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HCRB-MSAN: Horizontally Connected Residual
Blocks-Based Multiscale Attention Network for
Semantic Segmentation of Buildings in HSR Remote
Sensing Images

Zhen Li"¥, Zhenxin Zhang

Qiang Wang

Abstract—Accurate and efficient semantic segmentation of
buildings in high spatial resolution (HSR) remote sensing images
is the basis for applications such as fine urban management,
high-precision mapping, land resource utilization investigation,
and human settlement suitability evaluation. The current building
extraction methods based on deep learning can obtain high-level
abstract features of images. However, due to the limitation of
convolution Kkernel size and the vanishing gradient, the extraction
of some buildings is inaccurate, and some small-volume buildings
are missing as the network deepens. In this regard, we design a
horizontally connected residual blocks-based multiscale attention
network to achieve high-quality extraction of buildings in HSR
remote sensing image. In this network, we subdivide each residual
block by channel grouping and feature horizontal connection to
consider the difference and saliency of feature information between
channels, and then combine the output features with multiscale
attention module to consider the contextual semantic relation-
ship of different regions and integrate multilevel local and global
information of buildings. A stepwise up-sampling mechanism is
designed in the decoding process to finally achieve precise semantic
segmentation of buildings. We conduct experiments on two public
datasets and compare the proposed method with state-of-the-art
semantic segmentation methods. The experiments show that our
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method could achieve better building extraction results in HSR re-
mote sensing image, which proves the effectiveness of our proposed
method.

Index Terms—Building semantic segmentation, deep learning,
horizontally connected residual block, high spatial resolution
(HSR) remote sensing image, multiscale attention.

I. INTRODUCTION

ITH the development of aviation and aerospace remote

W sensing technology, earth observation capabilities have
been gradually improved, and people can conveniently obtain
large-scale high spatial resolution (HSR) earth observation im-
age data, which contains a large amount of building detail infor-
mation. Using HSR remote sensing images for rapid and efficient
extraction of buildings is the basis for land resource management
[1], fine mapping [2], land use change monitoring [3], human
settlement suitability assessment [4], and so on. However, HSR
remote sensing images also bring some problems such as large
amounts of calculation, complex calculation process, and partial
information redundancy. Additionally, the structural complexity,
large differences in distribution, and surrounding complexity of
buildings also cause certain difficulties and challenges to the
efficient extraction of buildings in HSR remote sensing images.
The building semantic segmentation from HSR remote sens-
ing images is to label each pixel according to whether the
pixel belongs to the type of building. How to efficiently ob-
tain building semantic information from HSR remote sensing
image is the foundation and key of its application. Currently,
the building extraction algorithms can be classified into the
traditional feature-based methods and the deep learning feature-
based methods. In the traditional feature-based methods, some
researchers have proposed many building extraction algorithms
[5]-[10], but most of these algorithms depend on manually
designed features, such as geometry [5], texture [6], shading
[7], and edge [10]. Besides, the support vector machine [5],
AdaBoost [6], conditional random field (CRF) [8], and random
forest [9] are also usually employed to label each pixel. However,
the complex appearance and spectral information of buildings
are easily confused with other categories in HSR remote sensing
image. Moreover, different building materials, volumes, and
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lighting conditions may also have obvious differences in remote
sensing images, which create more difficulties to efficiently
label the semantics of buildings. The traditional feature-based
methods have some limitations on representing the features of
buildings with complex spatial distributions and patterns, and
the generalization ability of the traditional model needs to be
further improved.

Deep learning can obtain high-level abstract features from
spatial data by a multilevel structure to improve classification
or detection accuracy [11]. The performance of deep learning
feature surpasses and gradually replaces the traditional artifi-
cially designed features (e.g., SIFT [12], FAST [13], SURF [14],
and ORB [15]) under the background of big data. Based on the
deep learning, some researchers apply deep learning technology
in many fields, such as the land use change [16], resource
management [17], etc. In terms of building extraction in remote
sensing images, researchers also try to improve the extraction
effect of building feature. Fully convolutional network (FCN)
[18] is one of the deep learning semantic segmentation mod-
els commonly used [19], which can achieve end-to-end object
extraction results. Some researchers also combine multisource
data [20], [21], multilayer training sample [22], and CRF in
postprocess procedure [23] to boost the effects of building
extraction. Besides, the attention mechanism can consider the
difference of different regions in feature map [24], [25]. The
deep learning methods of extracting building in HSR remote
sensing image have not considered the differences, salience,
and multilevel fusion enhancement between different channels
within the model, and the attention mechanism in network also
does not consider the multiscale information of buildings and
cannot better solve the problem of extraction buildings with
different sizes.

