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Abstract—Pansharpening in remote sensing image aims at ac-
quiring a high-resolution multispectral (HRMS) image directly
by fusing a low-resolution multispectral (LRMS) image with a
panchromatic (PAN) image. The main concern is how to effec-
tively combine the rich spectral information of LRMS image with
the abundant spatial information of PAN image. Recently, many
methods based on deep learning have been proposed for the pan-
sharpening task. However, these methods usually have two main
drawbacks: 1) requiring HRMS for supervised learning; and 2)
simply ignoring the latent relation between the MS and PAN image
and fusing them directly. To solve these problems, we propose
a novel unsupervised network based on learnable degradation
processes, dubbed as LDP-Net. A reblurring block and a gray-
ing block are designed to learn the corresponding degradation
processes, respectively. In addition, a novel hybrid loss function
is proposed to constrain both spatial and spectral consistency
between the pansharpened image and the PAN and LRMS images
at different resolutions. Experiments on GaoFen-2, Worldview-2,
and Worldview-3 images demonstrate that our proposed LDP-Net
can fuse PAN and LRMS images effectively without the help of
HRMS samples, achieving promising performance in terms of both
qualitative visual effects and quantitative metrics.

Index Terms—Image fusion, pansharpening, remote sensing,
unsupervised learning.

I. INTRODUCTION

NOWADAYS, numerous remote sensing images are ob-
tained to monitor the conditions of agriculture, forestry,

ocean, land, environmental protection, and meteorology [1].
Usually, most earth observation satellites can provide two kinds
of images, namely, panchromatic (PAN) images with a high
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spatial resolution band and multispectral (MS) images with
higher spectral resolution but lower spatial resolution, which
are limited to the image signal-to-noise ratio (SNR) and data
storage and transmission. Naturally, the technique for PAN
and MS image fusion has been proposed and developed. This
technology, which is known as pansharpening, integrates the
complementary advantages of spatial and spectral information
respectively from PAN and MS images to obtain high spatial
resolution MS images. Fused images with both high spectral
and spatial resolution can achieve better results in subsequent
tasks, such as image classification and object detection [2].

In early research, many traditional methods were proposed
to develop pansharpening algorithms, and most of them can be
generally summarized into three categories.

1) 1) Methods based on component substitution (CS) [3]
attempt to transform MS images and PAN images into
a new space in which the structural component of MS
images can be substituted by PAN images to achieve spa-
tial information injection. Representative attempts include
principal component analysis (PCA) [4], intensity-hue-
saturation (IHS) [5], and Gram–Schmidt adaptive (GSA)
transform [6].

2) Multiresolution-analysis-based methods utilize the high
frequencies of PAN images to restore the spatial details
in MS images. To extract this high-frequency information
in PAN images, various transform algorithms are applied,
such as Laplacian pyramid transform [7], discrete wavelet
transform (DWT) [8], and support value transform [9].

3) Model-based methods [10] treat pansharpening as an in-
verse process of the degradation in which the ideal high-
resolution multispectral (HRMS) image degenerates to
a PAN image and low-resolution multispectral (LRMS)
image. One typical example is the band-dependent spatial
detail (BDSD) method [11].

However, these methods exhibit a certain degree of spectral
distortions owing to some prior assumptions, which are hard to
be generalized to different situations [12].

In the past decade, deep learning approaches, especially con-
volutional neural networks (CNNs), have achieved excellent
performance in various fields, including computer vision and
image processing tasks [13]. Some pioneering methods have
applied CNNs to the pansharpening task. Typical examples
include PNN [14], PanNet [15], PSGAN [16], RED-cGan [17],
and TFNet [18]. These supervised learning methods use an
end-to-end network to learn the pansharpening process and
achieve desirable performance with high spatial resolution and
few spectral distortions. However, two vital problems still exist
in most CNN-based methods. The first issue is that most net-
works are based on supervised learning and the training data
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are generated following Wald’s protocol [19]. These models
perform spatial downsampling and blurring operations on the
MS images to obtain the LRMS images and treat the original MS
images as ground truth. These operations may not be consistent
with the degradation processes in the real situation. The other
issue is that these schemes do not effectively utilize the rich
spatial information of PAN images [20] and ignore the relation
between MS images and PAN images.

