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Target Detection Model Distillation Using Feature
Transition and Label Registration for Remote

Sensing Imagery
Boya Zhao , Qing Wang, Yuanfeng Wu , Senior Member, IEEE, Qingqing Cao , and Qiong Ran

Abstract—Deep convolution networks have been widely used in
remote sensing target detection for various applications in recent
years. Target detection models with many parameters provide
better results but are not suitable for resource-constrained devices
due to their high computational cost and storage requirements.
Furthermore, current lightweight target detection models for re-
mote sensing imagery rarely have the advantages of existing models.
Knowledge distillation can improve the learning ability of a small
student network from a large teacher network due to acceleration
and compression. However, current knowledge distillation methods
typically use mature backbones as teacher and student networks
are unsuitable for target detection in remote sensing imagery.
In this article, we propose a target detection model distillation
(TDMD) framework using feature transition and label registration
for remote sensing imagery. A lightweight attention network is
designed by ranking the importance of the convolutional feature
layers in the teacher network. Multiscale feature transition based
on a feature pyramid is utilized to constrain the feature maps of the
student network. A label registration procedure is proposed to im-
prove the TDMD model’s learning ability of the output distribution
of the teacher network. The proposed method is evaluated on the
DOTA and NWPU VHR-10 remote sensing image datasets. The
results show that the TDMD achieves a mean Average Precision
(mAP) of 75.47% and 93.81% on the DOTA and NWPU VHR-10
datasets, respectively. Moreover, the model size is 43% smaller than
that of the predecessor model (11.8 MB and 11.6 MB for the two
datasets).

Index Terms—Deep neural network, feature transition, label
registration, model distillation, remote sensing, target detection.

I. INTRODUCTION

R EAL-TIME target detection is an essential task of intelli-
gent remote sensing satellite systems, which are exhibiting

rapid development [1]. Target detection models based on deep
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convolutional neural networks [2], [3] can extract features ef-
fectively and have resulted in breakthroughs in remote sensing
image processing [4], [5]. However, models with better perfor-
mances typically have deeper neural network structures and a
large number of parameters, increasing the model’s inference
time and requiring extensive computational resources. Thus,
it is challenging to achieve real-time data processing using
intelligent remote sensing satellite data.

Many lightweight neural networks using efficient and
lightweight backbones have been proposed to minimize the
computational resources, such as SqueezeNet [6], MobileNet
[7], and ShuffleNet [8]. Network compression is also an effective
approach for reducing the number of model parameters and the
computational cost. Knowledge distillation refers to network
acceleration and compression by transferring knowledge from a
larger teacher network to a smaller student network. The learning
ability and generalization performance of the student model are
usually lower than that of the teacher network, but the number
of model parameters and the computational cost are lower. The
goal of knowledge distillation is to transfer useful knowledge
in the teacher network to the student network to improve the
capabilities of the student network. The knowledge in knowledge
distillation methods has three types: relationship, response, and
feature knowledge.