As buildings in HSR remote sensing images have the charac-
teristics of discrete distribution, complexity, different sizes, and
multiple details, the traditional semantic segmentation methods
are not completely applicable to buildings semantic segmen-
tation of HSR remote sensing images. In this research, we
first integrate the structure of channel grouping and horizontal
connection and combine them with a multiscale attention mech-
anism to design a novel deep learning network, which performs
the pixel-based semantic segmentation model of remote sensing
images for building extraction. The main contributions of the
research are summarized as follows.

1) We design a horizontally connected residual blocks-based
module of building feature representation in HSR remote
sensing images to make the network focus on the fea-
ture information enhancement between different channel
groups, thereby consolidating building category informa-
tion and small targets recognition.

2) A novel multiscale attention structure is constructed ac-
cording to the characteristics of remote sensing images, so
that the extracted building features can be integrated with
different scales of the features to improve the accuracy of
building extraction in HSR remote sensing images.

3) Aiming at the problem of losing information and blurred
segmentation boundaries in the decoding process, we pro-
pose a horizontally connected residual blocks-based mul-
tiscale attention network by combining the shallow layer
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of features with high spatial resolution stepwise during
the decoding process. This network fuses the information
between different channel groups and the attention mech-
anism of different scales to extract building features and
increases the weight of small target of buildings, thereby
enhancing semantic segmentation of building results.

II. RELATED WORK

In this part, we discuss the related work of building segmen-
tation in remote sensing images, including traditional feature-
based building segmentation and deep feature-based building
segmentation.

A. Traditional Feature-Based Building Segmentation

The mathematical and geometric relationships between the
line features of buildings are considered to extract buildings
[26]. And then, Wang et al. [27] adopt filter to enhance building
edge contrast and extract line segments and present a graph
search-based perceptual grouping approach to extract build-
ings. Additionally, other kind of data source (such as airborne
laser scanning data) is combined to assist building extraction
in remote sensing image [28]. Some researchers also propose
specific algorithms based on building features to improve the
building extraction effect. For instance, an algorithm based on
the differential morphological profile is designed [29], [30] to
construct image profile and extract the buildings by morpho-
logical opening and closing operations while varying the size
of structuring element. Lee et al. [31] use the classification
results of IKONOS multispectral images to provide approximate
location and shape, and the fine building extraction is carried out
through segmentation based on the iterative self-organizing data
analysis technique. A novel CRF formula, which incorporates
pixel-level information and segment-level information, uses re-
gional consistency and shape features to extract buildings in [8].
However, the features of these methods are based on some rules
and cannot achieve end-to-end building extraction results, the
representative ability of the feature should be further improved.

B. Deep Feature-Based Building Segmentation

At present, target extraction algorithms have evolved from
manually designed feature-based methods to deep feature-based
methods. Developed from convolutional neural network (CNN),
FCN [18] realizes end-to-end and pixel-level image segmen-
tation for the first time. On this basis, many research works
have proposed some modified structures, such as the atrous
spatial pyramid pooling [32], pyramid pooling module [33],
and encoder—decoder with atrous separable convolution [34].
However, limited by the fixed size of the convolution kernel
and the lack of sufficient image context information, these
methods should be further improved on the representation of ob-
ject feature. Recently, some researchers introduce the attention
mechanism into many research fields, e.g., machine translation
[35], pose estimation [36], image processing [37], [38], video
understanding [39], and target tracking [40], [41]. The attention
mechanism can capture the context information in the spatial
dimension [42] or the channel dimension [43].
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Benefited from the progress of deep learning in computer
vision, many scholars have proposed some methods for se-
mantic segmentation of buildings in remote sensing image.
Some researchers use traditional building features to assist deep
learning feature extraction. For example, in order to improve the
performance of building segmentation, the symbolic distance
function of building boundary is introduced as the output in
[44], to enhance representation power of deep learning. To
obtain a refined building boundary, Xie et al. [45] introduce
morphological filtering to enhance the regularity of the boundary
under pixel-level segmentation of buildings using CNN. Xu et
al. [46] preprocess the image by the way of edge enhancement
to highlight the pixels at the edge of buildings. Combining
manually designed features such as the normalized difference
vegetation index and normalized digital surface model, they
adapt guided filter to optimize the classification map to remove
salt-and-pepper noise. Besides, some modified structures of
deep learning are also designed in building segmentation, e.g.,
Yue et al. [47] propose an adaptive network and tree-CNN
blocks according to the confusion matrix and the tree-cutting
algorithm, to fuse multiscale features and learn the optimal
weights of the model; Alshehhi er al. [48] design a single
patch-based CNN to extract features and combine low-level
features with convolutional features in the postprocessing stage;
Zhou et al. [49] design a feature decoupling module to encode the
class co-occurrence relations in the scene, thus improving the
segmentation performance. To improve the spatial resolution,
Ji et al. [50] introduce an atrous/dilated convolution in FCN
and combine the hierarchical building features extracted by the
network in the decoding stage. To refine discontinuous building
footprints, Zhu et al. [25] design multiple parallel paths to learn
multiscale features and construct the pyramid spatial pooling
module in network.

