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SAR Image Change Detection Based on Joint
Dictionary Learning With Iterative Adaptive
Threshold Optimization

Qiuze Yu, Miao Zhang

Abstract—Synthetic aperture radar (SAR) image change detec-
tion is still a challenge due to inherent speckle noise and scarce
datasets. This article proposes a joint-related dictionary learning
algorithm based on the k-singular value decomposition (K-SVD)
algorithm called JR-KSVD and an iterative adaptive threshold
optimization (IATO) algorithm for unsupervised change detection.
The JR-KSVD algorithm adds dictionary correlation learning to
the K-SVD algorithm to generate a uniform initial dictionary for
dual-temporal SAR images, thereby reducing the instability of
sparse representations due to atomic correlations and enhancing
the extraction of image edges and details. The IATO approach
employs thresholds obtained by the “difference-log ratio” fusion
image for indefinite residual energy minimization iterations to
gradually shrink the threshold variation range and finally generate
the change images, which have a high degree of adaptivity and
strong real-time performance. Finally, experiments on six real
datasets demonstrate that the proposed algorithm exhibits superior
detection performance and robustness against some state-of-the-art
algorithms.

Index Terms—Change detection, difference-log ratio image,
iterative adaptive threshold, joint-related dictionary learning,
synthetic aperture radar (SAR) image.

Acronym Meaning

SAR Synthetic aperture radar.

K-SVD K-singular value decomposition.
JR-KSVD Joint-related k-singular value decomposition.
IATO Iterative adaptive threshold optimization.
EKSVD Efficient k-singular value decomposition.
GSR Group sparse representation.

PCA Principal component analysis.

MP Matching pursuit.

OMP Orthogonal matching pursuit.

BP Basis pursuit.

FOCUSS Focal underdetermined system solution.
1-D 2-D One-dimensional Two-dimensional.

FN False negative number.

FP False positive number.
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OE Overall error numbers.

PCC Percentage correct classification.

ROC Receiver operating characteristic.

AUC Area under the curve.

RFLICM C-means clustering of trimmed fuzzy local in-
formation algorithm.

SAEFCM Sparse autoencoder (SAE) and fuzzy c-means
(FCM) clustering change detection algorithm.

SIFT Scale invariant feature transform.

RUSACD Robust unsupervised small area change detec-
tion.

SAFNet Siamese adaptive fusion network.

GaborPCANet Automatic change detection based on the prin-
cipal component analysis network (PCANet).

NRELM Neighborhood-based ratio and extreme learn-
ing machine.

GT Ground truth.

SVM Support vector machine.

I. INTRODUCTION

HE application of change detection technology in real life

has increased over the years with the rapid development
of urban construction and the frequent occurrence of various
natural disasters, such as earthquakes, mudslides, and natural
fires. Synthetic aperture radar (SAR) [1]-[4] is a useful ground
imaging technology for seeing through masks and detecting
camouflage. The greatest advantage of SAR is its all-weather
capabilities, which give it a significant advantage over infrared
and visible light sensors. As a result, using SAR images for
change detection has become the current mainstream trend, and
SAR images have many possible applications in environmental
monitoring [5]-[7], wetland changes [8], [9], and land evolu-
tion [10].

Currently, there are two types of SAR image change detec-
tion approaches: 1) supervised learning and 2) unsupervised
learning [11], [12]. The goal of supervised learning is to build
a relevant classification network and then perform supervised
training on multiple sets of input images [13]. Wang et al. [14]
introduced a new joint change detection network based on
similarity learning and built a C2-net and an intensity network
to expose similarities between picture patches during training to
detect a target, where the C2-net is a concatenated structure with
a matrix composed of the diagonal elements of the covariance
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TABLE I
RELEVANT REFERENCES AND THEIR MAIN CHARACTERISTICS

Methods Main Characteristics

Articles

Supervised learning

Simple Image Detection

Wang et al. [14] , Li et al. [15]

Convenient detection method

Gong et al. [16]

Simple Image Detection

Majidi et al. [18]

Unsupervised learning

Complex detection methods and high detection costs

Saha et al. [19], Geng et al. [20]

Solves the problem of speckle noise

Choi et al. [21], Chen et al. [22], Liu et al. [23]

Poor detail and edge accuracy

Chen et al. [22], Zhan et al. [24]

of the second subnetwork of the dual-polarized complex SAR
data as input; however, it shows good performance only in com-
parison with the “amplitude-based method” and for small SAR
images. Li ef al. [15] and others used deformation similarities
to perform patch matching, which searches for the best set of
atoms in a differential image dictionary, reconstructs patches
for the new image, and maps from the differential image to
the change detection image, but the test results in some ar-
eas occasionally have some shortcomings compared to several
other advanced methods. Gong ef al. [16] used trained deep
neural networks to build change detection maps straight from
two photos, eliminating the procedure of producing differential
images between dual time phase SAR images. Unsupervised
learning change detection is typically divided into three steps:
1) preprocessing; 2) obtaining a difference image; and 3) an-
alyzing the difference image [17]. In a previous study [18],
a saliency-guided method based on the Otsu threshold and a
neighborhood ratio model based on the probability distribution
were proposed, and the K-means method was applied to bi-
narize the difference maps of SAR images, but this approach
can perform change detection only for simple SAR images
and cannot accurately extract smaller change regions. Other
scholars [19] used pairs of unlabeled SAR images and optical
images, transcoded the SAR images into optical images using the
cycle generative adversarial network (CycleGAN), performed
unsupervised training, and finally converted the optical images
back into SAR images. However, this method uses both optical
and SAR images, which increases the detection cost. Another
study [20] combined unsupervised change detection methods
and saliency-guided deep neural networks to obtain pseudotrain-
ing samples to achieve better binarization classification results.
The above discussion of supervised and unsupervised change
detection indicates that most supervised change detection meth-
ods require more training data and that the computational cost
of neural networks is high, but supervised methods are more
effective in detecting complex terrain and require less manual
adjustment of the parameters. For unsupervised change detec-
tion, the details of the images are not detected sufficiently well
and are often applied to relatively simple terrain, but they can be
detected directly without training samples, and the overall com-
putational cost is relatively low. Considering the advantages and
disadvantages of both supervised and unsupervised detection
and the difficulty of obtaining high-resolution SAR images, this
article adopts an unsupervised feature extraction method based
on sparse representations for SAR image change detection.
There are significant issues in the field of unsupervised change
detection based on SAR image change detection methods and
SAR imaging properties. First, poor feature extraction results in