To address these problems, we propose a novel unsupervised
network for pansharpening based on a two-stream CNN-based
architecture with two learnable degradation processes, dubbed
as LDP-Net. Pansharpening can be regarded as a superresolu-
tion or deblurring problem [21] with additional PAN images
and aims to restore the spatial details from PAN images and
simultaneously maintain the spectral information of LRMS im-
ages. Owing to the lack of ground truth, the inverse process of
pansharpening can be divided into two degradation processes:
one process uses a spectral response function to transform the
HRMS image into a single grayed image similar to the PAN
image, and the other process models a spatial blurring operation
from the HRMS image into an upsampled LRMS image with
a blurring kernel. In the proposed LDP-Net, we adopt two
CNN modules to learn two degradation processes. Moreover,
according to the relation between MS and PAN images, we
propose a new loss function to effectively constrain both spatial
and spectral information. Furthermore, a KL divergence loss
function is proposed to maintain the spectral distribution of the
difference between the MS and PAN images at two resolutions,
which has never been explored. As a result, our proposed model
achieves desirable performance in which the predicted HRMS
image can preserve the high spatial resolution of the PAN image
and rich spectral information of the LRMS image under unsu-
pervised conditions. The main contributions of this article are
summarized as follows.

1) An unsupervised pansharpening model is proposed based
on a two-stream end-to-end network, which is trained
without relying on supervised labels. The hyperparameters
of the model can be easily tuned in training phase.

2) Different from other models with specified degradation
operators, our proposed model learns the degradation pro-
cesses in a data-driven manner.

3) A novel hybrid loss function, which consists of three parts,
is proposed. The first two parts maintain the spatial and
spectral consistency between the inputs and the predicted
HRMS image in two different resolutions. The other part
constrains the difference between the MS and PAN images
at different resolutions to have similar distributions.

4) Extensive experiments on different remote sensing
datasets demonstrate the effectiveness and robustness of
our method over several state-of-the-art methods in both
qualitative and quantitative aspects.

The rest of this article is organized as follows. In Section II, we
review related works on pansharpening. Section III introduces
the framework of the proposed unsupervised model and the loss
function for training without labels. In Section IV, extensive
experiments were conducted to illustrate our pansharpening
method compared with several representative traditional, su-
pervised, and unsupervised learning based approaches. Finally,
Section V concludes this article.

II. RELATED WORKS

Numerous pansharpening methods have emerged in re-
cent decades, and this section briefly reviews these methods,

including classic approaches, supervised learning based ap-
proaches and unsupervised learning based approaches.

A. Classic Methods

Traditional pansharpening methods can be roughly classified
into three categories. First, early pansharpening studies focused
on CS. Some components of the upsampled LRMS images are
substituted by corresponding components of PAN images in a
specific transform domain. The spectral information and spatial
information are separated using a simple and fast transformation,
such as IHS [5], principal components transform [22], and GSA
transform [6]. Moreover, Dou et al. [23] proposed a general
framework to implement these CS-based methods systemati-
cally. These methods can effectively achieve high spatial res-
olution but may cause spectral distortions in the pansharpened
results. The second category is multiresolution-analysis-based
methods, which apply multiscale decomposition techniques
to inject high-frequency information of the PAN image into
the upsampled LRMS image. High-frequency spatial informa-
tion is usually extracted by several transform algorithms, such
as wavelet transform [24], Laplacian pyramid transform [7],
curvelet transform [25], and contourlet transform [4]. Although
these methods can achieve improved performance in spectral
fidelity, they may also cause aliasing distortion and blurring
effects in spatial details. The third type is model-based methods.
For instance, Garzelli et al. [11] presented two linear injection
models, including the single spatial detail (SSD) model and
the BDSD model and optimized the models by minimizing the
squared error between the original MS image and pansharp-
ened results. Another pansharpening model proposed by Wright
achieved fast image fusion with a Markov random field [26]. In
addition, Guo et al. [27] adopted an online coupled dictionary
learning approach to model the relation between LRMS and PAN
images to reduce the spectral distortion and restore the spatial
details. Recently, Guo et al. [28] developed a new posterior
probability model based on the Bayesian theory to achieve better
spectral and spatial fusion.

B. Supervised Learning Based Approaches

These deep learning methods specifically design a CNN-
based network driven by large quantities of paired training
data and achieve better performance than traditional methods.
Motivated by the superresolution convolutional neural network
(SRCNN) model [29], Giuseppe et al. [14] first proposed a
three-layer CNN-based network named PNN according to the
characteristics of remote sensing images. Later, Yang et al. [15]
directly added the upsampled LRMS image to the output of
the network to maintain spectral consistency and treated the
edges of PAN and LRMS images as the inputs of the network
to restore the spatial details. However, introducing only high-
frequency information and superimposing the upsampled LRMS
image on the results can cause a blurring effect and lead the
training difficult to converge. Scarpa et al. [30] adopted a target-
adaptive usage modality to ensure that a lightweight network
can be applied to different remote sensing sensors. In the deep
residual pansharpening neural network (DRPNN) model [31],
the concept of residual learning is introduced to form a very
deep convolutional neural network, which can further improve
the pansharpening performance. He et al. [32] introduced a
new detail injection strategy into the CNN-based pansharpening
methods. Subsequently, Deng et al. [33] further exploited a new
detail injection-based network aided by the difference between



