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MRSE-Net: Multiscale Residuals and
SE-Attention Network for Water Body
Segmentation From Satellite Images

Xinyu Zhang, Jinjiang Li

Abstract—Automatic extraction of water bodies from various
satellite images containing complex targets is a very important and
challenging task in remote sensing and image interpretation. In
recent years, convolutional neural networks (CNNs) have become
an important choice in the field of semantic segmentation of re-
mote sensing images. However, generic CNN models present many
problems when performing water body segmentation, such as: 1)
blurred water body boundaries; 2) difficulty in accommodating
different scales of rivers, often losing information about many
small-scale rivers; and 3) a large number of trainable parame-
ters. This article proposes an end-to-end CNN structure based
on multiscale residuals and squeeze-and-excitation (SE)-attention
for water segmentation, called MRSE-Net. MRSE-Net consists
of an encoder-decoder and a skip connection, which captures
contextual information at different scales using the encoder, and
then passes the encoder feature mapping through the improved
skip connection, while localization is achieved by the decoder is
implemented. With the multiscale residual module, the number
of parameters in our model can be significantly reduced and water
pixels can be extracted accurately. The SE-attention module is used
to enhance the prediction results, mitigate the blurring effect, and
make the segmented water boundaries more continuous. Landsat-8
images are used to train our model and validate our proposed
method’s performance and effectiveness. In addition, we evaluate
our method on Landsat-7 and Sentinel-2 images and obtain the
best water segmentation results. Preliminary results on Sentinel-2
images show that the cross-sensor generalization capability of our
model is beyond the range of the Landsat sensor family.

Index Terms—Convolutional neural network (CNN), deep
learning, multiscale residual, SE-attention, satellite image analysis,
water body extraction.

1. INTRODUCTION

URFACE water refers to the general term for static and
dynamic water on the land surface and contains various
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solid and liquid water bodies, such as rivers, lakes, and glaciers.
Surface water is an important ecosystem on Earth, and although
it only accounts for 1.75% of the total global water storage,
it plays an important role in biological survival [1], climate
change [2], and the global water cycle [3]. With the increasing
urbanization and industrialization, the pollution and decline of
surface water are becoming more and more serious; therefore,
studying the spatial and temporal distribution of surface water
and accurately identifying its boundaries are of great signifi-
cance for sustainable human development [4], environmental
protection [5], and urban planning [6].

Even though surface water is so important for the Earth’s
ecosystem and human survival, our research on surface water
trends and area changes is very poor [7]. This is mainly because
our understanding of it relies mainly on manual surveys and
annotations, and although the results obtained are highly accu-
rate, the inspection period is long, real-time data are often not
available, and the labor cost is extremely high, which cannot
meet our growing practical needs for regional extraction of
water bodies. In recent years, with the development of the
space industry, the large-scale popularity of remote sensing
satellites, such as Landsat and Sentinel-I has provided us with
low-cost and reliable global remote sensing images, which can
be imaged in various terrain conditions by their being equipped
with high-resolution microwave sensors that are not disturbed
by day and night alternations and penetrate through thick clouds.

Remote sensing is a rapidly developing and widely used
technology that is time-sensitive and periodic [8], [9], its access
to information is less restricted by conditions, and it allows
simultaneous observation of large areas, and the land satellite
images we obtain through remote sensing can cover an area
of more than 30 000 km2, and many algorithms have been
developed to extract water bodies using remote sensing images.
In the early days, people mainly extracted water bodies by the
threshold method, in which the single-band threshold method
uses the low reflectance of water bodies in the near-infrared
band to determine a grayscale threshold that distinguishes water
bodies from other objects for water body extraction, which is
the simplest method for water body identification. However, this
method has limitations as it cannot distinguish water bodies from
mountain shadows when used in mountainous areas. The spec-
tral water index, on the other hand, fully considers the correlation
between different bands, and the mapping accuracy is relatively
high, plus the lower cost [10] makes it more widely used, among
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which, the normalized difference water index (NDWI) proposed
by McFeeters [11] is the first water body index, and the subse-
quent. There is also the modified normalized difference water
index (MNDWI) proposed by Xu [12] for the poor performance
of NDWTI in the face of buildings. In the past decades, many other
water indices have been proposed [13]-[15], but they perform
generally in the face of complex scenes that include shadows,
buildings, and thin clouds at the same time, and they all require
manual adjustment of thresholds, which can easily fall into local
optimal thresholds and not express the best results.

In addition, there are some more commonly used methods for
water body extraction, such as support vector machines [16],
[17], the active contour model [18]—-[20], the Markov random
field (MRF)-based model [21]-[23], and object-based classifica-
tion [24], [25]. However, traditional machine learning methods,
such as support vector machines and decision trees are based
on single-pixel points for recognition, which do not take into
account the connection between individual pixel points, and the
recognition accuracy is not very high. The active contour model
is sensitive to the initial position, and it is difficult to obtain the
initial position automatically. MRF-based methods are compu-
tationally intensive and difficult to apply to large-area images,
especially in remote sensing directions, and often result in many
small-scale image objects (pretzel noise) during segmentation.
Although object-based classification methods utilize texture and
spectral features in remotely sensed images, the determination
of the optimal scale for water body extraction and the selection
of features directly affect the accuracy of the final segmentation.
Overall, although these traditional water body extraction meth-
ods can effectively obtain water body information, the extraction
results have more serious pretzel noise and are susceptible to
complex environments, making them difficult to be applied to
large-scale automatic water body extraction globally.

In recent years, the update of hardware devices and the
emergence of large-scale datasets have driven the develop-
ment of deep learning, especially convolutional neural networks
(CNNs), which have improved the prediction accuracy by intro-
ducing the correlation between adjacent pixels in images into the
content recognition process through their unique perceptual field
mechanism, making them the mainstream methods in the field of
semantic segmentation. Among them, the full CNN-based [26]-
[28] and the encoder—decoder structure (U-type) [29]-[31] have
become two representative network structures in the field of
semantic segmentation of remote sensing images, especially the
U-Net, which has greatly outperformed the traditional methods
for water body segmentation [32], [33]. Dai et al. [34] proposed
a new edge-based loss function for the problem of boundary
detail loss in segmentation of the bilateral segmentation network
(BiSeNet) [35], which improved BiSeNet and improved the seg-
mentation accuracy. Li ef al. [36] added spatial pyramid pooling
(SPP) modules and attention modules to build a more robust PA-
U-Net water extraction network [37], reducing the probability
of false segmentation. Dirscherl et al. [38] used the atrous spa-
tial pyramid pooling (ASPP) module [39] extracted multiscale
features and improved the U-Net by combining shallow and
deep features using jump connections to improve the accuracy
of water extraction for Sentinel-1 and Sentinel-2. Ren et al. [40]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

©

Fig. 1. Scale variation of water bodies in remote sensing images. (a)—(c)
Examples of wider rivers, narrow rivers, and oval-like lakes captured by the
Landsat-8 remote sensing satellite, respectively.

proposed a dual-attention U-Net model (DAU-Net), which uses
a position attention module (PAM) and a channel attention mod-
ule (CAM) to improve the model’s characterization capability
and improves the accuracy of water body segmentation by 1%
compared to the original U-Net network.

