25 when omitting
correlations with ranges of 3.9 and 11.2 km, despite their small
cumulative magnitude of only 7% of the variance. This underes-
timation of long-range spatial correlation affects many studies
relying on instruments plagued by noise, such as the widely used
DEMs from SRTM and ASTER.

We provide an implementation of our methods in the Python
package xDEM [157], which includes, in particular, DEM align-
ment, correction, and uncertainty analysis. Spatial statistics have
long been used for uncertainty analysis, yet often suffered from a
lack of accessibility [126]. The wider application of such analy-
sis was still deemed as “unrealized” a decade ago [133], possibly
also due to the scarcity of open-source and documented tools for
spatial statistics. By providing our methodological tools within
the frame of a package embedded in high-level programming
languages that efficiently pairs with remote sensing analysis,
we hope to foster a consistent, reproducible and accessible
uncertainty analysis of DEMs.

We highlight the genericity of our spatial framework
for uncertainty analysis and of our estimation methods for
dense and outlier-prone grid data. Our framework holds the
potential to be extended to other geospatial data. Gridded
surface displacements, for instance, profit from the same error
proxy of stable terrain and are increasingly used in a variety
of applications. To describe the precision of such spatially
structured data, we advocate for the use of additional metrics.
These metrics should describe potential heteroscedasticity and
spatial correlation of errors, reported, for example, in a tabular
manner—parameters of variogram models; discrete categories
of heteroscedasticity. Ultimately, the adoption of such new
metrics is critical to progress towards a realistic description of
error structure in geospatial data, and a robust propagation of
uncertainties in Earth observation science.

DATA AND CODE AVAILABILITY STATEMENT
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xDEM available at https://github.com/GlacioHack/xdem with
supporting documentation at https://xdem.readthedocs.io, and
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umentation at https://scikit-gstat.readthedocs.io.
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