a significant loss of image edge features. Second, these methods
cannot automatically generate thresholds or generate thresholds
that are not precise enough to provide accurate change images.
Third, the reconstructed image contains more speckle noise.
In regard to the problem of speckle noise, several researchers
have explored the subject and achieved improved results [21].
Chen et al. [22] used the efficient k-singular value decomposition
algorithm to train abstract and discriminative high-level features
by using a block structure dictionary, which improves robustness
against coherent speckle noise. Mean filtering was included in
the modeling process by Liu er al. [23], resulting in despeckled
SAR picture restoration based on the group sparse representation
model. However, the first two difficulties of unsupervised change
detection remain somewhat poorly understood, and thus, this
article focuses on the two aspects of feature extraction and
threshold selection. This approach can better extract image fea-
tures more completely and preserve image edge information, as
well as adaptively generate the image segmentation threshold, to
achieve a more satisfactory segmentation effect. For the speckle
noise problem, the sparse representation can suppress it to some
extent since the feature signal is expressed in the dictionary
with sparsity, while the noise signal is not sparse. In particular,
since the image information is contained in a small number of
coefficients, the corresponding feature signal coefficients are
large, and the noise coefficients are small. However, although
the complete signal is encoded, only the larger coefficients
are retained, whereas the smaller coefficients are filtered, thus
achieving the effect of filtering out noise.

To indicate the motivation and relevant contributions of this
article, we have summarized the literature on supervised and
unsupervised learning discussed above by their main features,
as shown in Table I. We propose joint-related k-singular value
decomposition (JR-KSVD), a joint dictionary learning algo-
rithm, to address the problem of “poor detail and edge accuracy”
indicated in the table, which is also one of the motivations of
our article. By conducting correlation operations on the initial
dictionaries in the sparse format, this technique minimizes the
high similarity between atoms, reduces redundant features, and
enhances edge and detail detection accuracy. Furthermore, most
unsupervised change detection algorithms require human ad-
justment of segmentation thresholds to achieve better detection
results, which greatly increases the labor cost. Therefore, this
article combines the benefits of the top-down (TD) and bottom-
up (BU) algorithms in the literature [25] to improve the Otsu
algorithm [26] and proposes an iterative threshold optimization
algorithm (IATO), which is the other contribution of our work.
The algorithm fuses the sparsely reconstructed image’s differen-
tial image and log-ratio image to adjust the reconstructed map,
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Fig. 1. Flowchart of SAR image change detection.

after which the image is iteratively constrained using one- and
two-dimensional (1- and 2-D) segmentation algorithms until a
suitable threshold is generated, and finally, the change image
is generated. This approach significantly accelerates threshold
selection and achieves adaptive image segmentation.

The methodologies and ideas used in this investigation are
detailed in the second half of this publication. The dependability
and applicability of the research approach are proven in the
third section by displaying the experimental data. Finally, in the
conclusion, the work is summarized, and the study’s limitations
and potential improvements are discussed.

In the scope of this article, the following notations are used:
R is the set of real vectors. = is an M X N-dimensional matrix
used to represent the set of signals. D is an M x K-dimensional
matrix, and d; is a column vector in D with dimension M. «
is a K x N-dimensional matrix. || e ||o is used to calculate [°.
¢ denotes the maximum reconstruction error. L, [ denotes the
sparsity, and @, ¢ denotes the number of iterations. || e ||% is
used to calculate [2. Ty denotes the upper limit of the zero norm
of a.. 2 denotes the contraction matrix. A denotes the diagonal
matrix. 7;.(e) denotes the trace finding operation.

II. METHODOLOGY

We employ dictionary learning and sparse representation to
reconstruct gray images for SAR image change detection and
an adaptive threshold segmentation method to generate change
images. The first step is to determine how to obtain a pair of
adaptive sparse dictionaries. Dictionary learning methods [27]
that are commonly used include the K-SVD dictionary learning
method [28], the principal component analysis (PCA) dictio-
nary learning method [29], and the online learning dictionary
learning method [30], [31]. Because of its fast learning speed
and high capacity to learn features, the K-SVD algorithm is
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frequently utilized for SAR image training. By upgrading the
K-SVD algorithm, the JR-KSVD algorithm is obtained in this
study. In comparison to the K-SVD technique, the JR-KSVD
approach uses correlation learning and dictionary rearrangement
to initialize a dictionary, which enhances dictionary learning
stability and uniformity in SAR image change detection and
improves edge retention. Furthermore, the rearranged dictionary
atoms are exceptionally representative and may more effectively
represent a changing section in a pair of dual time phase SAR
images, which improves the detection accuracy. The second
step is to design the adaptive threshold segmentation function.
This study proposes the IATO algorithm, which uses an initial
differential image to determine the initial threshold and then
computes the threshold as a parameter of the “differential-log
ratio” fusion function to build a new threshold. The final change
image is generated by continuous optimization iterations. The
IATO algorithm is highly adaptive and effective in segmentation,
which substantially simplifies the process of determining the
best segmentation threshold and makes change detection much
easier compared with previous articles. The SAR image change
detection flowchart is shown in Fig. 1, which clearly depicts the
experimental design concept.

A. Joint Dictionary Learning and Reconstruction of Synthetic
Aperture Radar Images

1) Joint-Related Dictionary Learning Based on an Overcom-
plete Dictionary: The JR-KSVD algorithm proposed in this arti-
cleis based on the overcomplete sparse representation technique.
Sparse representation theory states that in the representation of
complex signals, the majority of natural signals can be thought
of as linear superpositions of a sequence of atomic signals,
with the plurality of these linear coefficients having zero values;
hence, they are referred to as sparse coefficients. In general,
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the signal matrix 2 € RM>N denotes a sparsely represented
signal in the experiment (M and N represent the number of
rows and columns of the matrix, respectively), and the vector
setd; € RM where D = {d;},i=1,2... K, K > M denotes
the overcomplete basis, i.e., the atoms mentioned in sparse
representation theory, where a series of atoms is joined into a
dictionary. Matrix D with dimensions M x K is defined and
used as a dictionary. When K > M, that is, when the number
of columns in the dictionary exceeds the number of rows, the
dictionary is said to be an overcomplete dictionary, and the atom
d; is the dictionary’s basic unit that symbolizes the dictionary’s
column vector. The optimization process of (1) is, in general,
the exploration of a sparse expression for the signal x

& = argmin ||al|o s.t. |2 — Dal/% < e. (1)
[e3

In the above equation, D and « represent the dictionary
matrix and the coefficient matrix used to represent the signal
x, respectively (z € RM*N D ¢ RM*K and o € RE*N),
The symbol || e || is used to calculate [°, while  represents
the maximum permissible reconstruction error. Our goal is to
find the dictionary D that allows « to be the sparsest, which
is a process of finding the optimal solution, i.e., an NP-hard
problem, which was initially solved by Mallat er al. [32] with
the matching pursuit (MP) algorithm. As a result, some new
algorithms, such as the orthogonal MP (OMP) algorithm [33],
basis pursuit algorithm [34], and focal underdetermined sys-
tem solution methods [35], have been proposed to solve this
problem. In this article, the mature OMP algorithm is used to
perform sparse signal decomposition. The OMP algorithm must
run through dictionary atoms one by one, project the signal
orthogonally onto the selected atoms, and choose the atom with
the highest projection value as the best match for signal «; then,
the signal residuals are computed. The residual signal is utilized
as the new signal, and the best-matching atoms are chosen; this
process is repeated until signal x can be represented by a linear
combination of these best-matching atoms plus the final residual
value. When the residuals are small and negligible, signal x is
a linear combination of these atoms. The overall computational
flow of the OMP algorithm is described in Algorithm 1.