Hinton et al. [9] first proposed a knowledge distillation
method. The output classification probabilities of a large teacher
network were transferred to the student network to improve the
classification accuracy of the latter. FitNets [10] utilizes middle-
layer features of the teacher network as knowledge and uses the
differences in specific middle-layer features between teacher
and student networks as a feature loss for training, improving
the feature extraction capabilities of the student network. He
et al. [11] exploited the differences between teacher and student
networks and compressed features of the teacher network into
information for the student network by using an autoencoder.
An affinity distillation module was proposed to capture the
long-range dependency by calculating the nonlocal interactions
in the entire image. Pairwise [12] and holistic distillation [13]
were proposed for dense prediction. The pairwise distillation
method distills pairwise similarity [14], [15] by establishing a
static graph. Subsequently, the holistic distillation, which uses
adversarial training, distills the overall knowledge to the student
network.
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Target detection tasks need to classify and locate a certain
target at the same time [16]. Chen et al. [17] applied knowledge
distillation to target detection by designing classification, regres-
sion, and feature losses to train the student network. The output
of the region proposal network (RPN) and recursive cortical
network from the teacher network were utilized to calculate
classification and regression losses, respectively. Fine-grained
feature imitation [18] improves the feature-level distillation by
a region estimation method, which estimates the region close
to the target instead of the entire feature map. Zhang and
Ma [19] focused on two knowledge distillation problems in
target detection tasks. The first is the imbalance between the
number of foreground and background pixels, and the second
is the lack of the relationship between different pixels during
training. Attention-guided distillation and nonlocal distillation
were proposed to address these problems. The attention-guided
distillation method finds the important pixels in foreground
targets [20] using an attention mechanism and ensures that the
student network focuses on these features. Nonlocal distillation
enables the student network to learn the features of an individual
pixel and the relationship between different pixels captured by
non-local modules. Salehi et al. [21] proposed multiple inter-
mediate hints for anomaly detection and location to leverage the
teacher network knowledge. General instance distillation and the
general instance selection module [22] were proposed to exploit
feature-based, relation-based, and response-based knowledge,
significantly improving the performance of the student network.
Guo et al. [23] proposed a distilling target detector using decou-
pled features since the feature information derived from regions
excluding targets is essential for training the student network.
They found that the knowledge learned by the teacher network
consisted of features from neck and proposals from the classifi-
cation head and determined the total loss consisting of the feature
loss, classification loss, RPN loss, and regression loss. The
neuron selectivity transfer [24] regards knowledge distillation as
a distribution matching problem. The knowledge distillation loss
was calculated by minimizing the maximum mean difference
between the distributions of the neuron selectivity patterns be-
tween teacher and student networks, improving the accuracy of
knowledge distillation training. Activation boundaries [25] were
proposed combining teacher/student transformation, distillation
feature position, and a distance function. The teacher network
features were transformed by margin ReLU activation functions.

Existing knowledge distillation methods for target detec-
tion tasks have used mature backbones as teacher networks
(e.g., ResNet [26], VGGNet [27]) and student networks
(e.g., ShuffleNet [8], MobileNet [7]). However, these methods
do not fully utilize the knowledge of target detection models for
remote sensing imagery. It is also crucial to balance detection
accuracy and efficiency to achieve real-time data processing of
intelligent remote sensing satellite data.

We propose an oriented target detection method based on
knowledge distillation (TDMD) using the multiscale context and
enhanced channel attention (MSCCA) method [5]. To deploy
efficient target detection models on resource-constrained de-
vices. The lightweight attention network uses a channel attention
mechanism that extracts important channels from the teacher

network. The parameters of these channels are the initial conver-
gence point of the lightweight attention network. Furthermore,
multiscale feature transition on the feature pyramid is performed
to constrain the feature maps. Label distribution registration is
proposed to constrain the output distribution of the lightweight
attention network. The TDMD is evaluated on the DOTA [28]
and NWPU VHR-10 [29] datasets. Experimental results show
that the proposed TDMD achieves a mean average precision
(mAP) of 75.47% and 93.81% mAP on the DOTA and NWPU
VHR-10 datasets, respectively. The model size is 43% smaller
than the predecessor model (11.8 MB and 11.6 MB for the two
datasets).

The rest of this article is organized as follows. Section II de-
scribes the TDMD architecture. Section III presents the datasets
and experimental results. Section IV describes the ablation
study conducted for various hyperparameters. Finally, Section V
concludes this article.

II. METHODS

As shown in Fig. 1, the TDMD is a knowledge transfer
framework for target detection in remote sensing images. It is
composed of 1) a lightweight attention network, 2) a multiscale
feature transition module, and 3) label distribution registration.
An attention mechanism is adopted in the lightweight attention
network to reduce the number of channels, significantly reducing
the computational cost and number of model parameters. The
multiscale feature transition module uses the teacher’s feature
as the standard and ensures that the feature pyramid of the
lightweight attention network is similar to that of the teacher
network to maintain the efficiency of the convolutional features.
Label distribution registration uses the outputs of the teacher
network to constrain the outputs of the lightweight attention
network using the cross-entropy loss.