III. PROPOSED METHOD

This part mainly introduces our proposed horizontally con-
nected residual blocks-based multiscale attention model for
semantic segmentation of buildings in HSR remote sensing
image, including the overall network structure and each part
of the network (e.g., the horizontally connected residual block
structure, the multiscale attention module, and the stepwise
up-sampling module).

A. Overall Framework

The deep features contain more abstract information, and
the shallow features contain rich spatial details. The traditional
ResNet [51] can gradually extract features from the shallow
level to the deep level, while these features are transmitted
linearly, without considering the complementary and fusion
relationship between different channels. With the deepening of
the network layer, the phenomenon of vanishing gradient often
occurs, which results in the loss of some useful information.
Presently, most semantic segmentation networks directly decode
the final feature map into a prediction map, which can easily
lose spatial details. Aiming at this problem, we propose the hor-
izontally connected residual blocks-based multiscale attention
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Fig. 1. Overview of the HCRB-MSAN.

network (HCRB-MSAN) (see Fig. 1) that integrates high-level
and low-level feature information, in which the hierarchy and
complementarity between different channels are considered to
construct the contextual semantic feature. The HCRB-MSAN
includes the following three parts:

1) the horizontally connected residual blocks based on chan-
nel grouping, which enables the network to integrate
the feature information between different channel groups
when extracting features;

2) the multiscale spatial attention module, which gives con-
text information to the features obtained by the HCRB
network;

3) the stepwise up-sampling part, in which the low-level
features containing rich spatial details are merged during
decoding process to obtain prediction results.

As shown in Fig. 1, the channel grouping-based horizontally
connected residual block network first extract the high-level
and low-level features of the input remote sensing image. The
same as the traditional ResNet structure, our designed HCRB
network also has five stages for feature extraction, and different
stages contain multiple horizontally connected residual blocks
(as shown in Fig. 2). However, in each stage of network, the
horizontally connected residual block further subdivides the
feature map channels into N groups of channels (N = 4 in this
research) without changing the spatial size of each channel and
merge the features between different channel groups through
the horizontal connection structure to obtain the features in
different scales of receptive fields and realize the joint extraction
of global and local features. Then, the feature map is input into
the multiscale attention module (see Fig. 3) to construct the
feature pixel-level contextual semantic information. Finally, in
order to maintain more discriminative spatial detail information,
we stepwise fuse different stages of low-level features during
decoding process by using bilinear interpolation and employ
the rich building semantic information of the high-level feature
to generate the rich spatial details of the low-level feature to
predict the final building map.
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by the operation of batch normalization and ReLU activation function.

B. Network Framework

1) Horizontally Connected Residual Block: Previously,
many scholars have conducted research on the channel grouping
of features [52]-[54], grouped convolutions have been proven
to be a successful approach for increasing the performance of
network [38], in which, a more flexible way of convolution
(multibranch convolution) is proposed. But it did not consider
the correlation of features between different channel groups. On
this basis, inspired by the Res2Net [55], we first integrate the
structure of channel grouping and horizontal connection into
the building segmentation of HSR remote sensing images by

5537

the construction of HCRB and the extraction of discriminative
features of buildings in HSR remote sensing images.

In the HCRB, we evenly group all channels of the feature
maps after the operation of 1 x 1 convolution and perform a
convolution process on each group of feature maps. At different
stages of the feature extraction network, feature maps have a
different number of channels, unlike that the Res2Net manually
sets the number of channel groups in residual block and the
number of channels in each group, our HCRB structure just
manually set the number of channel groups, and the number of
channels in each group are divided equally by the feature map
channels. In other words, the number of channels in each group
will change according to the input feature map channels. Thus,
the HCRB structure can maintain more feature information of
buildings, and only has one hyperparameter, which leads to a
more efficient computation. We also use Res2Net to replace
HCRB in the proposed network (named as Res2-MSAN) to
obtain the effects of these two blocks (the statistical results are
shown in Tables IV-VI) to verify the advantage of our method.