In this article, we treat water body extraction as a binary
semantic segmentation task and use it to generate pixel-level
water body annotations by labeling each pixel point in our
adopted remote sensing images as water bodies and nonwater
bodies to generate binary masks, a step that is implemented by
Google Earth Engine (GEE) [41] and water body labels in the
Global Surface Water Dataset [42]. From this perspective, water
body extraction and semantic segmentation have the same goal
of assigning a label to each pixel point of the input image, which
belongs to a pixel-level object classification task, and semantic
segmentation techniques based on CNNs have been successfully
applied to many fields, such as medical image processing and
autonomous driving. Therefore, it is possible to use CNN-based
methods, which perform well in various semantic segmentation
tasks, for the water body extraction problem and obtain a good
result, which gives us a key basis for using CNN-based meth-
ods for water body extraction, and the increasing number of
CNN-based water body extraction methods [43]-[45] proposed
in recent years validates our view.

However, if generic CNN structures [fully convolutional net-
works (FCNs) [26] or U-Net [29]] are used directly for surface
water extraction without modification, poor prediction accuracy
and blurred water body boundaries often occur, accompanied
by visual degradation. Therefore, how to improve the prediction
accuracy and maintaining the accurate segmentation of water
body boundaries are two important problems faced by water
body segmentation of remote sensing images. In the remote
sensing image water body extraction task, we are interested in
segmenting various water bodies (lakes, rivers, glaciers, etc.)
from various forms of remote sensing images, however, these
objects of interest often have irregular and different proportions.
Asshownin Fig. 1, we find that the size of water bodies in remote
sensing images may vary greatly, from narrow or wide rivers to
oval-like lakes, which are very common in the global remote
sensing image water body extraction tasks.

After considering the above findings, if we want to get a sat-
isfactory prediction result, the CNN we use should be designed
to be able to analyze water bodies at different scales, and to
our knowledge, this problem has been solved in some well-
developed computer vision fields, such as medical image seg-
mentation, target detection, etc., butin the field of remote sensing
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Fig. 3. We propose a multiscale residual module. (a) Starting from an inception-like structure, 3 x 3,5 x 5, and 7 x 7 convolutions are used in parallel and

connected to generate the output. This allows our network to obtain spatial features at different scales. However, instead of using the 3 x 3,5 x 5,and 7 x 7
filters in parallel, (b) we decompose the 5 x 5 and 7 x 7 filters into a series of smaller 3 x 3 filters. (c) shows our multiscale residual module. To reduce the
number of parameters, we gradually increased the number of consecutive three 3 x 3 filters and added a residual connection using a 1 x 1 filter for dimensionality

maintenance.

image water body extraction, this problem is not well solved. The
problem has not been well solved in the field of remote sensing
image water extraction. In the early days, Serre ef al. [46] were
inspired by the visual modeling of human and primate vision by
the visual cortex to solve the multiscale variation in images by a
series of Gabor filters of different sizes. Later, Szegedy et al. [47]
innovatively proposed the inception network structure, in which
the inception module obtains information at different scales in
an image by using convolutional kernels of different sizes in
parallel, and later combines this feature information containing
different scales together and passes it deep into the network. And
Chen et al. [39] were inspired by SPP and proposed ASPP, which
similarly obtained different scales of perceptual fields by using
convolutional layers with different atrous rates. We found that in
the general semantic segmentation model U-Net, there are two
consecutive 3 x 3 convolutional layers, and it was demonstrated
in [48] that these two consecutive 3 x 3 convolutional operations
are equivalent to one 5 x 5 convolutional operation, so we use a

series of consecutive 3 x 3 convolutional layers instead of 5 x 5
and 7 x 7 convolutional layers and increase the number of filters
in each convolutional layer in turn, which can greatly reduce the
memory requirement and also get the multiscale information we
need in the image. Using larger convolutional kernels or pooling
layers with larger strides to obtain larger perceptual fields will
lead to too much computation and too much resolution loss,
respectively, and too much resolution loss will result in feature
information at the image boundaries not being utilized. Our
approach can be said to be the easiest way to obtain multiscale
spatial features from U-Net and ensure that the resolution does
not drop too much, which we name the multiscale residual
module (Fig. 3), and unlike the inception module, we obtain
multiscale information by concatenating convolutional layers in
series, rather than in parallel.

To obtain accurate and continuous water body boundaries
as well as to improve the prediction accuracy, we propose
an improved multiscale residual encoder—decoder network to
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effectively extract water bodies from images captured by remote
sensing satellites. Since the remote sensing images captured by
satellites contain rich feature information and scenes, there are
many redundant features, which greatly affect the model’s fea-
ture recognition ability for water bodies. To improve the ability
of the network to extract the most important key features for the
segmentation task based on the relationships between individual
features without increasing the model complexity and intro-
ducing new spatial dimensions, we incorporate a lightweight
squeeze-and-excitation (SE) attention mechanism [49], which
explicitly models the dependencies between individual channels
through a “feature recalibration” strategy. We believe that the SE
attention mechanism plays an important role for MRSE-Net in
the global remote sensing image water extraction task, and the
experiments in Section IV also demonstrate that the SE attention
mechanism improves the prediction accuracy. The bottleneck
layer with the highest number of channels in the network uses
a feature transformation module of our design instead of the
normal convolution layer to recover the missing information
through the residual block and enable the network to learn
feature information at the abstraction level, and also prevent
the gradient disappearance or explosion problem in the deep
network. The inception module or residual block is introduced
into the skip connection to alleviate the semantic gap between
the high-level encoder—decoder features at both ends of the skip
connection, and to help upsampling recover images with feature
information at a closer semantic level. In summary, the main
contributions of our work are summarized as follows.