A. Lightweight Attention Network

Remote sensing target detection models are typically cus-
tomized to the application scenario. The lightweight attention
network is based on the MSCCA [5], an effective remote sensing
target detection model. The channel attention mechanism has
been used in convolutional neural networks to determine the
importance of the feature layers. In this article, the enhanced
channel attention (ECA) module is used for this task.

For any given feature map X ∈ RH×W×C , the channel atten-
tion is defined as follows:

S(X) = σW2(δW1(Fgp(X))) (1)

where H and W are the height and width of the feature map; C
is the number of channels of the feature map; Fgp represents
the global average pooling; W1 and W2 represent two fully
connected layers; σ is the Sigmoid function; δ is the ReLU
function. At last,S ∈ R1×1×C denotes the weights of the feature
channels. The ECA modules are inserted after each feature layer
to obtain their weights.

The lightweight attention network removes feature chan-
nels with a low S to reduce the number of model parameters
and the computational cost. The resulting network is identical



5418 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 1. TDMD architecture with lightweight attention network, multiscale feature transition, and label distribution registration.

Fig. 2. Channel attention weight map of Stage 2 output features in MSCCA.

to the MSCCA. Table I lists the structure of the MSCCA
and lightweight attention network of the TDMD for different
lightweight rates. The lightweight rate is an index to represent the
model parameter reduction. For example, lightweight rate (50%)
indicate that the feature channels in the lightweight attention
network is reduced to 50% of the original network. The bold
values are the differences between each setting, which represent
the number of feature channels. Stage 2, Stage 3, Stage 4, FP 5,
FP 6, FP 7, and FP 8 are integrated into the feature pyramid.

Fig. 2 shows the channel weight map for the stage 2 layer in
the MSCCA model; there are 256 channels. The ECA module
calculates the attention weights of the features. The channel at-
tention map contains 256 values, which indicate the importance

TABLE I
LIGHTWEIGHT ATTENTION NETWORK WITH VARIOUS LIGHTWEIGHT RATE
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Algorithm 1: Multi-Scale Feature Transition.
Input: Current image A; Detection network Net;
Euclidean function E.

Output: Multi-Scale feature transition loss Lmft.
Repeat iterations:
1 Extract each feature layer FTDMD_nand FMSCCA_n in

each detection model:Fn = Net(A), n = 1 . . . 7 for
feature pyramid.

2 Bottom-up and top-down feature fusion concatenation
by a upsample function of the bilinear interpolation for
each feature layer:Un = Upsample2(Fn+1)⊕ Fn, n=
1 …7.

3 Integrate each Un by ResBlocks: Cn = Res(Un), n=
1 …7.

4 Compare each integrated feature layers between
CMSCCA_n and CTDMD_nby E:
In = E(CMSCCA_n, CTDMD_n), n= 1 …7.

5 Formulate Lmft:Lmft =
∑

n In, n= 1 …7.
6 Use Lmft to match the feature maps of MSCCA and

TDMD.

of each feature map. The dark color represents high weights S,
and the light color represents low weights S.

Pretraining is widely used in deep learning. Pretrained param-
eters are used in the MSCCA. Because the number of channels
of the lightweight attention network is lower than that of the
MSCCA, pretrained parameters are selected by channel weights.
These parameters correspond to the feature channels.