For more details of the HCRB, except for the first group,
the input features in each subsequent group are superimposed
with the horizontally transmitted convolution features of the
previous group. We repeat this operation to the last group of
feature maps and finally superimpose the feature maps of all
groups sequentially to execute the 1 x 1 convolution operation
to achieve feature fusion of different scales of buildings.

Specifically, the size of feature map in the residual block is
setas H x W, and there is a total of C channels. All the feature
map channels are equally divided into N subsets of channels
(N = 4 in Fig. 2). Compared with the original feature map, the
feature map in each subset has the same size (H x W) with %
channels.

We denote the obtalned feature map of the ith channel subset
as X; (X; ERFWXK i =1,2, ..., N). For the feature maps
of N subsets of channels, the 3 x 3 convolution kernel are used
to perform the convolutional operation, which is represented as
¢3x3(-)in(1). The Y;(Y; ERF*Wx %) of (1) is the output feature
map corresponding to the ith channel subset. Except for Xy,
each subsequent feature map X; (i = 2, ..., N) is superimposed
with the output of the previous feature map [e.g., the Y;_1 in
(1)] before performing convolutional operation. Thus, Y; can be
expressed by the following equation:

_ B33 (Xi) =1
Yl{%xzs(er-Yil) 2<i<N. M

The channels of feature map were further subdivided by
channel grouping, the convolution operation of each group of
channels can extract the corresponding feature map of each
previous channel subset. In this way, by performing such channel
grouping and horizontal connection operation in each residual
block, different sizes of receptive fields can be combined to
obtain multiscale features, which can not only extract the infor-
mation of different channels, but also realize the joint extraction
of global and local features, to achieve robust detection of the
scattered building targets.

2) Multiscale Attention Module: Recently, most semantic
segmentation networks directly use multilayer linear con-
volutional networks to extract image features, but multiple
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TABLE I
ABLATION EXPERIMENTS OF THE NETWORK STRUCTURE WITH THE BASELINE OF RESNETS0

Stepwise Multi-scale
Method Dataset . X Fi-score (%) Building loU (%) OA (%)
up-sampling attention
Baseline
WHU/ INRIA 90.25/82.81 82.24/70.66 97.89/95.45
(ResNet50)
MSAN WHU/ INRIA v 94.75(1M4.50)/86.45(13.64)  90.02(17.78)/76.14(15.48)  98.84(10.95)/96.39(10.94)
MSAN WHU/ INRIA Vv 92.54(12.29)/84.15(1M1.34)  86.11(13.87)/72.64(11.98) 98.36(1N0.47)/95.77(1M0.32)
MSAN WHU/ INRIA \ v 95.00(M4.75)/86.50(13.69)  90.48(18.24)/76.20(15.54)  98.90(1M1.01)/96.42(10.97)

Note: The symbol “1” represents the increased value relative to the baseline, similarly hereinafter.

TABLE I
ABLATION EXPERIMENTS OF HORIZONTAL CONNECTION RESIDUAL BLOCK

Building
Method Dataset Fi-score (%) OA(%)
loU(%)
Baseline WHU 95.00 90.48 98.90
(Res-MSAN) /INRIA /86.50 /76.20 /96.42
. WHU 95.25 (180.25) 90.92(1M0.44) 98.96(1N0.06)
Baseline + CG
/INRIA /86.62(1M0.12)  /76.40(1M0.20) /96.42(-0.00)
Baseline + CG WHU 95.41(10.41) 91.22(1M0.74) 99.00(1M0.10)
+HC (ours) /INRIA  /86.90(10.40) /76.90(10.70)  /96.61(10.19)
TABLE IIT

ABLATION EXPERIMENTS OF DIFFERENT CHANNEL GROUP NUMBERS

Our method  Dataset Fl-score (%) Building loU(%) OA(%)
WHU 95.00 90.48 98.90
1 subset
/INRIA /86.50 /76.20 /96.42
5 subset WHU 95.13(1M0.13)  90.70 (10.22) 98.94(1M0.04)
subsets
/INRIA  /86.64 (10.14) /76.43 (10.23)  /96.41(,0.01)
4 subset WHU 95.41 (10.41)  91.22(10.74)  99.00(10.10)
subsets
/INRIA  /86.90 (1M0.4)  /76.90(10.70) /96.61(10.19)
8 subset WHU 94.85 (1,0.15) 90.20(1,0.28) 98.87(,0.03)
subsets
/INRIA  /86.77(10.27)  /76.63(1M0.43) /96.42(-0.00)
WHU 94.68(4,0.32) 89.90(,0.58) 98.85(1,0.05)
16 subsets
/INRIA /86.19(,0.31) /75.73(1,0.47)  /96.29(1,0.13)

The bold values represent the best results in ablation experiments.

convolution operations may reduce the spatial detail information
of feature maps, resulting in the blurred segmentation bound-
aries, aliasing, and lack of the extraction in the significant context
information.