5470 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

the PAN image and the upsampled LRMS image. Recently, Liu
et al. [18] also incorporated residual learning into a two-stream
CNN architecture to fuse the features extracted from both MS
and PAN images. Zhang et al. [34] designed a triple-double net-
work with a level-domain-based loss function to fully exploit the
spatial details of the PAN image. Jin et al. [35] utilized Laplacian
pyramid network to recover the crucial spatial information at
multiscales. Moreover, several generative adversarial network
(GAN)-based methods have been proposed to utilize a discrimi-
nator to distinguish the generated images from the ground-truth
images. In PSGAN [16], the authors first attempted to produce
high-quality pansharpened images with GANs and design a
two-stream fusion architecture as the generator and a fully
convolutional network as the discriminator. In RED-cGAN [17],
a residual encoder–decoder conditional GAN was proposed to
produce more details with sharpened images. However, as we
mentioned above, these methods require HRMS images for
supervised learning and still suffer from spectral distortions or
blurring effects.

C. Unsupervised Learning Based Approaches

To address the unreality of simulated data and bridge the gap
between classic and supervised learning based approaches, some
unsupervised learning based approaches have been developed.
Ma et al. [20] achieved unsupervised pansharpening using one
generator and two discriminators that were designed to distin-
guish the spatial and spectral characteristics between generated
and real images, respectively. Then, Zhou et al. [36] combined a
generative multiadversarial network and nonreference loss func-
tion to improve the performance of unsupervised pansharpening.
Motivated by some priors about downsampling and blurring,
several methods have been developed for unsupervised pan-
sharpening. For instance, a deep learning prior based on spatial
downsampling with blurring has been applied for image fusion
to obtain the loss function in [37]. The authors embedded the
semantic features extracted from the guidance PAN image by an
encoder–decoder network into another deep decoder to generate
an output image. Similarly, Luo et al. [38] designed an iterative
network architecture with a PAN-guided strategy and a set of
skip connections to continuously extract and fuse the features
from the input and then used a fixed unidimensional Gaussian
kernel to obtain a blurred version from the fused HRMS image.
However, these prior-based methods are limited to handcrafted
training data and cannot be effectively applied to real scenes.

In this article, we propose an unsupervised learning model
based on a two-stream CNN network incorporated with two
learnable degradation modules that can be adaptive to complex
simulated and real situations. Moreover, we specifically design a
hybrid spectral loss to effectively maintain spectral consistency
between the output and input LRMS images.

III. METHOD

A. Problem Formulation and Framework

Unsupervised pansharpening aims to obtain the pansharpened
HRMS image by fusing the LRMS image and the HR PAN
image without the ground-truth. We denote the LRMS image
by m ∈ Rw×h×C , the corresponding HR PAN image by P ∈
RW×H , the pansharpened HRMS image by M̂ ∈ RW×H×C ,
and the ground-truth HRMS image by M ∈ RW×H×C . W and
H represent the width and height of high-resolution images,

respectively, while w and h represent the width and height of
low-resolution images, respectively. C is the number of spectral
bands of the multispectral image and usually, C = 4. The scale
factor for spatial resolution ratio is defined as r = W/w = H/h
and usually r = 4.

Our proposed LDP-Net is based on a two-stream encoder–
decoder fusion network. As shown in Fig. 1, the network
mainly consists of several different modules, including feature
extraction block (FEB), dense encoder–decoder block (DEDB),
reconstruction block (REC), graying block (GB), and reblurring
block (RB). First, we interpolate the LRMS image m to the
upsampled LRMS image↑ m ∈ RW×H×C with same resolution
as that of the PAN image. As shown in Fig. 1, to unify the
dimensions of both HR PAN image P and the predicted HRMS
image M̂ as the input of RB, we copy the single-band PAN image
C times to form aC-band tensor P̃ ∈ RW×H×C . Then, ↑ m and
P̃ are fed into FEB to obtain the shallow spectral and spatial
features Fm and Fp, respectively. Then, we use DEDB [39],
which has a strong inference ability to further extract and fuse
the deep features. Finally, the predicted HRMS image M̂ is
reconstructed from the concatenation of the deep features and
shallow features via two residual connections [13]. The fusion
process takes the following general form:

M̂ = f
(
↑ m, P̃ ; Θ

)
(1)

where f(·) is the two-stream encoder–decoder fusion model,
which takes ↑ m and P̃ as the inputs and generates the desired
HRMS image M̂ , while Θ is the collection of parameters for
this model.