B. Multiscale Feature Transition

Feature extraction is a crucial step in deep learning target
detection methods. The ability of the convolutional feature
determines the target detection performance. The results of
many knowledge distillation methods for classification tasks
have shown that student features can be constrained better by
a larger teacher network. Hint layers are used in the teacher
network, and guide layers of the lightweight attention network
are selected to transfer the knowledge of the intermediate layer
features from the teacher network to the student network. The
hint layers are defined as intermediate feature layers of the
MSCCA model, and the corresponding feature layers in the
lightweight attention network are defined as the guide layers.
As mentioned in Section II-A, the lightweight attention network
is identical to the MSCCA, except for the number of feature
channels. A multiscale feature pyramid is used in the MSCCA
and TDMD during feature extraction. The feature pyramids of
the MSCCA and TDMD have the same dimension to improve the
convergence efficiency. The aim of multiscale feature transition
is to ensure the consistency of the features between the TDMD
and MSCCA. Algorithm 1 shows the processing flow of the
multiscale feature transition algorithm. The transition procedure
is based on fusion features, which adopt concatenation and
bilinear interpolation functions. Then, the Euclidean distance
is used for comparing the differences and formulating the loss
function.

Fig. 3. Label distribution registration architecture.

Compression in the lightweight attention only occurs in the
backbone; thus, the size of ResBlock [26] and the subsequent
features are not changed. There is no need to match the feature di-
mension between TDMD and MSCCA during multiscale feature
transition. For a seven-layer feature pyramid, the dimensions of
the output features after the ResBlocks are 64 × 64 × 256, 32 ×
32× 256, 16× 16× 256, 8× 8× 256, 4× 4× 256, 2× 2× 256,
and 1 × 1 × 256, respectively. The Euclidean distance is used
to measure the disparities between the TDMD and MSCCA to
restrain the feature maps. For feature maps X,Y ∈ RH×W×C ,
the Euclidean distance constraint can be formulated as follows:

E(X,Y ) =
1

C

C∑
n=1

‖Xn − Yn‖22 (2)

where C is the total channel number of features X and Y and n
is the serial number of features X and Y . The constraint ensures
the convergence of the feature pyramid of TDMD and MSCCA.

C. Label Distribution Registration

Label distribution registration is proposed to enhance the
accuracy of the detection result. This step consists of hard label
and soft label registrations. The hard label is the ground truth,
and the soft label is the output label distribution after the Softmax
function

yk =
eak∑N
i=1 e

ai

(3)

where y is the soft label, anda is the original output of the neural
network; k and N are the kth output and the total number of
outputs, respectively.

As shown in Fig. 3, the prediction scores between MSCCA
and TDMD are transferred to the soft labels by the Softmax
function. The label registration loss is based on the soft label
difference between MSCCA and TDMD. Thus, the TDMD
reduces the influence of the erroneous results on the MSCCA
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output. The loss function of the label distribution registration is
explained in the loss function section.

In contrast to classification tasks [30]–[32], target detection
produces more negative samples than positive samples, espe-
cially in remote sensing target detection. Similar to the online
hard example mining (OHEM) [33], the label distribution reg-
istration only chooses backpropagation samples; the ratio of
positive to negative samples is 1:3.

D. Loss Function

The loss function of TDMD is divided into two parts. The first
is the detection lossLdet, consisting of the location lossLloc, and
classification loss Lcls. The second is the knowledge distillation
lossLkd consisting of the multiscale feature transition lossLmft

for Section II-B and the label distribution registration loss Lldr

for Section II-C

LTDMD = Ldet + Lkd. (4)

Similar to the single shot multibox detector (SSD) [34], the
detection loss is formulated as follows:

Ldet (f, g, c) =
1

n
(Lcls (f, c) + αLloc (f, g)) (5)

where n is the number of training anchors in each feature map;
c is the classification result of the anchor; f is the feature of the
anchor; g is the ground truth.