To solve this problem, inspired by the attention mechanism in
images processing [43], [56], we design a multiscale attention
module (see Fig. 3) following the last stage of HCRB network to
fully use the significant context information, and the extracted
building features can also be integrated with different scales
of the features. Compared with the feature map of other stage
of HCRB network, the output feature map (e.g., the FAyin
Fig. 3) of network contain more abstract high-level information.
Later, we extract features {FA;|i = 12,3} of different scales
step by step through the operation of three convolutions. For
the feature map FA;, we set different sizes of kernel, padding,
and stride in the convolution operation to obtain multiscale
information. Finally, the height and width of feature map FA;
are 1/2° x Hand 1/2° x W, respect to the FAy (H x W), and
the implementation details are shown in the following equation:

FA; = ¢(FAi-1|Kg-2i, P1i, S2) )

where ¢ (-) denotes the convolution operation for the feature
FA; (i = 12 and 3), K, P, and S denote the kernel, padding, and

stride operation, respectively. The subscripts of K, P, and S (like
9-2i, 4-i, and 2), respectively, denotes the kernel size, padding
size, and stride size.

Inspired by the Unet [57] structure, we design the down-top
pathway and horizontal connections to generate multiscale fea-
tures {FM;|i = 12,3}, and the procedure is as follows:

o (C(FA;) + ¢ (FMit1))
o (C(FA;))

where ¢ (-) denotes the horizontal connection, implemented by
using a 1 x 1 convolution . The o (-) denotes the operation of
batch normalization and ReLU activation function, and ¢ (-)
denotes the transposed convolution. By this down-top pathway
and horizontal connections, the multiscale feature extraction
module can reduce the loss of information and aggregate the
contextual semantic information of different scales and make
the features more prominent.

We sample FA, as a one-dimensional (1-D) vector F,,
through a global average pooling to obtain coarser channel
global information, and then introduce a I x 1 convolution to
achieve information fusion results of channels. Meanwhile, after
performing the 1 x 1 convolution on FA , we multiply FIM;
with FA to endow it with the contextual information weight.
Finally, the two results are added together to obtain the salient
features containing global context information. The 1-D vector
F,, and output feature F'5y,4) can be calculated by the following
equations:

i = 12,

FMi:{ AN C)

1 HW
Fo=p 2 FAld), “)
1=15=1
Fiina = 0 (¢1x1 (FAg)) X @ (FMy) + 0 (141 (Fy))  (5)

where H and W are, respectively, the height and width of
feature map FA,, i represents the ith row of pixels in FA( (i
=1,2, ..., H), and j is the jth column of pixels in FAy(j = 1,
2,..., W). The ¢ (-) denotes the 1 x 1 convolution operation,
and the meanings of o () and ¢ (-) have been denoted in the
following equation:

3) Stepwise Up-Sampling Decoder Structure: Some seman-
tic segmentation networks, such as FCN [18] and PSPNet [33],
directly perform up-sampling operation when decoding feature
maps into prediction maps. Such decoding methods are prone
to lose spatial details and affect the final prediction results.
Inspired by the U-Net [57] structure, we design an improved
way to maintain more feature details. As shown in Fig. 1,
in the decoding process, the features of the multiscale spatial
attention module are gradually added to the output features of the
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TABLE IV
PERFORMANCE OF EACH METHOD ON THE WHU BUILDING DATASET

Method Precision (%) Recall (%) F1-scores (%) Building loU (%) Background loU(%) mioU (%) OA (%)
U-Net 92.62 93.50 93.06 87.02 98.29 92.65 98.47
ResNet50 90.09 93.35 91.69 84.66 97.93 91.29 98.14
PSPNet 93.41 91.95 92.68 86.35 98.22 92.29 98.40
DeeplabV3 91.80 93.13 92.46 85.98 98.14 92.06 98.33
DANet 94.01 89.71 91.81 84.86 98.05 91.45 98.24
PAN 92.80 91.49 92.14 85.43 98.09 91.76 98.28
SiU-Net 93.80 93.90 93.85 88.40 - - -
MA-FCN 94.50 94.20 94.30 89.50 - - -
EaNet 94.63 96.09 95.35 91.11 - - -
SRI-Net 95.21 93.28 94.23 89.09 - - -
Res2-MSAN 96.12 93.63 94.86 90.22 98.76 94.49 98.88
HCRB-SENet 96.31 93.15 94.70 89.94 98.72 94.33 98.85
HCRB-MSAN 96.78 94.68 95.72 91.79 98.96 95.37 99.07

The bold values with shading represent the best results in comparative experiments and the bold values represent the second best results in comparative experiments.