Since we do not have the HRMS image as labels, to achieve
unsupervised learning, two degradation processes, namely, the
degradation between the ideal HRMS imageM and the HR PAN
image P and the degradation between the ideal HRMS image
M and the upsampled LRMS image ↑ m, are formulated to add
extra constraints on the training procedure of f as follows [40]:

P =
C∑
i=1

αiMi (2)

and

↑ m = k ∗M (3)

where Mi denotes the ith band of the ideal HRMS image, αi

is the corresponding weighting coefficient, and k represents the
spatial blur kernel. (2) can be regarded as the degradation process
of graying an MS image, which is similar to graying a RGB
image, while (3) can be regarded as the blurring process. Inspired
by the forms of (2) and (3), a channel attention module [41]
is adopted to simulate the graying degradation as GB and a
convolution module is employed to simulate the blurring degra-
dation as RB. The parameters of both modules can be learned
from training data. Consequently, our model can be optimized
by minimizing the loss between the inputs and two degraded
versions of the output HRMS image M̂ . In addition, we apply
the two degradation blocks for the two inputs to obtain their
corresponding degraded versions at low resolution. It is worth
mentioning that the different GBs and RBs used in our proposed
LDP-Net share the same parameters, respectively.
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Fig. 1. Overview of the proposed LDP-Net for pansharpening. FEB denotes the feature extraction block. DEDB denotes the dense encoder–decoder block. RB
and GB represent the reblurring block and graying block, respectively. REC stands for the reconstruction block. 4 ↑ and 4 ↓ stand for 4 times upsampling and
downsampling, respectively. F and R denote the shallow features and residual connection, respectively.

B. Loss Function

Given the upsampled LRMS image ↑ m and the stacked
HR PAN image P̃ as the inputs, our network produces the
desired HRMS image M̂ and four degraded images using the
learned degradation operations, which are respectively defined
as follows:

M̂gray = G
(
M̂

)
(4)

M̂blur = B
(
M̂

)
(5)

↑ mgray = G (↑ m) (6)

P̃blur = B
(
P̃
)

(7)

where M̂gray ∈ RW×H×C is the grayed version of M̂ , M̂blur ∈
RW×H×C is the blurred version of M̂ , ↑ mgray ∈ RW×H×C

denotes the grayed version of ↑ m, and P̃blur ∈ RW×H×C de-
notes the blurred version of P̃ . G(·) and B(·) represent the cor-
responding degradation functions of GB and RB, respectively.
Then, our model utilizes these degraded versions to calculate
the loss without the ground-truth. The proposed loss function
contains three parts: spatial loss, spectral loss, and spectral KL
divergence loss.

1) Spatial Loss: The degradation relationship between the
MS image and PAN image can be used to restore the high-
resolution spatial information of the output HRMS image. Thus,
the spatial loss of our method, which can be divided into spatial
constraints at both low and high resolutions, is defined as

Lspatial =
∥∥∥P̃blur− ↑ mgray

∥∥∥2
2
+ δ ∗

∥∥∥P̃ − M̂gray

∥∥∥2
2

(8)

where ‖ · ‖2 denotes the L2 norm and δ represents a regu-
larization parameter to balance the two terms. The first term
represents the spatial constraint at low resolution, and the second
term represents the spatial constraint at high resolution after
upsampling. The proposed spatial loss devotes to ensuring the
consistency of spatial information extracted by two degradation
modules at different resolutions.

2) Spectral Loss: Another degradation between the HRMS
image and the upsampled LRMS image can be regarded as the
blurring operation, which can be used to maintain the spectral
consistency between the output HRMS image and the input
upsampled LRMS image at different resolutions. Then, similar
to (8), the spectral loss is defined as

Lspectral =
∥∥∥↑ m− M̂blur

∥∥∥2
2

+γ ∗
∥∥∥m− ↓ M̂

∥∥∥2
2

(9)

where γ denotes a regularization parameter to balance the two
terms. To get the downsampled output ↓ M̂ , we smooth M̂ with
3× 3 mean filter before downsampling to avoid aliasing effect.
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Fig. 2. Structure of (a) FEB, (b) DEDB, (c) GB, (d) RB, and (e) REC, where k3n128s1 denotes a convolution layer with a 3 × 3 kernel size, 128 channels, and
stride 1.