The location loss Lloc is based on a smooth L1 loss [35]
between the ground truth and the predicted bounding box. It is
defined as follows:

Lloc(f, g) =

N∑
i∈pos

∑
k

f label
ij smoothL1(preki − gkj ) (6)

where

smoothL1 =

{
0.5x2(|x| ≤ 1)
|x| − 0.5(|x| > 1)

(7)

where pos represents the positive samples; N is the total num-
ber of anchors; k ∈ {x1, y1, x2, y2, x3, y3, x4, y4} denotes the
coordinates of the four vertices of the quadrilateral ground truth
for oriented target detection; f label

ij ∈ {1, 0} is the indicator for
the ith anchor box to the jth ground truth of label; preki and g
are the prediction box and ground truth.

The classification loss Lcls is determined by the multiclass
Softmax function. The ratio of the positive to negative samples
is 3:1, which is similar to OHEM [33]

Lcls (f, c) = −
N∑

i∈ pos

f label
ij log

(
ĉlabel
i

)− ∑
i∈ neg

log
(
ĉlabel
i

)
(8)

where

ĉlabel
i =

exp
(
clabel
i

)
∑

label exp
(
clabel
i

) (9)

where ĉlabel
i is the anchor classification prediction score of the

label in the ith anchor box. Moreover, the background label is
0; thus, if i ∈ neg, the ĉlabel

i =ĉ0i .

In addition to the target detection loss, the distillation loss
Lkd of TDMD contains a multiscale feature transition loss and
a label distribution registration loss. It is defined as follows:

Lkd(x, s, t) = Lmft(x) + Lldr(s, t) (10)

where x is the feature; s and t are the soft labels of student net
and teacher net, respectively.

The multiscale feature transition loss uses the Euclidean dis-
tance. For each feature pyramid layer, the loss is formulated as
follows:

Lmft(x) =
∑
p

(
1

C

C∑
n=1

∥∥xs
pn − xt

pn

∥∥2
2

)
(11)

where C represents the number of channels of the current layer;
xs
Pn represents the hint layer features n in pyramid p of the

MSCCA model; xt
Pn represents the guide layer features n in

pyramid p of the TDMD model.
The label distribution registration loss employs cross-entropy

for soft labels

Lldr(s) = −
N∑

i∈ pos

tlabel
i log

(
slabel
i

)− ∑
i∈ neg

log
(
slabel
i

)
(12)

where

slabel, tlabel =
exp(zlabel/T )∑

label exp(z
label/T )

(13)

where tlabel
i represents the soft label of the MSCCA model for the

ith anchor of label; slabel
i represents the soft label of the TDMD

model for the ith anchor of label. The output class probabilities
are generated by the Softmax function, which applies to the logit
output. Then, T is a soft-parameter that controls the smoothness
of the probability distribution of the classes. zlabel is the logit
output of the MSCCA or TDMD model.

III. EXPERIMENTS

The proposed TDMD is evaluated on the DOTA and NWPU
VHR-10 datasets. The learning policies and results are described
in detail.

A. Datasets

1) DOTA Dataset: DOTA is a real dataset for target detection
in remote sensing imagery. It contains 2806 remote sensing
images acquired from various platforms. The image resolution
ranges from 800 × 800 to 4000 × 4000, and there are various
targets with different orientations and shapes. A large number of
small targets are labeled and classified into 15 categories: plane
(PL), bridge (BD), ground-track-field (GTF), harbor (HA), large
vehicle (LV), small-vehicle (SV), ship (SH), storage tank (ST),
baseball field (SBF), tennis court (TC), basketball court (BC),
helicopter (HC), roundabout (RA), soccer ball field (SBF), and
swimming pool (SP).

The training images were cropped to 512 × 512 to maintain
the input image size.
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TABLE II
DETECTION RESULTS OF DOTA DATASET

2) NWPU VHR-10 Dataset: The NWPU VHR-10 is a public
target detection dataset cropped from Google Earth and Vai-
hingen datasets. This dataset includes 650 labeled images. The
number of samples for each class is less than that of the DOTA
dataset. The NWPU VHR-10 dataset has almost no targets with
an area of less than 1000 pixels. Those targets are classified into
10 types: PL, SH, ST, BD, TC, BC, ground track field (GT), HA,
BR, and vehicle (VH).