1) We propose an end-to-end CNN-based water segmenta-
tion network based on multiscale residuals and SE atten-
tion. Unlike previous conventional methods, our approach
does not need to use the handcrafted features provided by
the domain knowledge, but automatically extracts features
through convolutional kernels at different scales, and this
part of the features is more robust compared to the feature
information obtained from a single convolutional layer,
and is more robust in terms of image size and context.

2) The multiscale residual module can extract deeper high-
level feature information and can analyze targets at dif-
ferent scales. Its combined application with the attention
mechanism can not only obtain spectral features, shape,
and texture features of water bodies but also capture the
differences between water bodies and nonwater bodies at
the pixel level.

3) Using the feature transformation module at the bottleneck
layer allows the network to learn more feature infor-
mation at the abstraction level, improving skip connec-
tions to alleviate the semantic gap between high-level
encoder—decoder features. The water extraction results
can be generated end-to-end by simply putting the re-
mote sensing images into our trained network, which is
more practical than the traditional methods with tedious
steps.

The rest of the work in this article is organized as follows.
Section II reviews the related work, Section III introduces our
proposed method (MRSE-Net), and Section IV gives the details
of the experiments. Finally, Section V concludes this article.
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II. RELATED WORK

A. Water Body Extraction Method

In the past decades, many methods have been proposed to
extract water bodies from remotely sensed images, among which
the most commonly used is still based on water spectral indices.
The NDWI proposed by McFeeters et al. [11] initiated this
method and played an inspirational role in a series of later
methods based on water spectral indices. It has the drawback
of being influenced by thin clouds and mountain shadows and
is difficult to be applied to complex environments for water
extraction. Xu et al. [12] replaced the near-infrared band in
NDWTI with the mid-infrared band and proposed the MNDWI,
which better highlighted the water features and suppressed the
noise of soil and vegetation, but it was also not very effective in
the face of shadows. To address the problem that the optimal
threshold in each image varies with time and geographical
location, Feyisa [14] proposed the automated water extraction
index (AWEI) to provide stable thresholds, but it does not
apply to targets with high reflectance. The manual selection
of the optimal threshold by commission and omission error
rate is tedious and inefficient, but it is faced by almost every
water spectral index-based method, and to overcome this lim-
itation, Guo et al. [50] proposed weighted NDWI (WNDWI),
which improves the overall accuracy (OA). The method based
on the water spectral index tends to misclassify turbid water
bodies and small water bodies in the shaded area, making it
difficult to perform large-scale high accurate water extraction,
and it is also a difficult task to choose the best threshold
value.

Subsequent studies have mostly addressed the problems
associated with water-based spectral indices, and Huang
et al. [24] proposed a two-stage machine learning-based water
extraction method for urban high-resolution remote sensing
images, first extracting water bodies from the pixel level and
then further identifying them from the object level, using both
water/shadow/vegetation indices as well as geometric and tex-
tural features. Essa efr al. [51] proposed a new hyperspectral
image feature extraction method that considered not only local
neighboring pixels in hyperspectral images but also neighboring
pixels in three consecutive bands, thus extracting rich contextual
information. Yao et al. [52] proposed an automatic urban water
extraction method (UWEM) that addressed the building shadow
effect in cities. However, although these newly proposed meth-
ods have higher accuracy and better water extraction, they are
only applicable to urban water extraction and are difficult to be
extended to scenes with different spectral and spatial features
on a global scale.

B. Encoder—Decoder Structure

In recent years, the emergence of graphics processing units
and large-scale datasets has driven the development of deep
learning, especially CNNs, and has been successfully applied to
various fields of remote sensing [53]. In the field of semantic seg-
mentation of remote sensing images, FCNs [54] and encoder—
decoder structures [43], [45], [55], [56] are the two of the most
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representative network structures. Lin ef al. [54] improved the
FCN by localizing in the shallow layer of the network and detect-
ing in the deep layer, achieving a compromise between accuracy
and feature representation capability in the FCN. Feng et al. [43]
combined superpixel segmentation and conditional random field
(CRF) to propose an enhanced deep convolutional encoder—
decoder network (DCED) for water body extraction from remote
sensing images, which is slightly more parametric than other
CNN-based water body extraction methods, although it effec-
tively suppresses the pepper noise and ensures the continuity
of the water body segmentation boundary. Tambe et al. [45]
proposed a W-Net based on the encoder—decoder structure for
water segmentation, where contextual information is obtained in
the encoder part and image recovery is achieved in the decoder
part, and the network parameters are reduced using the inception
module and the blurring effect is reduced using the refinement
module. Li et al. [55] proposed a novel deep CNN DeepUNet
for sea-land segmentation, replacing the convolutional layers in
the encoder and decoder with DownBlock and UpBlock, and
obtaining more accurate segmentation results.

In addition, these encoder—decoder-based network structures
have been widely used in other directions in remote sensings,
such as road segmentation [57], [58], classification [59], [60],
and building detection [61], [62]. This U-shaped encoder—
decoder structure can perform data enhancement by applying
random elastic deformation to the training images, which im-
proves the invariance and stability of the network and gives
good results even under the condition of small training samples.
Second, U-Net can identify irregular boundaries well, so U-Net
is widely used in various semantic segmentation. In this article,
we use U-Net for remote sensing image water body extraction,
but directly using it for remote sensing images with such a large
image size (even up to 300 million pixels) often does not get ideal
results. We find that it is difficult to capture the size variation of
different water bodies in remote sensing images with only 3 x 3
convolution in the network, so we design a multiscale residual
module to obtain multiscale information in the images. Then
we add the SE-attention module [49], which is used to improve
the classification accuracy and accelerate the convergence of the
network, and the feature transformation module, which helps the
network to obtain more abstract information at the bottleneck
layer, and finally, the skip connection is deepened and widened
using the inception module or the residual module, which helps
the decoder to recover the image better and finally obtain more
accurate water body extraction results.