TABLE V
PERFORMANCE OF EACH METHOD ON THE INRIA DATASET

Method Precision (%) Recall (%) F1-scores (%) Building loU (%) Background loU(%) mloU (%) OA (%)
U-Net 82.73 80.09 81.39 68.61 94.47 81.54 95.06
ResNet50 85.09 82.13 83.58 71.79 95.11 83.45 95.65
PSPNet 81.63 86.55 84.02 72.45 94.97 83.70 95.56
DeeplabV3 82.08 82.31 82.20 69.77 94.59 82.18 95.19
DANet 82.66 84.37 83.51 71.68 94.93 83.31 95.51
PAN 90.11 77.02 83.05 71.02 95.27 83.15 95.76
SU-Net 84.30 84.90 84.60 73.30 - - -
FPCRF - - 87.65 74.79 - - 95.81
SRI-Net 85.77 81.46 83.56 71.76 - - -
Res2-MSAN 86.12 86.23 86.17 75.71 95.78 85.74 96.27
HCRB-SENet 89.49 83.41 86.34 75.96 95.99 85.98 96.44
HCRB-MSAN 89.56 88.13 88.84 79.92 96.61 88.26 97.01

The bold values with shading represent the best results in comparative experiments and the bold values represent the second best results in comparative experiments.

TABLE VI
DIFFERENCES BETWEEN EACH COMPARED METHOD AND OUR METHOD

Channel Multi scale Stepwise
Method Attention

grouping attention decoding
U-Net X X X v
ResNet50 X X X x
PSPNet X X X x
DeeplabV3 x X x x
DANet x \ x x
PAN x \ v v
SiU-Net X X x v
MA-FCN x x x v
EaNet X x x v
SRI-Net X X x v
SU-Net X X x v
FPCRF X X x x
HCRB-MSAN (Ours) v v Y v

upper HCRB stage. The rich semantic information of high-level
features is combined with the spatial information of the shallow
features to represent the characteristics of small building detail
and boundary.

1IV. EXPERIMENTS

To verify the proposed method, we conduct ablation experi-
ments of the network structure to test the performance of each
part in the proposed method, and then analyze the applicability
of the method on multisource data. The method is also compared

with the other state-of-the-art methods to further verify the
ability of the proposed network.

We set the input batch size, weight decay, and initial learning
rate as 6, 0.0001, and 0.5, respectively. Considering the time
efficiency factor, we set 120 epochs in ablation experiments to
reduce the time costs, 300 epochs in comparative experiments to
get full training model and best results. The stochastic gradient
descent optimization method and cross entropy loss function are
employed to train the model. During the training process, we
perform random horizontal flip and rotation between positive
and negative 15° to enhance the training data. The parameters
size of the network is 65.39 MB.

A. Data and Hardware Environment

In the experiments, we use two datasets to verify the proposed
method. 1) WHU building dataset [58]. The dataset contains two
subsets of remote sensing image (aerial and aerospace images).
We select aerial image subset to verify the proposed method.
The original aerial image data comes from the New Zealand
land information service website, located in Christchurch, New
Zealand, which includes 187 000 buildings and a total of 8188
pictures. We choose 4736 images as the training set, 1036 images
as the validation set, and 2416 images as the test set. Each image
has the size of 512 x 512 pixels and a spatial resolution of
0.3 m, including three bands (red, green, and blue). 2) INRIA
aerial image labeling dataset [59]. The dataset is provided by
INRIA, which covers different urban settlements, including
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Austin, Chicago, Kisap County, West Tyrol, and Vienna. The five
areas have different building densities with a spatial resolution
of 0.3 m. The original dataset only contains 180 labeled images
with 5000 x 5000 size. Considering the impact of computer
hardware performance, we divide the images into 18 000 blocks
in advance and each has 500 x 500 pixels. We set the training
data and validation data as the ratio of 8:2.

The hardware environment configuration is as follows:
GeForce Titan Xp GPU containing 12GB memory with the
speed of 11.4 Gbps and 3840 CUDA cores. The operating fre-
quency is 1.6 GHz, and Ubuntu 16.04 is used in the experiments.
The required software packages for the experiments include
Python 3.6, CUDA 9.0, cuDNN 7, Pytorch 1.1.0, OpenCV 3,
Pandas, and NumPy.