In addition to the superiority of the sparse representation
algorithm, the accuracy of the sparse representation of signals is
determined by the dictionary’s reasonableness and complete-
ness. Additionally, the dictionary needs to contain the main
structural information to express the signal so that the signal
can be represented completely by a sparse representation. In
general, we can obtain dictionaries from original signal sam-
ples by training, or we can compose dictionaries by function
transformations. The latter dictionaries are primarily derived
from particular transforms, such as the short-time Fourier trans-
form [36], overcomplete wavelet transform [37], and contourlet
transform [38]; they are simple to obtain but less adaptive and
cannot be used to adequately represent SAR images. Therefore,
to ensure the accuracy and sparsity of the sparse representation,
we must utilize a learning dictionary to generate an adaptive
dictionary. According to a significant quantity of data, the
K-SVD algorithm, which is derived from the K-means clustering
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Algorithm 1: OMP algorithm steps.
input: Test signal x, dictionary D, sparsity L, maximum
allowable reconstruction error ¢, residual signal g = =z,
sparsity [ = 0, and atomic index set Iy = &;
output: The sparse matrix of signal
x, o= (D} Dr) 'Dj x;
1:  Look for the atom with the largest projection:
k = argmaxy, |d7r,_1|. k represents the serial
number of the selected atom; that is, the atomic index
value dg represents the selected atom, and 7
represents the residual after matching;
2: Update the atomic index set: [, = ([x_1, l%);
3:  Update the residual signal: o;, =
(DiD}k)leil‘ , Tk =T — D[koqk,l =1+1,
where o, denotes the sparse matrix;
4: Determine the end-of-cycle condition. If [ > L or
r, < €, then stop the iteration; otherwise, continue the
loop.

technique, can make good use of the properties of SAR images
and may be used with any of the matching tracking algorithms
to build a dictionary that fits the requirements. We proposed the
JR-KSVD algorithm by combining the similarities of dual time
phase images with the differences in the images to be generated.
The JR-KSVD algorithm runs a joint correlation calculation
on the two initial dictionaries and selects the combination of
atoms with the highest degree of difference among the many
atoms to generate the new dictionary. The new dictionary is then
utilized as the initial dictionary of the K-SVD algorithm, which
is iteratively updated on the two signals, and finally, two groups
of dictionaries and sparse matrices are formed to accurately
describe the input signals. The high degree of difference among
the atoms shown in the JR-KSVD algorithm accelerates the
subsequent algorithm’s convergence and improves the stability
of the iteratively created dictionaries. The JR-KSVD algorithm
is separated into three steps: 1) calculate the joint correlation
and define the new initial dictionary; 2) locate the sparse matrix
using the OMP technique; and 3) utilize the SVD decomposition
algorithm to update the dictionary and sparse matrix. The three
steps of the method are discussed separately in the next sections.
a) Calculate the joint correlation: We initially segment the
dual time phase SAR images with a sliding window of

size 7 X 1 to obtain several patches (atoms) of size 72 and

then choose 256 of them at random to build the initial
dictionaries D 4 and D . The dataset and initial dictionary
generation process are depicted in Fig. 2. Equation (2)
obtains a new dictionary D determined by the initial dic-
tionaries D 4 and D g by designing the correlation function
Corr() and setting constraints. Equation (3) takes the new
dictionary D and the sparse matrices ai; and oo as mutual
adjustment variables to obtain the dictionary and sparse
matrices that can best represent the input signals 1 and

xo in preparation for the next image reconstruction and
threshold segmentation, which are expressed as D1, Do,
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and a1, 2.

D = Cort(D 4, Dg) s.t. max (HDA - DB||§) 2)

[D1, D2, a1, 00) = KSVD (a1, 00, D, X1, X2) . (3)

Locate the sparse matrix: The method for solving the
dictionary and sparse matrix using K-SVD on the initial
dataset X = {x;}i—12,7 € RM*N can be described by

min {IX = Da|%}, st.V, |ailly < To. (@)
To solve for the other variable «, we must assume that D
is fixed. Equation (4) can be changed into the following
equation at this stage:

M

IX = Daflz- =Y llei — Dal|7 .
i=1

(&)

Hence, solving (4) is transformed into solving M repeated
decomposition steps, which is expressed in (5) above.
Therefore, (4) can be simplified as

min {||xl — Dai||?,} , 8.t Yo, [lagllg <To,1=1,2,.., M.
Q;
(6)

This equates to finding the sparse representation matrix of
the input signal x; on the dictionary D with sparsity 7p,
which can be solved using the previously mentioned OMP
approach.

Update the dictionary: The dictionary is updated using
atoms, with just one column of atoms being updated at a
time. Simultaneously, the sparse coefficient related to this
atom is modified, i.e., the atom’s contribution to the error
is cleared, and the remaining error matrix is deconstructed
using SVD. In light of the preceding considerations, (5) is

rewritten as follows:
2

IX — Da|7

K
X3 dyad
j=1 »

2

K
=|[[ X => djal | —diak
JEk r

| B — i

)

where d; represents the jth column of atoms in the dictio-
nary, o/f represents the jth row of the sparse matrix (the
jth column of the transpose matrix of the sparse matrix),
and when updating the kth atom, X — Zj;k djad is the
overall error that represents the sample signal when atom
dy, is not involved in the sparse representation. Thus, the
objective function is transformed to fix the other columns
of the dictionary D and locate the dj that minimizes the
overall error. To solve d, and o/jﬁ, we must decompose E
using the SVD method. We simply need to discover the
nonzero elements in a? and the corresponding columns of
the original sample signal using dj, to meet the decompo-
sition sparsity condition. By specifying the index group
wp ={i |1 <i< M, ak(i) # 0}, the K-SVD method
discovers the nonzero elements in o/%.. wy, is the index of the
nonzero elements in %, and the corresponding signal is
the sample signal that uses dj, for the sparse representation.
The contraction matrix 2, is defined as

1 (a,b) = (wk(l)’l)

Qi(a,b) = 0 else

®)

The reduced row vector, error matrix, and dataset matrix
are denoted by a’fz = a’%Qk, E,f = FE1Qy, and X,f =
X Qy, respectively, and (7) can be rewritten as

(| Exu — dkal}QkHi = || B - dw%”;- ©)]
For EfY, SVDisused as B} = UAVT.dy = U(:,1) and
ak =V (:,1) = A(1,1) are the updated atoms and their
sparse representation coefficients, respectively.