III. PROPOSED METHOD

The images captured by remote sensing satellites contain rich
feature information and a large number of redundant features,
which greatly affect the model’s ability to recognize the features
of water bodies, and the size and shape of water bodies in remote
sensing images may vary greatly, which is very common in
the task of water body extraction from global remote sensing
images. To enable the model to better handle the scale variation
of water bodies in remote sensing images and to obtain accurate
and continuous water body boundaries as well as to improve
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TABLE I
MRSE-NET ARCHITECTURE DETAILS

MRSE-Net
Unit Level [ Layer(filter size)

Output size
512*%512%6
512%512%4

Input

Level 1 Conv2D(1*1)
Conv2D(3%3)
Conv2D(3*3)
Conv2D(3*3)
Conv2D(1*#1)
Conv2D(3*3)
Conv2D(3*3)
Conv2D(3%#3)
Conv2D(1*1)
Conv2D(3%#3)
Conv2D(3*#3)
Conv2D(3*3)
Conv2D(1*#1)
Conv2D(3*#3)
Conv2D(3*3)
Conv2D(3*#3)
Conv2D(1*1)
Conv2D(3*3)
Conv2D(3*3)
Conv2D(3*3)
Conv2D(3%#3)
Conv2D(3*3)
Conv2D(1*#1)
Conv2D(3*#3)
Conv2D(3*3)
Conv2D(3%#3)
Conv2D(1*1)
Conv2D(3*3)
Conv2D(3*#3)
Conv2D(3*3)
Conv2D(1*#1)
Conv2D(3*#3)
Conv2D(3*3)
Conv2D(3%#3)
Conv2D(1*#1)
Conv2D(1*#1)
Conv2D(1*#1)

Encoding

Level 2 256*256*16

Level 3 128*128*64

Level 4 64*64%256

Level 5 32%32%1024

Bridge Level 6 32%32%1024

Level 7 64%64%256

Decoding

Level 8 128*128*64

Level 9 256%256*16

Level 10 512%512%4

Output Level 11 512%512%1

the prediction accuracy, we propose an improved multiscale
residual encoder—decoder network to efficiently extract water
bodies from images captured by remote sensing satellites. In
this section, we detail the architecture of our proposed network
(Fig. 2 and Table I) and explore the multiscale residual module
that can improve the prediction accuracy and reduce the com-
putational complexity of the network.

A. MRSE-Net Architecture

The main body of our network consists of four parts: 1) multi-
scale residual downsampling module, 2) feature transformation
module, 3) multiscale residual upsampling module, and 4) an
improved skip connection. To keep the size of the feature maps
in the network consistent, we make the number of input and
output channels in each upsampling and downsampling module
multiply or divide by 4. In each multiscale residual module, we
use strided convolution to reduce the size of the input image
instead of max pooling, Springenberg et al. [63] stated that
using pooling works best when the network is shallow in-depth,
and conversely, using a convolution layer with a step size of 2
works best and will reduce the memory usage, where we use
convolution (step size 2) to save some of the convolution and
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pooling operations compared to the case of using convolution
(step size 1) plus a max-pooling layer. A constant feature map
size in the network is ensured by the above two steps, e.g., the
feature map sizes of the first and bottleneck layers are W x H x 4
and W/16 x H/16 x 1024, respectively. In each multiscale
residual downsampling module, the number of input channels is
first multiplied by 4, followed by a multiscale residual module to
extract features and reduce the image size. The multiscale resid-
ual upsampling module first consolidates the size W x H x C
feature information passed from the previous layer and sibling
skip connections into 2W x 2H x C/4 by a depth-to-space
transformation unit, followed by a multiscale residual module
to reduce the number of output channels and recover the image.

The bottleneck layer, as the location with the highest number
of network channels, is often needed to recover the missing
information after the downsampling operation, to learn the
feature information at many abstraction levels, and prevent the
gradient disappearance or explosion problem in deep networks,
we use residual blocks, a method proven effective in image en-
hancement [64]. To maintain a balance between computational
efficiency and memory usage, we define a feature transformation
module according to the setting of [65], which includes three sets
of residual modules (one set includes three residual blocks) to
perform feature learning.

In the input part of the network, we use one 1*1 convolutional
layer to accept input images of arbitrary size. Our input image is
a remote sensing satellite image with six bands, corresponding
to 6 channels of the input, but after a series of operations
of downsampling, the number of channels will reach 1536 in
the bottleneck layer, which greatly affects the memory usage.
Therefore, we reduce the output channels to 4 by convolutional
layers and place most of the trainable parameters in the layers
with high feature levels. Compared with a channel number of 6,
we reduce the memory usage by half by doing so, and we do not
use the ReLLU activation function after it to prevent excessive loss
of feature information to prevent the effect of the early channel
number reduction on the network. The final 1*1 convolutional
output layer of the network has a Sigmoid activation function
and is responsible for outputting the probability that each pixel
point in the final feature map is a body of water. The remaining
convolutional layers are followed uniformly by batch normal-
ization and the ReL.U activation function.

B. Structure of Multiscale Residual Module

Following AlexNet [66] winning the ImageNet competition
by a large margin in 2012, CNNs began to emerge, and gradu-
ally CNN models, such as GooglLeNet [47], ResNet [67], and
DenseNet [68] emerged, which greatly influenced the image
segmentation field and are currently the mainstream image seg-
mentation methods. Surface water segmentation, as a part of con-
ventional remote sensing image segmentation, also suffers from
large image size (images captured by Landsat are several orders
of magnitude larger than those in conventional segmentation
direction) and different sizes of segmentation targets (see Fig. 1).
To extract deeper high-level feature information and to analyze
targets at different scales, we propose a multiscale residual
module (as in Fig. 3), through a series of 3*3 convolutional
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layers which are concatenated to achieve the effect of simulating
convolutional layers of different scales. In this module, the input
of the latter layer is convolved by the previous layer operation,
which greatly reduces the number of parameters, and to some
extent avoids the memory computation overload and gradient
disappearance or explosion caused by the network being too
deep.

In surface water segmentation, we are interested in segment-
ing water bodies, such as lakes and rivers from waveband images
taken by remote sensing satellites under different topographic
and environmental conditions. However, in most cases, these
water bodies tend to have irregular and different scales, as
shown in Fig. 1, where we have demonstrated that the size and
shape of rivers and lakes vary greatly from region to region.
Therefore, the network should be able to analyze water bodies
at different scales, and although these problems have been well
addressed in other computer vision fields, to our knowledge, this
problem has not been well addressed in the direction of surface
water segmentation of remotely sensed images, where generic
network frameworks tend to focus only on improving accuracy
by increasing the depth of the network; until GoogLeNet revolu-
tionarily introduced the inception module, which obtains feature
information at different scales by using a series of convolutional
layers with different Kernel sizes in parallel and combining
them to increase the width of the network. Following inception’s
approach, the simplest way to get multiscale feature information
in U-Net is to use convolutional layers of 3*3, 5*5, and 7*7
kernel sizes in parallel at each layer, as in Fig. 3(a). However,
using 5*5 and 7*7 kernel size convolutional layers in parallel
in the network will greatly increase the memory requirement,
as mentioned in [48]; the feature information extracted from
adjacent layers of the neural network is correlated, so we fol-
low its idea by using multiple 3*3 convolutional layers with
smaller memory requirement instead of 5*5 and 7*7 kernel size
convolutional layers with higher memory requirement, and then
combine them by the concatenation operation, as in Fig. 3(b).
The outputs of two consecutive 3*3 and three 3*3 convolutional
layers are effectively close to those of 5*5 and 7*7 convolutional
operations, respectively, which reduce the parameters while
enhancing the nonlinearity, and the performance will be even
better.