B. Evaluation Metrics

The proposed building extraction network determines each
pixel of the input remote sensing image whether it belongs to
the class of building or not. Therefore, we adopt the current
popular pixel-level evaluation index to quantitatively evaluate
our network performance, including intersection over union
(IoU), recall (R), precision (P), F-score, and overall accuracy
(OA). The specific formulas are as follows:

TP
P =t m ©
TP
R = )
Fl—score:2><gi§ 3
U = TN ©
TP + TN
OA = TP+FPIFN+TN (10)

where TP (true positive) represents the number of building pixels
that are correctly extracted; TN (true negative) represents the
number of nonbuilding pixels that are correctly extracted; FP
(false positive) represents the number of pixels predicted as
buildings but actually nonbuildings, which is also called false
detection; FN (false negative) represents the number of pixels
predicted as nonbuildings but actually buildings, which is also
called the missed detection. Precision represents the percentage
of building pixels that are detected correctly in all pixels detected
as buildings. Recall represents the percentage of building pixels
that are detected correctly in all real building pixels. We need to
weigh the two indicators (precision and recall) comprehensively,
which leads to another indicator F;-score. This is a comprehen-
sive consideration of the harmony value of precision and recall;
the ToU is the ratio of intersection and union of pixels detected as
buildings and actual buildings, and the OA represents the overall
pixel accuracy of all categories.

C. Experiment Analysis

1) Ablation Experiments
a) Network module: In this section, to verify the per-
formance of the stepwise up-sampling decoder structure and
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multiscale attention structure in the proposed network, we set the
ResNet50 as the baseline to conduct the ablation experiments.
For the WHU building dataset, the experimental results are
shown in Table I. We can see that, just using the stepwise
up-sampling decoding structure (as shown in Fig. 1) can obtain
94.75% of F-score, 90.02% of IoU, and 98.84% of OA, which
are 4.50%, 7.78%, and 0.95% higher than the baseline, respec-
tively. Besides, the method of just using the multiscale attention
structure are 2.29%, 3.87%, 0.47% higher than the baseline
separately. Meanwhile, when we integrate the two structures
together, our network performance is further improved, and the
Fy-score, IoU, and OA increase by 4.75%, 8.24%, and 1.01%
compared with the baseline, respectively. All of indexes are
better than the network just using an independent structure
(the stepwise up-sampling or the multiscale attention). We also
obtain improvement effects on the INRIA dataset. The results
illustrate the effectiveness of the stepwise up-sampling and the
multiscale attention, as the proposed structures can combine
high-level semantic features with low-level spatial features and
give contextual semantics to high-level features through the
attention module, which improves the extraction effects of build-
ing feature.

Additionally, we use squeeze-and-excitation block of SENet
[38] to replace the multiscale attention module in our proposed
model (named as HCRB-SENet) to obtain the effects of these
two attention mechanisms. The statistical results of comparison
between the two attention mechanisms are shown in Tables
IV-VI. Experimental results prove the advantage of our method.
We reckon the reason is that the task only has two segmentation
targets (building or nonbuilding) in the building extraction of
HSR remote sensing images, more channel number may produce
the disturbance to the extraction of buildings. Our multiscale
attention module can extract different levels of information
combined with context semantics and effectively acquire the
spatial relationship of objects in HSR remote sensing images,
so that the effects of spatial attention mechanism (MSAN
in our model) are better than channel attention mechanism
of SENet.

b) Horizontal connection residual block: In this section,
we test the effectiveness of the horizontal connection residual
block based on the stepwise up-sampling decoding structure and
multiscale attention module. As shown in Table II, we modify the
ResNet50 with the stepwise up-sampling decoding structure and
the multiscale attention structure as the baseline (Res-MSAN)
and explore the influence of HCRB structure on the network on
the aspects of channel grouping (CG) and horizontal connection
(HO).

1) Channel grouping: In the experiments, we averagely di-
vide the channels into four groups. For the WHU build-
ing dataset, we can see from Table II that the building
extraction effect is improved when we group the chan-
nels, with F-score increased by 0.25%, IoU increased by
0.44%, and OA increased by 0.06% in comparison with
the baseline. For the INRIA dataset, grouping channels can
obtain 86.62% of F-score, 76.40% of IoU, and 96.42%
of OA, which are 0.12%, 0.20% higher than the baseline
in Fi-score and IoU. Experiments on these two datasets
prove the channel grouping is effective.
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Visual comparison results of each method on WHU building dataset.