The JR-KSVD algorithm’s flowchart, which includes the
three steps listed above, is shown in Fig. 3, and the exact steps
are shown in Algorithm 2.

2) Difference Map Based on Cross-Reconstruction: The dic-
tionaries D and D5 obtained from the JR-KSVD algorithm
contain many textures and local features corresponding to the
original image, respectively; thus, we can use Dy a1 and Doas to
represent the reconstructed image, and when the error between
the reconstructed image and the original image is small, i.e.,
| X1 — Dian |3 < eand || Xs — D3 < €, the reconstructed
image can be approximated as the original image to be tested.
The reconstruction map can then depict the difference as the
change region of the two images. For the above idea, we use
cross-reconstruction to derive the change region of the two im-
ages. If the reconstructed signal X = D« is a close approx-
imation of the original image Y7, then the reconstructed signal
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Fig. 3. Flowchart of the JR-KSVD algorithm.

X{ = Djasisanunmodified image based on the original image
Y7. The difference between the two is the changed area of the im-
age. Similarly, X, = Dyas is a close approximation of the orig-
inal image Y5, and X/ = Dy« can be considered an unchanged
image based on the original image Y5. The difference maps of
the two photos can then be represented using both X| — X =
Dyay — Dyag and X)) — X = Dyag — Daavy. To reduce the
interference caused by random mistakes, the difference images
DI_image are represented by the average of the two

(Xi - X7) + (X5 - X3)

5 (10)

DI_image =

Because the difference map obtained by subtraction can better
describe the variation region, while the ratio map obtained by
the ratio can better suppress disturbances in the invariant region,

we can obtain the ratio signals % = Dyay /Dy and % =
1 2
Dyaa/ Doavy as well as the corresponding ratio map DR_image
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B. Iterative Adaptive Threshold Optimization of Differential
Images

The ultimate result of change detection is provided as a binary
image, while the difference and ratio maps acquired in the
previous section are grayscale images, which are reviewed in
this section along with how to convert them into binary images.
When converting a grayscale image to a binary map, a threshold
value is used to segment the grayscale range, and the threshold
value chosen has a direct impact on the detection effect. Human
adjustment is frequently used to compare the changing image
created by different thresholds with the true value image to find
and filter the optimum threshold. This, however, necessitates
prior knowledge, i.e., the truth map, and can be time-consuming.
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Algorithm 2: JR-KSVD algorithm steps.
input: Original dataset X = {x;};=1,2; Initialize the
number of iterations () and dictionary D4 and Ds; The
number of iterations g = 1;

output: Dictionary D and sparse code vy, ava;

1:  Compute the joint correlation and solve the
differentiated structure dictionary D from the initial
dictionary with (2);

2:  Sparse coding using the OMP algorithm to find the
approximate solution of X with (3);

3: Find the index setwy, = {i | 1 <i < M, a% # 0} that
uses atom dy, to be updated,

4. Calculate the overall signal error
Ey =X =3, djor and convert it to Ef =

1 (a,b) = (wk(i), )
0 else ’

EyQy, where Qp(a,b) = {

5:  Decompose matrix E,f" by the SVD algorithm,
ER =UAVT;

6: Update the current atom and its corresponding sparse
representation coefficient
dp, =U(;,1), ak=V(,1)*A(1,1);

7:  Loop through Steps 3— 6 until all atoms have been
updated;

8:  Loop through the operations in Steps 2—7 until the
number of iterations g = Q.

As a result, we offer the IATO method to solve this problem.
The algorithm creates a fused image based on the properties
of differential and ratiometric images, applies the classic 1-D
and 2-D Otsu thresholding segmentation algorithm to iteratively
optimize the threshold values within a given range, and finally
generates a segmented change detection image. The overall
flowchart of the IATO algorithm is shown in Fig. 4.

1) Design and Segmentation of Fusion Images: In the previ-
ous section, we discussed how to obtain a difference image and
a ratio image from the reconstructed signals, i.e., the DI_image
and DR_image signals in the flowchart, and we can now use
these two signals to build a fusion function to obtain a fused
image for iterative threshold segmentation. The gray value of
each pixel in a difference image represents the difference be-
tween the corresponding pixels in the two original images, and
the difference range is (—255, 255). The ratio range between the
values of the pixels in a ratio image is (0, +00). The absolute
value of the gray value of the difference image is taken, and
the larger the absolute value is, the more likely the region will
change; similarly, the closer the elemental value of the ratio
image is to 0 or +o0, the more often the associated region will
change. To take advantage of this nonlinear relationship in the ra-
tio image for threshold selection, we constrained the logarithmic
function for pixels with elemental values in the range (0,1) and
the exponential function for pixels with elemental values in the
range (1,400). This increases the grayscale value difference
between the shifting and invariant regions, making threshold
selection easier while lowering threshold selection sensitivity
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Fig. 4. IATO algorithm flowchart.

and enhancing fault tolerance. The following equations describe
differential and ratiometric image processing, with DI_sig and
DR_sig representing the processed differential and ratiometric
signal maps, respectively

DI_sig =| DI_image | (12)

| 1g (DR_image) |, DR_image C (0,1)
ePRmage=1 1 DR_image C (1, +00).
(13)

DR_sig = {

As shown in Fig. 4, the differential signal DI_sig must be
fed into the 1-D Otsu threshold function to obtain the initial
threshold DI_T, which is the fusion function’s initial parameter.
For the fusion function, we first roughly categorize pixels in
the differential image with gray values greater than DI_T as
change regions and then execute differential-ratio fusion on
pixels with gray values less than DI_T to generate a new gray
value corresponding to that pixel’s location. P, denotes the fused
image. The fusion function is shown as follows:

P; = DI_sig x DR_sig® s.t. | Py |<255.  (14)

2) Iterative Adaptive Threshold Optimization: The fused im-
age generated by the fusion function is used as a new grayscale
image and requires threshold selection and binarization seg-
mentation to obtain the change detection image. To acquire the
threshold for iteration and the evolving image segmented by the
threshold, the first-generation fusion image is fed into the 2-D
Otsu threshold segmentation method. The 2-D Otsu method and
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Fig. 5. Two-dimensional statistical histogram.

its implementation in the IATO algorithm are described below.
The 2-D Otsu algorithm for noise suppression is more powerful
than the 1-D Otsu algorithm because it considers the distribution
of pixel gray values as well as the average gray values of neigh-
boring pixels to form a 2-D vector, and the optimal threshold
is set when the trace of the interclass dispersion matrix is at its
maximum. Assume f(x,y) is the original image’s gray value
for pixel (z,y), g(z,y) is the gray average of pixel (z,y) after
K x K mean filtering, U is the total number of gray levels, and
N is the sum of all pixel points. Let f(z,y) =i, g(z,y) = j,
and (4, j) refer to the number of pixel points V;; in the image.
The probability that the pixel point appears is

Q

-1U-1
P N, Dij =
j=0

15)

s
I

o
<.