However, the number of filters in the first convolutional layer
has a square effect on the memory requirement when multiple
convolutional layers are connected in series in this way [47], so
we reduced the number of filters in the first convolutional layer
(1/6, 1/3, and 1/2 of the number of output channels from the first
to the third, respectively), which greatly reduces the memory
requirement and prevents the network from computational col-
lapse at the early stage of training. In addition, inspired by [69],
we introduced residual connectivity and used a 1*1 convolution
to provide feature information at other scales, which we define
as a multiscale residual module, as shown in Fig. 3.

C. Structure of SE-Attention Module

Convolutional kernels obtain global information by learning
spatial and channel information in the local perceptual field;
however, it is very difficult to learn a large amount of feature
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Fig. 4.

information and perform well, and most of the earlier studies
have focused on improving spatial coding ability to improve
network performance, in this context, SE-attention [49] starts
from the perspective of feature channel information by explicitly
modeling the interdependence of its channels. Ultimately, the
SE-attention module does not increase the depth or width of
the network, but only leads to a slight increase in the number
of parameters, and the feature channel recalibration strategy
it employs can adjust the importance weights of each channel
according to the different levels of contribution of each channel
to the network; in general, the network can automatically obtain
new weights for each feature channel from the learned global in-
formation to enhance useful and suppress the redundant feature
channels. As shown in Fig. 2, we introduce the SE-attention
module in the last layer sampled on the network to make the
output feature channels more directional. The function of this
module is implemented in three main steps, the first step is to
obtain the global compressed feature amount of each feature
channel through the global average pooling operation, and the
second step obtains a new weight value corresponding to each
feature channel from 0 to 1 through the two fully connected
layers, and the last step. The feature channel recalibration func-
tion of the SE-attention module is implemented by multiplying
the new weight value with the 2-D matrix of the corresponding
channel of the initial feature map and using it as the next input,
see Fig. 4.

D. Structure of Improved Skip Connection

One of the highlights of the U-Net architecture is the skip con-
nection introduced between the codecs, which passes the missing
information due to the downsampling operation and improves
the segmentation accuracy. However, we speculate that although
this makes use of the missing information, the semantic level
of the feature information of the codec connected by the first
skip connection is very different, when the feature information
from the encoder is at an earlier layer of the network and has
undergone only a little processing, while the feature information
of the corresponding decoder is deeper in the network and has
undergone more processing, and its semantic level is higher and
more abstract. Therefore, we believe that there may be a semantic

channel-association.

e Gating mechanism to produce channel- R
wise weights.

feature maps €
HxWxC2

. Rewelghtlng the §

Specific network structure of the squeeze-and-excitation (SE) attention module.

gap between them, and directly splicing them may hurt network
optimization.

To alleviate the semantic gap between them, we need to
increase the semantic level of the feature information from
the encoder by passing them through more processing before
splicing them at the decoder side, and instead of using the
usual convolutional layers, we use residual modules because
they will make learning simpler, while not reducing the network
efficiency [70]. As shown in Fig. 5, instead of directly splicing
the codecs through the skip connection, we introduce a residual
connection in the skip connection to pass the processed feature
information from the encoder, and we define the improved
skip connection as the multiresidual skip connection (Multi-Res
path). It is worth noting that the semantic level of feature
information from the encoder and decoder gradually increases
or decreases in the next skip connections, and the difference
between them gradually decreases, so we reduce the number of
residual modules in the skip connections step by step, where
the semantic level of feature information on both sides of the
bottleneck layer is not much different, so we do not improve the
skip connections here to avoid introducing too many parameters.
In particular, we use 4, 3, 2, and 1 residual modules in each of
the four multiresidual skip connections.

However, this inevitably introduces a certain amount of pa-
rameters to the network, so we also provide another way to
improve the skip connection by adding the inception module to
itinstead of the residuals module. As shown in Fig. 2, we add the
inception module to the skip connection except for the last level,
which also shortens the semantic gap of feature information
on both sides of the skip connection and does not introduce
too many parameters, and defines the improved skip connection
as inception skip connection (inception path). Under our tests,
although the average performance of the network incorporating
the Inception path is lower than that of the network using mul-
tiresidual skip connections (which may be because the residual
module improves the efficiency of network learning), both are
stronger than the normal skip connections, and it introduces a
very small number of parameters. If the requirement for the
number of parameters is not high, it is recommended to use the
multiresidual skip connection, and vice versa with the Inception
module.
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Proposed multiresidual skip connection. Instead of passing the encoder feature mapping directly to the decoder, we use many residual connections to

pass the encoder features. These nonlinear operations reduce the semantic gap between encoder and decoder features, make learning easier, and learn much more

abstract semantic information through residual connections.

E. Loss Function

In water body extraction, our network only needs to determine
whether the pixel points of the input image are water or nonwater
pixels, and the training image only contains labels for water and
nonwater pixels, but we also have pixels that approximate water
bodies, such as clouds, shadows, snow, and ice, etc. It is difficult
to classify them accurately if only generic loss functions (e.g.,
Mse, Softmax) are used because they will place the easier-to-
learn pixels and harder-to-learn pixels in the same hierarchy
guide as the network training. Therefore, we use a combination
of max-pooled adaptive loss [71] and focal loss functions [72]
to help the network to enhance the learning of this part of the
pixels that are harder to classify. Among them, the max-pooled
adaptive loss function can automatically shift the focus of the
network learning to the most difficult part of the input image to
better handle river crossings and coastlines, thus improving the
prediction accuracy. And the focal loss functions can reduce the
weight of simple negative samples, thus focusing the learning
on the more difficult to classify water-like pixels.

F. Implementation

Our proposed MRSE-Net is trained and tested using the
publicly available Tensorflow. The model parameters are: input
image size (512*512), ground truth (512*512), batch size (16)
with several epochs (150), and optimizer (SGD with the mo-
mentum of 0.9) with the learning rate (0.1). First, we performed
horizontal or vertical rotation of each patch for data enhancement
and later trained MRSE-Net with the enhanced data. all our
experiments were performed on Intel(R) Core(TM) i7-10700
CPU at 3.80 GHz with 16 GB RAM and NVIDIA TITAN RTX
with 24 GB GDDR5X memory, CUDA 11.0 edition.