3) Spectral KL Divergence Loss: On the other hand, we
consider the inverse process of graying degradation and note
that the spectral information of MS images in different spectral
bands should follow a specific pattern. The difference between
the MS image and PAN image at different resolutions should
have similar distributions. Based on this consideration, we use
the softmax function to transform the residual terms into a form
of probability distribution. Then, the spectral Kullback–Leibler
(KL) divergence loss is added to constrain the distribution of
the residual terms at different resolutions, which is formulated
as follows:

LKL = KL(p(xlow) ‖q(x)) , (10)

where p(xlow) = softmax(↑ m− ↑ mgray) and q(x) =

softmax(M̂ − P̃ ). xlow =↑ m− ↑ mgray denotes the residual
features between the MS image and the PAN image at low
resolution and x = M̂ − P̃ stands for the residual features
between the MS image and the PAN image at high resolution.
We reshape the residual terms into a one-dimensional vector
and apply the softmax function to rescale the elements. Then
KL divergence is applied to impose both terms have similar
distributions. The spectral KL divergence loss can effectively
reduce the spectral artifacts in the fused results, which will be
demonstrated in the experimental section.

In summary, we utilize spatial loss and spectral loss to simul-
taneously restore the spatial details and preserve the spectral
information from the inputs. Moreover, an additional spectral
KL divergence loss is proposed to further adjust the spectral
qualities. Finally, our proposed unsupervised model is trained

by minimizing the following loss function:

L = αLspatial + βLspetral + μLKL. (11)

where α, β, and μ are the weights that are empirically set in our
experiments. It can be seen that the proposed loss function can
be used to train the proposed LDP-Net without the HRMS image
(ground-truth) via two degradation processes that can learn the
latent characteristics of the output HRMS image.

C. Network Architecture

As mentioned in Section III-A, there are several CNN-based
blocks that are designed to implement our proposed network
framework, including FEB, DEDB, GB, and RB. Specifically,
FEB is used to extract the shallow features from the upsampled
LRMS image and HR PAN image to contribute to the subsequent
fusion step. Thus, given ↑ m or P̃ as the inputs, the correspond-
ing shallow features Fm or Fp can be obtained as

Fm = fFEB(↑ m) (12)

and

Fp = fFEB(P̃ ) (13)

where fFEB represents the operation of FEB. It must mention
that both blocks have the same structure but different parameters
that extract different features from the MS and PAN images,
respectively. As shown in Fig. 2(a), three convolutional layers
with several adjacent residual connections are adopted to extract
features from different depths and one downsampling convolu-
tional layer is used to reduce the size of features. As shown in
Fig. 1, Rp and Rm denote the output of the residual connection
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TABLE I
PARTITIONS OF TRAINING AND TESTING DATASETS OF THREE SATELLITES

from the PAN image and upsampled LRMS image, respectively.
All convolutional layers are followed by PReLU activation
function. The extracted features Fm and Fp are concatenated
as the input of the subsequent DEDB.

The role of DEDB is to learn more high-level features and fuse
sufficient spatial and spectral information. As shown in Fig. 2(b),
we adopt four convolutional layers with dense connections to
enhance the fusion and inference abilities. Then, the fused fea-
tures are fed into a deconvolutional layer for upsampling before
concatenation with the two residual connections. To reconstruct
the output HRMS image, we use a reconstruction block (REC)
that consists of two convolutional layers followed by a ReLU
activation layer as demonstrated in Fig. 2(e).

GB and RB are vital parts of our proposed unsupervised
model. Taking the output HRMS image or the upsampled LRMS
image as the input, GB is implemented aided by the channel
attention mechanism, as shown in Fig. 2(c). First, we adopt two
convolutional layers to transform the input into weight features
and use global average pooling (GAP) and fully connected layers
to obtain the channel weight vector, which is used to simulate
the graying process. Finally, we obtain the stacked output by
copying it in the channel dimension. For RB, we implement
this module by using a single convolution layer to simulate the
spatial degradation as illustrated in Fig. 2(d). Additionally, these
modules are jointly optimized to adaptively learn the degradation
in the training phase.

IV. EXPERIMENTS AND EVALUATIONS

A. Experimental Setup

1) Datasets and Metrics: To evaluate the performance of the
proposed method, we conduct experiments on three datasets:
GaoFen-2 (GF-2), Worldview-2 (WV-2), and Worldview-3
(WV-3). The spatial resolutions of the MS and PAN images for
GF-2 satellite are 3.2 m and 0.8 m, respectively, those for WV-2
satellite are 1.84 m and 0.46 m and those for WV-3 satellite
are 1.2 m and 0.31 m. The satellite of GF-2 has four bands,
while the satellites of later two have eight bands. We produced
the training data following the Wald’s protocol [19], cropping
the PAN and upsampled LRMS images into patch pairs of size
256 × 256 in the training phase. Furthermore, another pairs of
size 512 × 512 were selected to implement test experiments of
the reduced resolution and full resolution. The partitions of both
datasets are listed in Table I.