Givenanarray (¢, s) and a2-D statistical histogram, let ¢ be the
horizontal coordinate representing a pixel’s gray value, and let
s be the vertical coordinate indicating the average gray value of
a pixel’s neighborhood. Parts A and C represent the background
and foreground, respectively, in the 2-D histogram, which is
divided into four parts: A, B, C, and D. The gray value of the
pixel at B is significantly larger than the neighborhood’s average
gray value, suggesting that it is a noise point, whereas the gray
value of the pixel at D is much lower, indicating that it is an edge
point. Fig. 5 is a 2-D statistical histogram. The probabilities of
the background and target classes occurring, along with their
associated mean vectors, are wg, w1, fo, and p1. The overall
grayscale mean vector of the image is ur, where wy + wy ~ 1;
then

t—1 s-1 U-1U-1
wo= )Y pijwi= > > pi (16)
=0 j=0 i=t j=s
T
t—1 s—1 ’Lp t—1 s—1 jp
(3
o = (poi, Mo; wwv o ! a7
i=0 j=0 0 i=0,=0 0
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T
U-1U-1 i L-1L-1 ipi
H1 = (Nli;,ulj)T = Z <, Z = (18)
- wr ~ - w1
1=t j=s 1=t j=s
T
L-1U-1 U-1L-1
pr = (pra pry)’ = ipij, jpiy | - (19)
=0 j7=0 i=0 j7=0
The interclass dispersion matrix is defined as follows:
V(s 1) = wo [(/io — pir) - (o — MT)T}
+wy {(/ﬂ — pr) - (1 — ,UT)T}
=wo (o — pr)’ +wi (1 — pr)?. (20)

Interclass dispersion is gauged by the dispersion matrix trace,
and when the trace reaches its maximum value (¢, §), it indicates
an optimal segmentation threshold

Tr(V(t,5)) = wo ((MOi — piri)® + (poj — MTj)Q)
+ w1 ((Hu - /m)2 + (Mlj - N’Tj)2>

(i — wopri)® + (g — wopry)?
= (21)
wo (1 — WO)

Tr(V(t,3))=max(Tr(V(t,

5))),0<s<U—-1,0<t<U-L.
(22)

In general, the threshold values # and § are near each other and
can be used as the selected thresholds for image segmentation.
The threshold value 7 indicates the gray value of a pixel at a
location, and the threshold value § represents the gray value in
the vicinity of that pixel. We stretch and normalize the values of
the 2-D Otsu threshold segmentation function using the fused
image P, created in the previous section, which stretches the
pixel values of the points that were originally considered coarse
change regions and then normalizes all of the pixel values to
the interval range of (—255, 255). Following the calculation of
the 2-D thresholding function, we construct a new threshold that
may differ from the initial threshold discussed in the previous
section, where a larger difference indicates a higher risk of
false positives (FPs) in image segmentation. Thus, the new
threshold is utilized as an input to the fusion function to cycle
the segmentation once more, and the threshold change range is
gradually reduced until it is stable. The change detection image
obtained by using stabilized threshold segmentation is the final
result map.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Dataset Description

A total of six sets of dual-temporal SAR images were used
in the experimental part of this study, and preprocessing, such
as alignment and correction, was performed before testing. We
organized the six sets of experimental data into a table for
convenience, as shown in Table II. Figs. 611 show these six
sets of experimental data, where (a) and (b) are images taken at
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TABLE IT
DATASET DESCRIPTION

Dataset Sensor Timel Time2 Pixel
Ottawa Radarsat-1 July 1997 August 1998 290 x 350
Bern ERS-2 April 1999 May 1999 301 x 301
Yellow River Radarsat-2 June 2008 June 2009 256 x 288
Mexico Landsat-7 April 2000 May 2002 512 x 512
Guangdong TerraSAR-X ~ May 2010 December 2010 1180 x 1080
Shanghai TerraSAR-X  July 2020 August 2020 1050 x 1050

(b)

Fig. 6. Dual time (a), (b) phase images and (c) the reference image from the
Ottawa area. (a) In July 1997. (b) In August 1998. (c) Ground truth.

(b)
Fig. 7. Dual time (a), (b) phase images and (c) the reference image from the
Bern area. (a) In April 1999. (b) In May 1999. (c¢) Ground truth.

(b)

Fig. 8. Dual time (a), (b) phase images and (c) the reference image from the
Yellow River area. (a) In June 2008. (b) June 2009. (c) Ground truth.

Fig. 9.
Mexico area. (a) In April 2002. (b) June 2003. (c) Ground truth.

Dual time (a), (b) phase images and (c) the reference image from the
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Fig. 10.  Dual time (a), (b) phase images and (c) the reference image from the
GuangDong area. (a) In May 2010. (b) In December 2010. (c) Ground truth.

(@ (®

Fig. 11.  Dual time (a), (b) phase images and (c) the reference image from the
Shanghai area. (a) In July 2020. (b) In August 2020. (c¢) Ground truth.

TABLE III
RELATIONSHIPS BETWEEN THE DETECTION ACCURACY AND PARAMETERS R
AND S
Dataset r s PCC Kappa Time (s)
31 09815 0.9298 2,952
Ottawa 4 2 009814 0.9294 209
5 1 09698 0.8892 2,876
6 2 009521 0.8151 213
31 09650 0.8735 1,521
Yellow River 4 2 09647 0.8730 116
5 1 09557 0.8505 1,362
6 2 09401 0.7864 117

different periods, and (c) is the corresponding change reference
image [ground truth (GT) image].

B. Parameter Settings and Evaluation Metrics

1) Analysis of Parameters: There are five adjustable parame-
ters in this experiment, namely, the sliding window size r (atomic
feature number -2), the sliding distance s, the number of atoms
(dictionary size) K, the number of iterations, and the coefficient
of cooperation, of which 7 and s are the most important factors
affecting the detection effect. Therefore, in this article, these two
parameters are tested to select the value with the best-combined
effect. To ensure the suitability of the sliding window and sliding
distance, the experiments are set to have both odd and even
numbers. The detection findings and times for the four sets of
sliding windows and sliding distances corresponding to r = 3
s=1,r=4s=2,r=5s=1,andr = 6 s = 2 on the Ottawa
and Yellow River datasets are shown in Table III.