IV. EXPERIMENT

To demonstrate the effectiveness of our proposed MRSE-Net,
we performed qualitative and quantitative evaluations with re-
motely sensed images taken by Landsat-8 and validated the gen-
eralization capability of our method by performing cross-dataset
evaluations on Landsat-7 and Sentinel-2 images in different
bands. In addition, we perform ablation experiments to investi-
gate the effect of the proposed module on water segmentation
of remotely sensed images.

A. Data

The dataset we used is a dataset consisting of multispec-
tral images and their corresponding pixel-level labels collated
through GEE [41]. To maximize compatibility between different
sensors, we used images in bands 2—7 of Landsat-8, which have
equivalence with images taken by Sentinel-2 and some Landsat
remote sensing satellites, as input, and did not use other less
common bands of this remote sensing satellite, ground truth
output was obtained using images from the global surface water
dataset [42] in the water body labels, and the synthetic images
are generated by calculating the median pixel values of the input
images with the ground-truth labels at the same moment to form
the dataset needed for our model, which does not remove the
clouds considering the presence of more or fewer clouds in the
real images, but keeps the clouds to let the network learn how
to process them, thus improving the accuracy of water body
segmentation in the real images.

The quality of the dataset has a significant impact on the
segmentation accuracy of the network; too little quantity or too
low quality can lead to degradation of segmentation accuracy and
problems, such as artifacts. The DeepWaterMap [73] designed
by Isikdogan et al. confused water bodies and nonwater bodies
because of inaccurate definitions of the labels of clouds and
shadows in the dataset, which led to false positives for these
categories. Zhou et al. ’s work [74] used a dataset that was cor-
rected to increase the classification accuracy from 83% to 92%,
all of which demonstrate the importance of high-quality datasets.
Since most of the images in the synthetic dataset contain almost
exclusively land or water bodies, this class-imbalanced dataset
leads the network to learn shortcuts (with little use of nonlinear
transformations) and to situations where accuracy is high during
training but very low during testing. To avoid the above problem,
we balanced the proportion of different categories by removing
images with more than 99% of land or water bodies in the dataset,
and then after data enhancement (random horizontal or vertical
flip) of them, we finally obtained a synthetic dataset of more
than 400 000 images (as in Fig. 6) and used 80% of them for
training and 20% for validation and testing.

To improve the model’s ability to generalize across datasets
and to make the model robust to different sensors, environmental
conditions and calibration methods, we use dynamic perturba-
tion and normalization to preprocess the images of the dataset.
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Fig. 6.

We balance the proportion of different categories by removing the tiles in our dataset where more than 99% of the pixels have the same category label

and ensuring that at least 1% of the pixels are water. The blue area shows the position of each tile in our dataset.

First, in dynamic perturbation, we randomly crop a patch of
512*512 size among all samples of each batch, and then multiply
the bands of this patch with a smoothing unit matrix to obtain
Ps19.512:6 * G143(Ig) to randomly leak information in the con-
tinuous bands to achieve the simulation the spectral response
of sensors in remote sensing satellites in different observation
missions, where P is the input and G is a Gaussian filter . In addi-
tion, we distorted these patches using additive Gaussian noise of
random magnitude, and finally used min-max scaling for the in-
put,i.e., Pripg = (P — min(P))/ max(max(P) — min(P), 1),
where the 1 can stabilize the normalization when the input scene
is full water or land.

B. Evaluation Metrics

We evaluated the performance of the proposed MRSE-Net
with the optimized dataset obtained above, for which we selected
three commonly used metrics for semantic segmentation: preci-
sion (user accuracy), recall (producer), and F1-score. Precision
is the ratio of pixels correctly classified as water bodies to all
pixels classified as water bodies (both correct and incorrect),
and recall denotes the ratio of detected water body pixels to
all water body pixels in the ground truth label, and Fl-score
is the summed average of precision and recall, which is used
to measure the overall performance, and its value ranges from
0 to 1, with 1 representing the best output of the model and 0
representing the worst output of the model. The following are
the formulas for precision, recall, and F1-score:

.. true positive
Precision = — P — (1)
true positive + false positive

true positive
recall = P - (2)
true positive + false negative

2 recision x recall
2 X P

F1-score = - 1 =

precision recall

3)

precision + recall

where true positive indicates a correct positive case, i.e., water
pixels are correctly classified as water pixels, false positive

indicates a wrong positive case, i.e., nonwater pixels are incor-
rectly classified as water pixels, and false negative indicates a
wrong negative case, i.e., water pixels are incorrectly classified
as nonwater pixels.

C. Evaluation

We compare the proposed MRSE-Net with NDWI [11],
MNDWI [12], MLP [73], U-Net [29], DeepWaterMap-3, i.e.,
DWM-3 [73], Deepcrack [75], FCN8s [76], DeepWaterMapV?2,
i.e., DWMV?2 [77], and DeepUNet [55] were compared. We
used Landsat-8 tiles randomly selected from the global surface
water dataset and their corresponding labels as our test set and
quantitatively evaluated these methods using accuracy, recall,
and Fl-score as our evaluation metrics.

Fig. 7 shows the comparison between our proposed MRSE-
Net and the state-of-the-art water body extraction methods.
The water body images extracted by the traditional water body
index-based methods (NDWI and MNDWI) are very noisy, and
since our testimage is not calibrated at the top of the atmosphere,
it is particularly susceptible to interference from dense clouds
[Fig. 7 D, E(b) and (c)], as seen in Table II, the simple MNDWI
classifier obtains the highest recall, but the classification ac-
curacy is not very high and produces many false positives.
the boundary of water bodies segmented by MLP and U-Net
is blurred and a part of the fine river information is ignored
[Fig. 7(F)(d) and (e)], and a high number of artifacts are pro-
duced. DeepWaterMap-3 classifies a part of the rivers obscured
by clouds as nonwater bodies [Fig. 7B(f)] Deepcrack was origi-
nally used to identify cracks, and because the structure of cracks
and rivers is relatively similar, we use it here to extract water
bodies, but it performs poorly in identifying scenes with nonriver
structures (including large areas of land and water bodies with
nonriver structures). The water segmentation results of FCN8s
show many artifacts and blurred boundaries, probably due to the
influence of thick cloud cover. DeepWaterMapV2 and Deepunet
both use a U-shaped structure, and they perform better on images
with nonriver structures, but also have more pixel classification
errors. These indicate that in scenes with nonriver structures, the
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Landsat-8 test images are compared with different methods. Each column presents: (a) ground truth, (b) NDWI [11], (c) MNDWTI [12], (d) MLP [73], (e)

U-Net [29], (f) DeepWaterMap-3 [73], (g) Deepcrack [75], (h) FCNS8s [76], (i) DeepWaterMapV2 [77], (j) DeepUNet [55], and (k) MRSE-Net.