The performance of different methods in the reduced-
resolution and full-resolution experiments are evaluated by dif-
ferent quantitative metrics. In reduced-resolution testing, four
widely used metrics with reference are involved, namely, the
spectral angle mapper (SAM) [42], spatial correlation coefficient
(SCC) [43], relative global synthesis errors (ERGAS) [44], and
4-band extension of the universal image quality index (Q4) [45],
while the quality with no-reference (QNR) [46] and its spectral
components Dλ and spatial components DS are used in full-
resolution testing.

2) Implementation Details: No postprocessing operations
were applied on the output HRMS image. The network was
trained with approximately 50 epochs. The Adam optimizer [47]
was used to minimize the loss function, with an initial learning
rate of 1e−4, and it was decayed by 0.1 every 10 epochs. The
batch size was set to 16, the weight of loss α was set to 1, β
was set to 5, μ was set to 0.1, δ was set to 20, and γ was set to
20. The network was implemented in PyTorch and trained on an
Nvidia GeForce GTX 1080Ti GPU. The codes for this work can
be downloaded.1

3) Comparison Methods: In our experiments, we compared
the proposed LDP-Net with several state-of-the-art methods, in-
cluding PCA [4], IHS [5], Brovey [48], GS [49], BSBD [11], ad-
ditive wavelet luminance proportional (AWLP) [50], PNN [14],
DiCNN [32], PanNet [15], DMDNet [51], FusionNet [33], PG-
MAN [36], and Pan-GAN [20]. The first six methods belong
to traditional method. PNN, DiCNN, PanNet, DMDNet, and
FusionNet are supervised learning based methods. Pan-GAN
and PGMAN are recently proposed unsupervised methods. For
fair comparison, these methods were reimplemented with the
PyTorch framework according to their publicly available codes
and retrained using the same training datasets at the reduced
resolution.

B. Comparison at Reduced Resolution

The experiment was performed on three datasets at reduced
resolution, which follows the Wald’s protocol. The original
MS image can be used as the reference. Figs. 3–5 show three
examples cropped from the results of GF-2, WV-2, and WV-3
processed using different methods. In each case, one region
that is marked by a red rectangle is magnified to visualize the
differences of these results. In Figs. 3–5, it can be observed
that the results of traditional methods can restore spatial details
effectively but still exhibit some blurring effects and spectral
distortions. For example, the results of BDSD suffer from severe
spectral distortions and some blurring effects, while the results
of AWLP reduce the blurring effect but introduce some spatial
artifacts. Supervised learning based methods can improve the
spectral performance of pansharpening results but still exist spa-
tial blurring. For the unsupervised method, Pan-GAN success-
fully achieves unsupervised pansharpening but its results contain
some spatial blurring and obvious spectral distortions, especially
in WV-2 and WV-3 datasets. In Fig. 3(n), PGMAN recovers
more spatial details in pansharpened results while still exists
some spectral distortions. Moreover, GAN-based pansharpening
methods are difficult to tune the hyperparameters and easily
generate spatial and spectral artifacts. As shown in the magnified
regions in Figs. 3(o) and 5(o), compared to other methods, it can
be seen that our proposed LDP-Net effectively recovers spatial
details and preserves spectral information without introducing
artifacts and the fusion results are more vivid and much closer
to the ground truth than other methods.

Tables II–IV show the average values of the quantitative
results of different methods on three datasets. The methods
are classified into three groups, including traditional, super-
vised, and unsupervised, and the best result in each group are
highlighted in bold. Compared with Pan-Gan and PGMAN,
the proposed LDP-Net achieves better scores in most metrics.
Among the CNN-based methods, the proposed method can

1[Online]. Available: https://github.com/suifenglian/LDP-Net

https://github.com/suifenglian/LDP-Net
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Fig. 3. Pansharpened results from different methods on the GF-2 dataset at reduced resolution. (a) Upsampled LRMS. (b) PCA. (c) IHS. (d) Brovey. (e) GS.
(f) BDSD. (g) AWLP. (h) PNN. (i) DiCNN1. (j) PanNet. (k) DMDNet. (l) FusionNet. (m) Pan-GAN. (n) PGMAN. (o) Ours. (p) Ground truth.