B. Learning Policy

For the DOTA dataset, the feature pyramid contains seven
layers, and the anchor settings are the same as MSCCA. The
initial learning rate is 0.00005 with 120 000 iterations. The
learning rate is subsequently reduced by one order of magnitude
after every 40 000 iterations, and the total number of training
iterations is 200 000. The optimization tricks have a momentum
of 0.9 and a weight decay of 0.0005. The batch size is 16. In the
label distribution registration training, the temperature T is 4.

The feature pyramid and anchor settings are the same for the
NWPU VHR-10 dataset. The initial learning rate is 0.00005 with
80 000 iterations. The learning rate is subsequently reduced by
one order of magnitude after every 20 000 iterations, and the
total number of training iterations is 120 000. The optimization
tricks have a momentum of 0.9 and a weight decay of 0.0005.
The batch size is 16, and the temperature T is also 4 in the label
distribution registration.

The stochastic gradient descent method is used for both
datasets.

C. Results

The TDMD was compared with other current methods. All
experiments were implemented on the Caffe framework. Re-
cently proposed methods (you only look at once (YOLOv3) [39],
LO-Det 608 [41], box boundary-aware vectors (BBAVectors)
[51], and R3Det [52]) are selected for the comparison.

1) DOTA Result: Table II reports the mAP of the TDMD
and other target detection models. The bold values denote the

TABLE III
DETECTION ACCURACY AND MODEL SIZE OF TDMD AND OTHER METHOD ON

DOTA DATASET

best performances. The first row lists the target classes, detection
accuracy, and speed. The first column lists the name of the target
detection model. The TDMD model achieves 75.47% mAP and
34.5 fps. Its detection speed ranks second after the LO-Det 608,
but its detection accuracy is 9.3% higher. The detection speed
of the TDMD is 5.3 fps faster, and its mAP is 1.47% higher than
that of Pelee, a real-time detection model. The SCRDET++
achieves the highest mAP of 76.81%, but its detection speed is
only 13 fps, much slower than that of the TDMD model. The
proposed TDMD provides the best classification results for the
RA, HA, SP, and HC classes. The mAP of the TDMD is only 1%
lower for the PL, BD, and TC classes. The mAP of the TDMD
without knowledge distillation (TDMD-no KD) is 2.24% lower
than that of the TDMD with knowledge distillation.

Table III lists the detection accuracy and model size of the
TDMD and other models on the DOTA dataset. The first row
shows the model size and mAP. The first column lists the name
of the target detection model. The TDMD exhibits a 9.3% mAP
improvement, and the model size is 15.1 MB lower compared
with the recently proposed lightweight LO-Det 608 detector.
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Fig. 4. Visualization results on the DOTA dataset. From left to right, the detection results of (a) Pelee, (b) TDMD-no KD, and (c) TDMD.

TABLE IV
DETECTION RESULTS OF NWPU VHR-10 DATASET

Compared with the HSD-Res-9-256 detector, the TDMD’s mAP
shows a 9.97% mAP improvement, and the model size is 3.3 MB
higher.

Fig. 4 shows the visualization results of the Pelee, TDMD-no
KD and TDMD. In general, the proposed TDMD model detects
more targets than the other models.

2) NWPU VHR-10 Result: Table IV list the results for the
NWPU VHR-10 dataset. The first row shows the target classes,
detection accuracy, and speed. The first column lists the name of
the target detection model. The TDMD model achieves 93.81%
mAP and 34.5 fps, the optimum performance. The detection
speed of the TDMD is 5.3 fps faster, and the mAP is 0.55% higher
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Fig. 5. Visualization results on the NWPU VHR-10 dataset. From left to right, the detection results of (a) Pelee, (b) TDMD-no KD, and (c) TDMD.