TABLE II
VALUES OF THE QUANTITATIVE ASSESSMENT INDICATORS

Method

NDWI [11] MNDWI [12] MLP [73] UNet [29] DWM-3 [73] Deepcrack [75] FCN8s [76] DWMV2 [77] DeepUNet [55] MRSE-Net
Precision | 0.5325 0.6094 08108 08527  0.8908 0.4854 0.8624 09518 0.9586 0.9891
Recall 0.9502 0.9830 0.6575 07354 08575 0.4656 0.7122 0.8706 0.8402 0.8955
Fl-score | 0.6818 07515 07253 07897  0.8730 0.4753 0.7801 0.9085 0.8955 0.9400

The best of them are shown in bold.
lower-level convolutional layers have local features with smaller TABLE III

receptive fields, while the receptive fields get larger as the depth
of the network increases, which increases the false positive
(nonwater pixels). Our proposed method fuses information from
different scales and passes the receptive fields of convolutional
layers of different sizes to the network, obtaining the closest
results to the ground truth, surpassing existing SOTA methods
in accuracy, recall, and F1-score.

Table II gives the values of the quantitative evaluation metrics
of the different methods, except for MNDWI [12], which has the
highest recall; our method is higher than the other SOTA meth-
ods in terms of accuracy and F1-score, DeepWaterMapV2 [77] is
second, DeepUNet [55] is located third, and Deepcrack [75] has
a very poor performance, because it is designed to detect cracks
and performs poorly in scenes that contain nonriver structures,
while only capturing crack-like river structures. As can be seen
in Table III, our proposed method has fewer convolutional layers,
but slightly larger trainable parameters due to the large image
size in the dataset used (hundreds of millions of pixels for each
scene of Landsat-8), but only more than DeepWaterMap-3 and

COMPARISON OF THE NUMBER OF LAYERS, TRAINABLE PARAMETERS, AND
RUNTIME FOR VARIOUS METHODS

Network Layers  Trainable parameters ~ Running time
U-Net [29] 23 31 265
DWM-3 [73] 20 15 167
Deepcrack [75] 23 15 176
FCNSs [76] 50 135 579
DWMV2 [77] 20 37 283
DeepUNet [55] 32 124 512
MRSE-Net 20 29 243

Trainable parameters are measured in millions and runtime in milliseconds.

less than the number of parameters of any other water body
extraction method.

D. Cross-Dataset Evaluation

We also evaluate the cross-dataset generalization ability of
our model on a set of Landsat-7 and Sentinel-2 images without
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Fig. 8.

(1) (k)

Different methods were compared for the top-of-atmosphere calibrated Landsat-7 test set. (A,a), (B,a), and (C,a) denote RGB color composite images

of the input images. (b) NDWI [11]. (¢) MNDWTI [12]. (d) MLP [73]. (e) U-Net [29]. (f) DeepWaterMap-3 [73]. (g) Deepcrack [75]. (h) FCN8s [76]. (i)

DeepWaterMapV2 [77]. (j) DeepUNet [55]. (k) MRSE-Net.

ground truth labels and exclude any possible message leakage
in the validation set. We use the original Landsat-8 images for
training, while the test set images used in the cross-dataset
test are top-of-atmosphere calibrated, and we use the model
trained on Landsat-8 images without fine-tuning directly for
water extraction on Landsat-7 and Sentinel-2 images equipped
with different sensors since the test set. Since there is no corre-
sponding ground truth in the test set, we introduce RGB color
composite images of the input images to subjectively compare
the extraction results of the different methods.

The water body index-based methods (NDWI and MNDWTI)
appear quite noisy with black spots and produce many false
positives. MLP produces fuzzier water body boundaries, and
MLP is lower than U-Net in both metrics, but both lose a lot
of information about small-scale rivers [Fig. 8C(d) and (e)].
Deepcrack was originally designed to identify slender fissures,
thus making it difficult to identify water bodies with nonriver
structures and resulting in poorer results. The FCN8s were able
to identify most of the water bodies, but the prediction of the
water body boundaries was still unsatisfactory, with significant
blurring as well as artifacts. DeepWaterMap-3 and its improved
version still perform well in most water body scenes but tend to
classify mountain shadows as water bodies when they appear in
the image [Fig. 8 B(f) and (h)]. As shown in Table II, the accuracy
of DeepUNet is high, but it is missing a lot of information about
small-scale water bodies [Fig. 8 A(i)]. Our proposed method
outperforms other methods in terms of objective evaluation met-
rics, and the resulting water body boundaries are more accurate
and continuous for segmentation of large- and small-scale water
bodies (narrow rivers and lakes).

As seen in Fig. 9, the MNDWI method based on the water
body index has a large range of shadows, and DeepWaterMapV?2
and DeepUNet are difficult to segment many fine river branches
despite the elimination of shadows. Our proposed method fuses
the information of different sensory fields through the multiscale

residual module and handles the river information of different
scales well. Preliminary experimental results on Sentinel-2 show
that our proposed method can be used to predict not only Landsat
satellite images but also can be well applied to Sentinel satellite
images, showing the good cross-sensor generalization ability of
our model.

E. Ablation Study

We propose the MRSE-Net containing feature transformation
module, multiscale residual module, SE-attention, and option-
ally Multi-Res path or inception path. Our network is based
on the U-Net structure to improve it, so we compare the five
variants of the MRSE-Net architecture with the U-Net to verify
the effectiveness of each of our proposed modules. Table IV and
Fig. 10 show the module configuration and model framework
for each of our models, respectively.

1) U-Net*: We added a feature transformation module to
the bottleneck layer part of the original U-Net to enable
the network to learn more abstraction-level feature infor-
mation. (No Multi-Res path, inception path, multiscale
residual module, and SE-attention).

2) U-Net**/U-Net*** We add the Multi-Res path or in-
ception path to the skip connection based on U-Net*,
thus alleviating the semantic gap between the high-level
encoder—decoder features at both ends of the skip con-
nection and helping to upsample the recovered images by
using feature information with closer semantic levels. (No
Multi-scale residual module and SE-attention).