Fig. 4. Pansharpened results from different methods on the WV-2 dataset at reduced resolution. (a) Upsampled LRMS. (b) PCA. (c) IHS. (d) Brovey. (e) GS.
(f) BDSD. (g) AWLP. (h) PNN. (i) DiCNN1. (j) PanNet. (k) DMDNet. (l) FusionNet. (m) Pan-GAN. (n) PGMAN. (o) Ours. (p) Ground truth.

Fig. 5. Pansharpened results from different methods on the WV3 dataset at reduced resolution. (a) Upsampled LRMS. (b) PCA. (c) IHS. (d) Brovey. (e) GS.
(f) BDSD. (g) AWLP. (h) PNN. (i) DiCNN1. (j) PanNet. (k) DMDNet. (l) FusionNet. (m) Pan-GAN. (n) PGMAN. (o) Ours. (p) Ground truth.

approach the performance of supervised methods. In particular,
our model achieves the SCC, ERGAS, and Q4 scores close to
the supervised methods, which verifies that our proposed method
can effectively fuse the spatial and spectral information without
the reference.

C. Comparison at Full Resolution

In this section, all the methods were validated on real data.
Figs. 6–8 illustrate the representative results of the real GF-2,
WV-2, and WV-3 data. Moreover, to verify the robustness of
the proposed LDP-Net, the models trained with reduced images

were used for the full-resolution test, which means we do not
need to train new models for the full-resolution datasets. In
these cases, most traditional methods can significantly restore
the spatial information compared with that in LRMS images
but most still suffer from a certain degree of spectral shift. In
contrast, AWLP reduces the spectral distortion in the results
while introduce noticeable spatial artifacts. Compared with these
traditional methods, CNN-based models can effectively main-
tain spectral consistency and improve the spatial resolution over
different datasets. However, PanNet and DMDNet generate per-
ceptible blurring effects and artifacts. DiCNN1 can restore the
spatial details better with a high spectral resolution, but spectral
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Fig. 6. Pansharpened results from different methods on the GF-2 dataset at full resolution. (a) Upsampled LRMS. (b) PAN. (c) PCA. (d) IHS. (e) Brovey. (f) GS.
(g) BDSD. (h) AWLP. (i) PNN. (j) DiCNN1. (k) PanNet. (l) DMDNet. (m) FusionNet. (n) Pan-GAN. (o) PGMAN. (p) Ours.

Fig. 7. Pansharpened results from different methods on the WV-2 dataset at full resolution. (a) Upsampled LRMS. (b) PAN. (c) PCA. (d) IHS. (e) Brovey.
(f) GS. (g) BDSD. (h) AWLP. (i) PNN. (j) DiCNN1. (k) PanNet. (l) DMDNet. (m) FusionNet. (n) Pan-GAN. (o) PGMAN. (p) Ours.

Fig. 8. Pansharpened results from different methods on the WV-3 dataset at full resolution. (a) Upsampled LRMS. (b) PAN. (c) PCA. (d) IHS. (e) Brovey.
(f) GS. (g) BDSD. (h) AWLP. (i) PNN. (j) DiCNN1. (k) PanNet. (l) DMDNet. (m) FusionNet. (n) Pan-GAN. (o) PGMAN. (p) Ours.

distortions are still observed in parts of regions. As shown in
Figs. 7(j) and 8(j), the light blue mark and the cyan buildings
are not as vividly colored as those obtained by other methods.
Compared with other supervised methods, FusionNet can further
reduce the spatial blurring and spectral distortions. Pan-GAN,
which achieves unsupervised learning using spatial and spectral
discriminators, can improve the spatial and spectral resolution
but still exist spatial blurring and introduce spectral distortions
to the results in Figs. 7(n) and 8(n). Though PGMAN maintains
the spectral consistency as the upsampled LRMS image, there
are still noticeable distortions of spatial details in pansharpened

results. It is obvious that in the magnified regions indicated by
red boxes, our proposed method preserves better spatial details
and maintains higher spectral consistency than other methods.
Apparently, our pansharpened images are clearer and more vivid
than all the other methods, as shown in Figs. 6(p) and 8(p).

Due to lack of ground truth, QNR, Dλ, and DS are employed
as the quantitative metrics to evaluate the performance of the
pansharpened results at full resolution. The quantitative results
are shown in Table V. As shown in Table V, we notice that
the quantitative results are not quite consistent with the results
of the visual inspections. This paradox probably lies in that
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Fig. 9. Pansharpened results from the ablation study of the loss functions. (a) Ground truth. (b) The combination I. (c) The combination II. (d) The combination
III. (e) The combination IV. (f) The combination V. (g) The combination VI. (h) The combination VII. (i) The combination VIII.