TABLE V
DETECTION ACCURACY AND MODEL SIZE OF TDMD AND OTHER METHOD ON

NWPU VHR-10 DATASET

than that of Pelee. The TDMD model achieves the best results
for the PL, BC, UA, and VH classes. The TDMD has a 0.42%
higher mAP after implementing multiscale feature transition and
label distribution registration.

Table V reports the detection accuracy and model size on the
NWPU VHR-10 dataset. The first row shows the model size
and mAP. The first column lists the name of the target detection
model. The TDMD model achieves the highest mAP of 93.81%
mAP with a model size of only 11.6 MB.

Fig. 5 shows the visualization results of the Pelee, TDMD-no
KD and TDMD methods on the NWPU VHR-10 dataset. The
TDMD method detects more vehicles and planes than the other
methods.

IV. DISCUSSION

Additional comparison experiments are conducted on the
DOTA and NWPU VHR-10 datasets to evaluate the performance
of multiscale feature transition and label distribution registra-
tion. The TDMD is tested on Nvidia Titan Xp and Jetson TX2,
as shown in Fig. 6.

An ablation study is conducted as follows.
1) Lightweight rate: The lightweight attention network has

variable sizes. The percentage is used to represent dif-
ferent rates. The effect of the number of initial pretrained

Fig. 6. Inference devices. (a) Nvidia Titan Xp. (b) Jetson TX2.

parameters of the teacher network is also evaluated. We use
suffix (-no param) to represent the TDMD trained without
pretrained parameters.

2) Feature transition: We use the suffix (-mft) to indicate the
TDMD model with the multiscale feature transition.

3) Label registration: To evaluate the effect of the label dis-
tribution registration, we use the suffix (-ldr) to represent
the TDMD model with label distribution registration.

Table IV lists the results of the ablation study on the DOTA
dataset. The TDMD models with initial pretrained parameters
have substantially higher detection accuracies. The detection
performance is higher for the larger model size. TDMD (75%)-
mft&ldr, TDMD (50%)-mft&ldr, and TDMD (25%)-mft&ldr
achieve mAP values of 77.28%, 75.47%, and 66.62%, respec-
tively. The multiscale feature transition and label distribution
registration improve the detection performance. For example, for
the 50% model size, the TDMD (50%)-ldr. TDMD (50%)-mft,
and TDMD (50%)-mft&ldr exhibit improvements in the mAP
values of 1.44%, 0.72%, and 2.24% compared to model TDMD
(50%)(with param). Then, the detection speeds are also reported
in the following table and the smaller model size corresponds to
the faster detection speed.
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TABLE VI
ABLATION EXPERIMENTAL RESULTS ON DOTA DATASET

TABLE VII
ABLATION EXPERIMENTAL RESULTS ON NWPU VHR-10 DATASET

Table VII reports the results of the ablation study on the
NWPU VHR-10 dataset. The results are similar to that of the
DOTA dataset. The TDMD (75%)-mft&ldr, TDMD (50%)-
mft&ldr, and TDMD (25%)-mft&ldr achieve mAP values of
94.22%, 93.81, and 92.01%, respectively. Moreover, because
the number of target classes is lower in the NWPU VHR-10
dataset than in the DOTA dataset, the number of classification
and location parameters is lower, resulting in a smaller model
size for the NWPU VHR-10.

V. CONCLUSION

This article proposed a lightweight target detection model
for remote sensing images called TDMD based on knowledge
distillation. A lightweight attention network was designed. The
multiscale feature transition method learns knowledge from

the MSCCA using a feature pyramid and Euclidean distance
constraint. Label distribution registration employs a soft label
that controls the smoothness of the probability distribution. The
results showed that the proposed TDMD achieved 75.47% and
93.81% mAP on the DOTA and NWPU VHR-10 datasets. The
model sizes were only 11.8 MB and 11.6 MB on these datasets,
43% smaller than that of the predecessor model. In a future study,
we will investigate nonstructured pruning of the lightweight
attention network to obtain a smaller model size and lower
computational cost.
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