The table shows that the detection effect decreases as the
sliding window and sliding distance increase. Although the de-
tection accuracy is slightly lower when » = 4 and s = 2 is used
instead of » = 3 and s = 1, the time consumed is substantially
reduced, even less than one-tenth of the latter. Taking both time
and accuracy into account, this article recommends r» = 4 and
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ROC curves in Ottawa region

ROC curves in Bern region
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ROC curves in Yellow River estuary region
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Fig. 12.  ROC curves for the six datasets.

s = 2. For the dictionary size K, if it is set too small, such as
K = 128, itcannot capture all the features in the image, resulting
in a significant reduction in the detection of edges and details; if
itis set too large, such as K = 512, feature redundancy becomes
a problem, and the detection time greatly increases. Thus, the
dictionary size is set to /' = 256 in this experiment. The number
of iterations and the coefficient of cooperation are adjusted at
1 and 5, respectively, based on experience from a prior study to
balance the detection accuracy and detection time.

2) Evaluation Metrics: The false negative number (FN), FP,
total number of mistakes (OE), percentage correct classification
(PCC), and kappa coefficient are all evaluation indices for the
SAR image change detection performance.

1) The FN metric indicates the number of samples that are

judged to be negative but are in fact positive.

2) The FP metric indicates the number of samples that are

judged to be positive but are in fact negative.

3) The OE metric indicates the total number of pixels with
detection errors, i.e., the sum of FN and FP.

OF =FP+ FN. (23)

4) The PCC metric shows the ratio of the number of correctly

detected pixels to the total number of pixels, where N

represents the total number of pixels; i.e.,
TP+TN TP+TN
PCC = = . (24
TP+ FP+TN+FN N 24)
5) The kappa coefficient is a consistency test and a measure-

ment of classification accuracy that is usually bounded
between (—1,1) or (0,1). The better the classification
accuracy is, the closer the kappa coefficient is to 1. The

kappa coefficient is computed as follows: (Nu = number
of true unaltered pixels and /N ¢ = number of true changed

pixels)

Nu=FP+TN,Ne=FN+TP (25)
TP+ FP)N FN +TN)N

PRE:( + FP)Nc+ ( +TN)Nu 26)

N2
PCC — PRE
K B 2
appa T_PRE 27

C. Comparison and Discussion of the Experimental Results

For the change detection of SAR images, our work primarily
presents the JR-KSVD algorithm for dictionary initialization
and the TATO algorithm for threshold selection. The effects of
these two factors on the final detection findings are discussed
as follows, along with the experimental result graphs and data
comparison tables to illustrate the efficacy of the approach
described in this work.

1) Analysis of the JR-KSVD Ablation Experiment: First, we
compare and describe the performance of the K-SVD and
JR-KSVD methods at the same threshold using receiver op-
erating characteristic (ROC) curves. The higher the detection
accuracy is, the closer the area under the curve (AUC) of the
ROC curve is to 1. As shown in Fig. 12, the AUCs for the JR-
KSVD method, represented by the red circle, are all greater than
those for the K-SVD algorithm, represented by the blue circle,
indicating that JR-KSVD has better detection performance at
the same threshold setting.

In addition, we verify the performance of the JR-KSVD
algorithm from another aspect and briefly illustrate it using the
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Fig. 13.
algorithm. (e)—(h) Image segmentation results corresponding to the K-SVD
algorithm. (The thresholds set are 100, 150, 200, and 250.).

(a)—(d) Image segmentation results corresponding to the JR-KSVD

TABLE IV
CHANGE DETECTION RESULTS OF JR-KSVD AND K-SVD

Methods Ottawa Bern
PCC(%) Kappa(%) | PCC(%) Kappa(%)
JR-KSVD 98.14 92.94 99.67 87.21
KSVD 97.86 92.72 99.41 87.03

Ottawa region as an example. Fig. 13 shows the reconstructed
images obtained using the JR-KSVD and K-SVD algorithms and
thresholding them to detect images (segmentation thresholds of
100, 150, 200, and 250), where the two images in each column
correspond to the same threshold. We can see that when the
threshold value is in the (100, 150) interval, the region that is
mistaken for a changing area is smaller when detected by the
JR-KSVD algorithm than that detected by the K-SVD method,
and the spot noise is also less. The area detected by the JR-KSVD
algorithm is broader when the threshold value is in the interval
of (150, 250), suggesting that the detection effect is better for
some edge points or areas with tiny range changes, and the area
image is closer to the real changing image. Therefore, we infer
that the true segmentation threshold of the Ottawa area should be
approximately from 100 to 150 based on the above four groups
of comparison images.

Next, we discuss the effectiveness of the JR-KSVD algorithm.
As demonstrated in Table IV, the JR-KSVD algorithm improves
PCC on the Ottawa and Bern datasets by 0.28% and 0.26%,
respectively, whereas kappa values improve to varying degrees.
This indicates that the JR-KSVD algorithm, which improves on
the K-SVD technique, performs better in detecting SAR image
changes.

2) Analysis of the IATO Ablation Experiment: Now, we dis-
cuss how well the IATO algorithm works. The IATO method
described in this research may be used to establish segmen-
tation thresholds and, eventually, modify images without hu-
man intervention. The correct segmentation threshold for the
Ottawa region, based on the foregoing, should be in the range
of (100,150). To test the IATO algorithm’s performance, we set
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Fig. 14.  Relationship between the PCC and threshold on the Ottawa dataset.

the segmentation thresholds to 100, 110, 120, 130, 140, and 150
to ascertain the real threshold values.

As shown in Fig. 14, the PCC corresponding to the threshold
value set to 140 is 98.10%, which is the closest to the detection
result of the IATO algorithm whose segmentation threshold is
139 and the PCC is 98.14%, with almost no difference between
the two, demonstrating the reasonableness and accuracy of the
threshold value generated by the IATO automation.

3) Analysis and Discussion of All Experimental Results: A
binarized image is the end result of change detection; hence, an
appropriate threshold for segmenting the sparsely represented
image should be selected, as the threshold selection accuracy has
a direct impact on the change detection results. In this section,
the IATO algorithm results based on the JR-KSVD algorithm
are shown, and various techniques of change detection are com-
pared to assess their benefits and drawbacks. A K-means-based
change detection algorithm for SAR images (K-means) [39],
[40], change detection method based on C-means clustering of
trimmed fuzzy local information (RFLICM) [41], sparse autoen-
coder (SAE) and fuzzy c-means (FCM) clustering change de-
tection algorithm (SAEFCM) [42], scale invariant feature trans-
form (SIFT) feature point-based change detection algorithm
(SIFT) [43], robust unsupervised small area change detection
from SAR imagery using deep learning (RUSACD) [44], SAR
image change detection via a Siamese adaptive fusion network
(SAFNet) [45], automatic change detection in synthetic aperture
radar images based on a PCA network (PCANet) (GaborP-
CANet) [46], and change detection from SAR images based
on neighborhood-based ratio and extreme learning machine
(NRELM) [47] are compared with the methods proposed in this
article.