TABLE II
QUANTITATIVE RESULTS ON THE GF-2 DATASET AT REDUCED RESOLUTION

TABLE III
QUANTITATIVE RESULTS ON THE WV-2 DATASET AT REDUCED RESOLUTION

the nonreference assessment metrics are calculated using the
LRMS images, PAN image, and pansharpened results to assess
the spectral and spatial distortion. The results with blurring
effects tend to achieve better values due to their similarity to

TABLE IV
QUANTITATIVE RESULTS ON THE WV-3 DATASET AT REDUCED RESOLUTION

the LRMS images, which has also been mentioned in [52]. For
example, as shown in Figs. 7(j) and (l), and 8(j) and (l), the results
of DMDNet with more obvious blurring effects have better
QNR values than DiCNN1. Hence, nonreference metrics are
not always suitable to assess the spectral and spatial distortions
of pansharpened results, and it is more important to empha-
size visual inspection for comparison at full resolution without
ground truth.

D. Ablation Study of Loss Function

In this section, several experiments were conducted to in-
vestigate the impacts of each component in our loss func-
tion. Based on two learnable degradation processes, the loss
function plays an important role in our unsupervised train-
ing process. The proposed loss function can be subdivided
into five parts, namely, the spatial loss at high resolution
Lspatial_h = ‖P̃ − M̂gray‖22, the spatial loss at low resolution
Lspatial_l = ‖P̃blur− ↑ mgray‖22, the spectral loss at high res-
olution Lspectral_h = ‖↑ m− M̂blur‖22 , the spectral loss at low
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TABLE V
QUANTITATIVE RESULTS AT FULL RESOLUTION

TABLE VI
ABLATION RESULTS WITH THE LOSS FUNCTIONS ON WV-3 DATASET

resolutionLspectral_l = ‖m− ↓ M̂‖22 and the spectral KL diver-
gence loss LKL. Lspatial_h and Lspectral_h are used as the basic
loss components for the unsupervised training. Table VI shows
the quantitative results to validate the effectiveness ofLspatial_l,
Lspectral_l and the proposed spectral KL divergence loss. In
addition, we display the visual results of different combinations
of loss components in Fig. 9. It can be seen that the combination
of only Lspatial_h and Lspectral_h cannot achieve satisfactory
performance, which suffers from severe spectral distortions in
pansharpened images. Low-resolution spatial loss can restore
the spatial details but still suffer from spectral distortions, and
low-resolution spectral loss can reduce the spectral distortions
but produce some spectral artifacts, while the spectral KL diver-
gence loss can obviously eliminate spectral artifacts with high
spatial resolution but still remain spectral distortions. When all
of the loss components are included, the pansharpened images
have the best quantitative scores and achieve the best spatial and
spectral consistency, fully utilizing the rich spatial information
of HR PAN images and the relation between MS images and PAN
images. These results verify the effectiveness of our proposed
hybrid loss function in both qualitative and quantitative aspects.

E. Efficiency Study

In this section, the computational efficiencies of all compar-
ison methods are evaluated. As mentioned in Section IV-A, all
deep learning based methods were implemented in PyTorch
and tested on an Nvidia GeForce GTX 1080Ti GPU, while
all traditional methods were implemented in MATLAB R2019b
framework on CPU. Table VII lists the computational times of
different approaches and the parameters of different models. The
cost times are evaluated by averaging the inference time in the
testing set at the reduced resolution experiment. Compared with

TABLE VII
EFFICIENCY COMPARISON WITH DIFFERENT METHODS WHEN PROCESSING

INPUTS OF SIZE 256 × 256 × 4 ON GF-2 DATASET

other methods, the number of the parameters of our model is
small but the computational time of our method is at the middle
level. The main reason is that our proposed network contains two
additional degradation modules and a deeper network structure.
Compared to GAN-based unsupervised pansharpening methods,
we must mention that our model is easier for hyperparameter tun-
ing in the training phase. Generally, in addition to ensuring the
superiority of performance, our proposed unsupervised model
makes a reasonable tradeoff between model performance and
computational cost.

V. CONCLUSION

In this article, we propose an unsupervised pansharpening
method based on two learnable degradation processes. The
method can adaptively learn the degraded processes with two
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corresponding CNN-based modules and successfully achieve
unsupervised pansharpening. Moreover, we consider the degra-
dation processes at different resolutions and present a novel
hybrid loss that can effectively maintain spatial and spectral con-
sistency. Thus, this unsupervised training strategy adequately
improves the spatial details and reduces the spectral distortion
in the results. Then, extensive experiments were performed on
different-resolution images from three datasets, demonstrating
the superiority of our proposed method over other state-of-the-
art methods.
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