3) MRU-Net: We use a multiscale residual module instead
of the convolutional layer in the encoder—decoder based
on U-Net**, which helps the network to extract deeper
high-level feature information and can analyze targets at
different scales. The Multi-Res path is used at the skip
connection in MRU-Net, because in our experiments to
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Fig. 9. Prediction of Sentinel-2 input images using different water body extraction methods. (a) RGB color composite image. (b) MNDWI [12]. (c)

DeepWaterMapV2 [77]. (d) DeepUNet [55]. (¢) MRSE-Net.

TABLE IV
FIVE DIFFERENT MODELS FOR ABLATION STUDIES ARE PROPOSED

Network feature transformation module ~ Multi-Res path  Inception path ~ Multi-scale residual module  SE-attention
U-Net [29] - - R N R
U-Net* v - - - -
U-Net** v v - - -
U-Net*** v - v - -
MRU-Net v v - v -
MRSE-Net v v - v v
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Fig. 10.  Model framework in ablation experiments. (a) U-Net. (b) U-Net*. (c) U-Net**. (d) U-Net***. (¢) MRU-Net. (f) MRSE-Net.

get the best water extraction results, the Multi-Res path
with slightly higher performance than the Inception path
is chosen here as our MRU-Net, and if there is a higher
requirement for the number of model parameters, the
inception path can be used. (No SE-attention).

4) MRSE-Net: We introduce the SE attention module in the
last layer of upsampling on the network to make the
output channels more directional, and explicitly model
the dependencies between channels through a “feature re-
calibration” strategy to increase the weights of the feature
channels that contribute to the network optimization.

The Landsat-8 images we used in the test set were not top-
of-atmosphere calibrated, and the original U-Net misclassified
some clouds as water bodies when performing water body ex-
traction, and many water bodies were not extracted [Fig. 1 1A, B
(b)], so the accuracy was not very high. After adding the feature
transformation module, the network learns a lot of high-level se-
mantic information and most of the water bodies are recognized,
but more artifacts are generated [Fig. 11 A(c)]. The network
that added the Multi-Res path or Inception path alleviated the
problem of appearing artifacts [Fig. 11 A(d) and (e)], and as
seen in Table V, the former was slightly better than the latter.
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Effects of adding each module are compared on Landsat-8 images. Each column presents: (a) Ground truth, (b) U-Net [29], (¢) U-Net*, (d) U-Net**,

(e) U-Net***_(f) MRU-Net, and (g) MRSE- Net. Every two rows represent an example, and the red and green boxes are enlargements of the corresponding details

in the image, respectively.

TABLE V
'VALUES OF THE QUANTITATIVE ASSESSMENT INDICATORS

Method U-Net [29] U-Net*  U-Net**  U-Net***  MRU-Net MRSE-Net
Precision 0.8527 0.8754  0.8933 0.8912 0.9623 0.9891
Recall 0.7354 0.7567  0.7785 0.7723 0.8668 0.8955
F1-score 0.7897 0.8117  0.8320 0.8275 0.9121 0.9400

The best of them are shown in bold.

Although U-Net and its improved version obtained good results,
there are still many problems (blurred water body boundaries,
missing information of small details). To alleviate this problem,
we obtained continuous and accurate water body boundaries by
combining feature information from different scales through the
multiscale residual module [Fig. 11 A, C(f)] and successfully
predicted water bodies at different scales, and the accuracy,
recall, and F1-score metrics of the method were improved. After
adding SE-attention, the image details are preserved and the
accuracy is improved, and the final prediction results produced
are closest to the ground truth.

We also compared the effect of adding each module on
Landsat-8 images with a relatively close proportion of water
bodies and nonwater bodies. The original U-Net misclassified
some of the clouds as water bodies when performing segmen-
tation, which resulted in a lot of shadows in the final generated
image [Fig. 12A(b)]. After adding the feature transformation

module, the appearance of shadows was alleviated [Fig. 12
A(c)]. After adding the Multi-Res path or inception path, the
image no longer has large shadows, but the detailed information
is still blurred as seen in the magnified image, especially the
boundary part of the water body. These problems were alleviated
after we added the multiscale residual module [Fig. 12 A, B,
C ()], which, together with the attention mechanism, further
improved the prediction results and obtained the water body
extraction results closest to the ground truth.

Table VI gives the details of the number of layers and trainable
parameters between the two variants of MRSE-Net and U-Net
and their three variants, and it can be seen that all models and
their variants have the same number of convolutional layers.
However, since MRU-Net uses a lightweight multiscale residual
module that requires less memory, its trainable parameters are
reduced and the final number of proposed model parameters is
slightly less than that of U-Net.



5062

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 12.

Effects of adding each module are compared on Landsat-8 images. Each column presents: (a) Ground truth, (b) U-Net [29], (c) U-Net*, (d) U-Net**,

(e) U-Net***, (f) MRU-Net, and (g) MRSE-Net. Every two rows represent an example, and the red and green boxes are enlargements of the corresponding details

in the image, respectively.

TABLE VI
COMPARISON OF MRSE-NET AND U-NET TRAINABLE PARAMETERS AND

RUNTIME

Network Layers  Trainable parameters ~ Running time

U-Net [29] 20 31 265

U-Net* 20 33 296

U-Net** 20 37 342

U-Net#*** 20 34 309

MRU-Net 20 28 224

MRSE-Net 20 29 243

Trainable parameters are measured in millions, and runtime is measured in
milliseconds.

V. CONCLUSION

In this article, propose an end-to-end multiscale residual and
SE attention-based water segmentation method MRSE-Net for
extracting water bodies from satellite images. MRSE-Net is im-
plemented using an encoder and decoder to preserve contextual
information and localization at different scales, respectively, and
passing encoder feature mappings through an improved skip
connection with semantic levels closer to the feature informa-
tion to help the decoder to recover the image. The proposed
multiscale residual module reduces the computational effort in
the network so that the total number of trainable parameters
of MRSE-Net is lower than that of U-Net. The SE-attention
module is used to achieve “adaptive recalibration” of the feature

channels, which enhances the water body prediction results and
makes the segmented water body boundaries more continuous.
Experiments were conducted on Landsat-8 images and com-
pared with existing mainstream methods, and the experimental
results demonstrate the superiority of our proposed method
over existing methods using our validation set, reflecting the
superiority of the MRSE-Net method over existing methods. In
addition, we also evaluate our method on Sentinel-2 images,
and the experimental results preliminarily show that the cross-
sensor generalization capability of our model extends beyond
the Landsat sensor family.
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