In this experiment, the six datasets are divided into two
categories according to their size, where images 6—8 represent
the smaller pixel datasets and are also the three most commonly
used experimental datasets in the change detection field, which
we call Class A datasets, while images 9-11 represent the
larger pixel datasets and are also the newer datasets, which
we call Class B datasets. To reflect the experimental rigor, we
performed eight sets of comparative experiments on the Class
A dataset, and the experimental methods cover different types
of supervised and unsupervised learning. Based on this, we se-
lected four groups of better algorithms evaluated on the Class B
dataset to verify the strengths, weaknesses, and robustness of
the algorithms. To show the detection performance of different
algorithms more intuitively, the detection images with better
results in the comparison experiments are compared with the
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TABLE V
COMPARISON OF PERFORMANCE INDICATORS IN THE OTTAWA AREA

Method FN FP OE PCC Kappa

K-means 2,682 272 2,954 0.9709 0.8884
RFLICM 2,530 166 2,696 0.9734 0.8939
SAEFCM 1,410 1,044 2,454 0.9760 0.9109
SIFT 3,437 612 4,049 0.9601 0.8465

RUSACD 5,213 240 5,453 0.9659 0.8611

SAFNet 834 819 1,653 0.9837 0.9388
GaborPCANet 984 996 1,980 0.9812 0.9252
NRELM 1,092 812 1,904 0.9813 0.9264
Proposed 1,168 719 1,887 0.9814 0.9294

Fig. 15.
(b) RFLICM. (c) SAEFCM. (d) SIFT. (e) RUSACD. (f) SAFNet. (g) Gabor-
PCANet. (h) NRELM. (i) Proposed. (j) GT.

Change detection results on the Ottawa dataset. (a) K-means.

method proposed in this article and the GT in detail, where
the red circles outline the places with large discrepancies from
the GT, and the yellow circles outline the noise points.

For the Class A dataset, we discuss the detection results for the
Ottawa, Bern, and Yellow River regions. The detection metrics of
the nine experimental methods in the Ottawa region are given in
Table V. From the table, we can see that the SAFNet [Fig. 15(f)]
algorithm corresponds to the best detection metrics, i.e., it is the
closest to the GT, and the detection effect has been improved
compared with the algorithm proposed in this article. From
Fig. 15, we can see that the red circle in Fig. 15(f) is closer
to the GT map than that in Fig. 15(i), with better detail and edge
processing; in addition, the yellow circle in Fig.15(i) has more
speckle noise than that in Fig. 15(f), which is not found in Fig.
15(). As a result of these two findings, the detection results
of the proposed algorithm are somewhat worse than those of
the SAFNet algorithm, but compared with the remaining seven
algorithms, our algorithm still has some advantages.

Similarly, the detection metrics of nine experimental methods
inthe Bernregion are given in Table VI, from which it can be seen
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TABLE VI
COMPARISON OF PERFORMANCE INDICATORS IN THE BERN AREA

Method FN FP OE PCC Kappa
K-means 482 9 491 0.9946 0.7691
RFLICM 257 113 370 0.9951 0.8009
SAEFCM 171 145 316 0.9961 0.8530
SIFT 237 371 605 0.9933 0.7398
RUSACD 402 93 495 0.9945 0.7499
SAFNet 110 259 369 0.9959 0.8478
GaborPCANet 496 23 519 0.9942 0.7148
NRELM 177 128 305 0.9965 0.8634
Proposed 173 124 297 0.9967 0.8721

Fig. 16. Change detection results on the Bern dataset. (a) K-means.
(b) RFLICM. (c) SAEFCM. (d) SIFT. (e) RUSACD. (f) SAFNet. (g) Gabor-
PCANet. (h) NRELM. (i) Proposed. (j) GT.

TABLE VII
COMPARISON OF PERFORMANCE INDICATORS IN THE YELLOW RIVER AREA

Method FN FP OE PCC Kappa
K-means 3,498 1,688 5,186 0.9302 0.7601
RFLICM 1,335 9,765 11,100 0.8506 0.6766
SAEFCM 11,863 840 12,703 0.8290 0.5626
SIFT 5,029 5 5,034 0.9322 0.7322
RUSACD 2,292 181 2,473 0.9381 0.7677
SAFNet 3,245 602 3,847 0.9478 0.8102
GaborPCANet 1,707 1,842 3,549 0.9519 0.8390
NRELM 3,687 755 4,442 0.9398 0.7789
Proposed 1,038 1,809 2,847 0.9646 0.8730

that the NRELM [Fig. 16(h)] algorithm has the best detection
results, except for the algorithm proposed in this article. Graph
16 shows that the red circle in Fig. 16(h) is more similar to that
in Fig. 16(i), but the edge in Fig. 16(i) is closer to the GT map;
however, it is apparent that there is some speckle noise in the
yellow circle in Fig. 16(i) but notin Fig. 16(h) and (j). Combining
both of these findings, the speckle noise has less influence on the
overall result; thus, the detection result of this article’s algorithm
is slightly improved over that of the NRELM algorithm.
Finally, we analyze the third set of data in the Class A dataset.
The nine detection results on the Yellow River dataset are given
in Table VII, from which the best two sets of experimental results



5246

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE VIII
COMPARISON OF PERFORMANCE INDICATORS ON THE CLASS B DATASET

Dataset Method FN FP OE PCC Kappa
RUSACD 6,642 402 7,044 0.9731 0.8289

SAFNet 1,495 7,504 11,100 0.9575 0.7199

Mexico GaborPCANet 4918 699 5,617 0.9786 0.8687
NRELM 2,620 1,217 3,837 0.9854 0.9148
Proposed 1,607 1,696 3,033 0.9870 0.9152

RUSACD 20,426 12,119 32,545 0.9757 0.7082

SAFNet 23,942 9,902 33,844 0.9734 0.6819

Guangdong  GaborPCANet 1,749 13,611 15,360 0.9767 0.8701
NRELM 29,969 7,668 37,637 0.9705 0.6196
Proposed 1,578 11,154 12,741 0.9788 0.8714

RUSACD 31,601 25,596 67,197 0.9209 0.6585

SAFNet 7,698 54,684 62,382 0.9434 0.7643

Shanghai GaborPCANet 10,638 103,841 114,479 0.8599 0.5055
NRELM 23,924 68,245 92,169 0.9164 0.5979
Proposed 6537 20243 36600 0.9601 0.8419

Fig. 17. Change detection results on the Yellow River dataset. (a) K-means.
(b) RFLICM. (c) SAEFCM. (d) SIFT. (e) RUSACD. (f) SAFNet. (g) GaborP-
CANet. (h) NRELM. (i) Proposed. (j) GT.

correspond to the GaborPCANet [Fig. 17(g)] algorithm and
the proposed [Fig. 17(i)] algorithm in this article. Observing
Fig. 17(g) and (i), we find that the red circle in Fig. 17(g)
is disconnected, while it is continuous in Fig. 17(i) and (j);
additionally, there is more speckle noise in the yellow circle
part in Fig. 17(g), while there is almost nothing in Fig. 17(i).
Thus, based on the advantages of these two aspects, the algo-
rithm in this article has a relatively large improvement over the
GaborPCANet algorithm.