Horizontal connection: Channel grouping focuses on the
ability enhancement of different channel groups to extract
feature maps, but does not integrate the information be-
tween channel groups, and the features of different channel
groups are isolated from each other. To extract prominent
features of buildings, we introduce a horizontal connection
structure to the grouped feature maps, to superimpose the
features between the channel groups and realize the fusion
of global and local features. It can be seen from Table II
that the effect of building segmentation is improved, reach-
ing to 95.41% of F-score, 91.22% of IoU, and 99.00% of
OA on WHU building dataset, and 86.90% of F}-score,
76.90% of building IoU, and 96.61% of OA on INRIA
dataset, when we add the horizontal connection structure,
which exceeds the effect of only employing the channel
grouping. This proves that the horizontal connection struc-
ture can effectively improve the network performance of
building extraction.

Different channel groups: We divide the feature map
channels into 1, 2, 4, 8, 16 subsets to test the influence
of different group numbers on building segmentation of
HSR remote sensing images. As shown in Table III, we
can see that the building segmentation accuracy basically
increases with the augment of channel group number, and
the better results can be obtained when the channel group
number is equal to 4. When the channel group number
further increases, the building segmentation effects de-
crease, because the task of building segmentation only has
two targets (building or nonbuilding), and the excessive

PSPNet
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HCRB-MSAN
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DeeplabV3

number of channel group limits the extraction of category
difference information [38]. The effect of different channel
grouping numbers on the feature extraction ability may
can provide some references for other studies.

2) Comparison With the Other Methods: Currently, many
research works have proposed advanced semantic segmenta-
tion methods with various network structures, such as U-Net
with stepwise up-sampling structure [57], ResNet50 with resid-
ual block [51], PSPNet with pyramid pooling module [33],
DeepLabV3 with atrous separable convolution [60], DANet
with dual attention module [43], PAN with pyramid attention
structure [56], SiU-Net with siamese network structure [58],
MA-FCN with empirical polygon regularization [61], EaNet
with Dice-based edge-aware loss function [62], SRI-Net with
spatial residual inception module [63], and SU-Net with scale
robust network structure [64]. We conduct the experiments on
our proposed method using the above two datasets to verify
the performance of our method on building semantic segmen-
tation qualitatively and quantitatively by comparing with these
advanced semantic segmentation methods. The test results of
comparison after a full training with 300 epochs are listed
in Tables IV-V, Table VI shows the differences between our
method and each compared method on channel grouping, at-
tention mechanism, multiscale attention, and stepwise decoding
structure. Our method can achieve better results compared with
the other methods.

Fig. 4 also lists the partial visualization comparison results
of each method on the WHU building dataset. Our method is
better than the other methods overall and overcomes the shadow
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Fig. 5. Visual comparison results of each method on INRIA dataset.

effect to a certain extent (e.g., the building of the box in the
first row of subfigures), to obtain more accurate segmentation
results in the areas of boundary (e.g., the buildings of the box in
the fourth row of subfigures). Besides, for small building targets
(e.g., the buildings in the box of the second row of subfigures)
and discrete building targets (e.g., the area in the box of the third
row of subfigures), our method can also acquire more accurate
segmentation results, which proves the excellent performance
of our method.

We also perform the experiments on the INRIA dataset to fur-
ther evaluate the effectiveness of the proposed method. Table V
shows the indexes in comparison with the other semantic seg-
mentation methods. Our method can achieve 88.84%, 79.92%,
and 97.01% performance on F}-score, IoU, and OA, respec-
tively, all of them are surpass other methods, which verified the
effectiveness of our designed method.

We also compared the visualization results of different meth-
ods on the INRIA dataset (see Fig. 5). In the area of dense
buildings and small targets (such as the area in the box of
the fourth row of subfigures), our method can better identify
the buildings than the other compared methods. The network
can also achieve efficient segmentation effects for irregularly
shaped buildings (such as the area in the box in the third row of
subfigures).

To sum up, our method obtains a high-precision extraction
effects in the building segmentation of HSR remote sensing
images, which proves the robust performance of the proposed
method.

V. CONCLUSION

This article proposes a new method (HCRB-MSAN) on the
extraction of buildings from HSR remote sensing images, which
combines the channel grouping and horizontal connection inside
the residual blocks into the network construction. In the method,
the features extracted by the network are fused with a multiscale
attention module to fully consider the contextual semantic in-
formation of different scales of regions by the integration of
multilevel local and global information. Finally, through the
stepwise up-sampling decoding, accurate building segmentation
results can be obtained. We evaluate this method on two public
datasets and compared it with the other state-of-the-art meth-
ods. Experiments show that our method has superior building
extraction effects.

In future, we will consider automatic enhancement of training
data, so that we can achieve more efficient semantic segmenta-
tion results of buildings in HSR remote sensing images.
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