Combining the eight comparison experiments for the above
three datasets, we find that the better detection algorithms cor-
responding to each dataset are different, which indicates that the
algorithms only have superior results for one or a few datasets.
However, in general, the detection results of the RUSACD,
SAFNet, GaborPCANet, and NRELM algorithms are better than
those of the other four algorithms. Therefore, we use these four

Fig. 18. Change detection results on the Mexico dataset. (a) RUSACD.
(b) SAFNet. (c) GaborPCANet. (d) NRELM. (e) Proposed. (f) GT.

sets of comparative experiments to conduct experimental tests
on the Class B dataset for further comparison with the algorithm
proposed in the article.

Figs. 18-20 are the detection results and GT maps of the
Class B dataset under five experiments, and Table VIII shows
the detection indexes that correspond to them. As seen in the
table, in the Mexico region, the NRELM [Fig. 18(d)] algo-
rithm corresponds to a better detection effect and is closest
to the detection index of this article. The main shortcomings
are reflected in the lack of clear texture detection in the red
circle in the figure and the higher amount of speckle noise in
the yellow circle. For the detection results in Guangdong and
Shanghai, we can see in Figs. 19 and 20 that both have the
problem of “more change areas, smaller areas, and scattered
distributions,” which lead some algorithms to mistake smaller
change areas as speckles [Figs. 19(a) and 20(a)] or to detect
smaller unchanged areas as changed areas together with the
changed areas around them, resulting in patches of changed
areas [e.g., Fig. 20(c) and (d)]. However, similar to the Class A
dataset, the corresponding superior detection algorithms (other
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(d)

Fig. 19. Change detection results on the Guangdong dataset. (a) RUSACD.
(b) SAFNet. (c) GaborPCANet. (d) NRELM. (e) Proposed. (f) GT.

) ‘ @) ®

Fig. 20. Change detection results on the Shanghai dataset. (a) RUSACD.
(b) SAFNet. (c) GaborPCANet. (d) NRELM. (e) Proposed. (f) GT.

than the algorithm in this article) are different for the Guang-
dong and Shanghai regions, as indicated by the GaborPCANet
algorithm and the SAFNet algorithm, respectively, but both
have slight shortcomings compared to the algorithm proposed
herein.

Combining the above two types of datasets, A and B, the
algorithm proposed in this article has a better detection effect
and robustness in the rest of the datasets, except that its detec-
tion effect on the Ottawa dataset is slightly less than that of
the SAFNet algorithm, which also indicates that the proposed
algorithm has a more stable detection effect for SAR images of
different sizes and compositions and is more universal.

4) Computational Complexity Comparisons: Finally, we
discuss the time consumed by each technique and utilize the
GaborPCANet approach, which has received much attention
in recent years, as a baseline for comparison. The detection
times of the algorithm proposed in this research and the other
four algorithms are shown in Table IX, and the findings show
that the GaborPCANet approach takes the longest time but
has higher accuracy. This is because the PCANet and later the
SVM classifier are trained using more samples. The NRELM
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TABLE IX
COMPUTING TIME OF DIFFERENT METHODS ON OTTAWA, BERN AND YELLOW
RIVER DATASETS

Runtime(s)
Method Ottawa Bern Yellow River
GaborPCANet [46] | 2974.61  1901.73 2899.18
RUSACD [44] 890.78 458.53 508.63
SAFNet [45] 1120.35 843.10 799.24
NRELM [47] 11.71 6.79 5.23
Proposed 209.12 171.26 117.58

method, on the other hand, is less effective in detection despite
taking the least amount of time due to its lack of training.
Overall, the unsupervised learning algorithm described in this
study outperforms better performance in terms of both detection
accuracy and detection time.

IV. CONCLUSION

We proposed the JR-KSVD algorithm to increase the quality
of sparse representation and the IATO technique to automatically
obtain the best segmentation thresholds in our investigation
of SAR image change detection, and we integrated these two
techniques with cross-reconstruction theory. The JR-KSVD al-
gorithm, for example, focuses on improving the dictionary used
in the K-SVD algorithm’s initial iteration, which reduces the in-
stability of sparse coding caused by the high correlation of atoms
and sharpens the edges and details of reconstructed images. In
addition, the IATO algorithm, through several iterations of the
reconstructed image, continuously reduces the threshold range,
while still retaining the accuracy of the reconstructed image
and finally binarizes the reconstructed map by the automatically
generated threshold to obtain a detection result map close to the
GT. From the experimental results, it can be concluded that with
our algorithm, increased detection accuracy and consistency
results are achieved when compared to the results of previous
algorithms, and our results are also less affected by speckle
noise. Although this study obtained strong results in SAR image
change detection, it still has several flaws, the most notable of
which are as follows.

1) The JR-KSVD algorithm suggested in this article is an im-
proved version of the K-SVD algorithm, but its efficiency
is not much improved. Since learning and training a new
initialization dictionary for each sample set is still needed,
the JR-KSVD algorithm does not improve the detection
rate. However, it decreases the detection rate to a certain
extent when the image to be detected is quite large.

2) The IATO algorithm achieves accurate thresholding by
continuously generating thresholds and constraining the
reconstructed image. However, for each iteration, an im-
age constraint and a threshold estimation are performed.
As a result, the iterative process is relatively tedious, and
the detection accuracy decreases with the increase in the
number of iterations.

3) Due to the lack of a large quantity of experimental data,
only three common datasets and three new datasets were
tested in this article for comparison experiments.
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For future research, we believe that we can start by improving
the efficiency of threshold iteration, continuously optimizing
the threshold constraint function, and reducing the number of
iterations as much as possible, greatly shortening the time used
for image segmentation. Although the algorithm proposed in
this article still has much improvement potential, it nevertheless
succeeds at reasonably improving the quality of SAR image
change detection and motivates some suggestions and possible
research directions for future research in the area of unsupervised
change detection.
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