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Abstract—Satellite video (SV) can acquire rich spatiotemporal
information on the earth. Single object tracking (SOT) in SVs
enables the continuous acquisition of the position and range of a
specific object, expanding the field of remote-sensing applications.
In SVs, objects are small with limited features and vulnerable
to tracking drift. In this article, a correlation filter based dual-
flow (DF) tracker is proposed to explore how the hybridization
of spatial–spectral feature fusion and motion model can boost
tracking. To represent small objects, the DF adaptively fuses com-
plementary features using a state-aware indicator in feature flow.
In motion flow, the indicator perceives the confidence of the feature
flow. A dual-mode prediction model is then constructed to simulate
the object’s motion pattern and cooperate linear and nonlinear mo-
tion patterns to implement SOT in SVs. The ablation experiments
demonstrate that the DF contributes to tracking. Experimental
comparisons on 14 real SVs captured by the Jilin-1 satellite con-
stellation show that DF achieves optimal performance with an area
under the curve of 0.912 in the precision plot, 0.700 in the success
plot, and a speed of 155.2 frames per second. This work would
encourage the development of remote-sensing ground surveillance.

Index Terms—Correlation filter (CF), motion model, satellite
video (SV), state-aware indicator (SAI), single object tracking
(SOT).

I. INTRODUCTION

SATELLITE video (SV) has become a valuable surface
observation data, which provides a wealth of static and

dynamic information on specific areas [1]. In 2013, the SkySat-1
video satellite was launched by Skybox Imaging, marking a
milestone in the expansion of remote-sensing observation means
from imagery to video. SkySat-1 can capture panchromatic
video with a ground sample distance (GSD) of 1.1 m and a
frame rate of 30 frames per second (FPS). Subsequently, the
International Space Station (ISS) released an ultrahigh definition
video acquired over Vancouver in 2015. The video was captured
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by high-resolution camera, Iris, installed on ISS. Iris can shoot
RGB SVs with a GSD of 1.0 m at 3 FPS. From 2015 to now,
the Jilin-1 satellite constellation of China Changchun Satellite
Technology Co., Ltd. was launched one by one. Currently, Jilin-1
is capable of shooting 30 FPS RGB SVs with a GSD of 0.92 m
and the coverage of each frame reaching 11.0 km × 4.6 km.
The emergence of this advanced data drives the development of
the remote-sensing field in the visual community. Single object
tracking (SOT) in SVs, served as one of the most fundamental
tasks, has prosperous application prospects in dynamic traffic
surveillance and analysis [2], ocean monitoring [3], environ-
mental monitoring [4], stereo mapping [5], and super-resolution
[6]. SOT in SVs determines the position and range of an object
in subsequent frames when its initial state is available only in the
first frame. In contrast with SOT in natural videos, it encounters
several difficulties, such as follows.

1) Limited features: SVs usually contain three bands
(red/green/blue), so the spectral features of the object are
limited. Moreover, due to the low resolution, the object
occupies few pixels and has few spatial features such as
structure, which can lead to difficulties in the accurate
identification and positioning.

2) Abnormal states: SVs are filmed by satellite platforms
with high-speed moving, small objects accompanied by
nonstationary background are susceptible to abnormal
states (e.g., occlusion, rotation, background clutter, over-
taking, and motion blur), which may cause tracking drift.

To overcome these issues, researchers have conducted re-
search works on SOT in SVs, which can be classified into
detection-based [7]–[10] and discriminative methods.

Detection-based methods usually use interframe motion in-
formation to detect and track the moving object. Discriminative
methods include deep learning based [11]–[14] and correla-
tion filter (CF) based [1], [2], [15]–[19]. Deep learning based
algorithms extract the convolutional features of the object to
determine its position, and this can increase the computational
burden and slow down the tracking speed. CF-based algorithms
start by training a filter with a predefined response on all training
samples. The correlation operation is converted to element mul-
tiplication by fast Fourier transform (FFT) followed by Inverse
FFT, resulting in a reduction in storage and computation of
several orders of magnitude [20]. It then uses the pretrained
filter to locate the object. Furthermore, the filter is updated in
subsequent frames. The different methods for SOT in SVs will
be elaborated upon in related work (see Section II-B). CF, one of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6757-9051
https://orcid.org/0000-0001-5578-4330
https://orcid.org/0000-0002-8773-6891
https://orcid.org/0000-0001-8532-3455
https://orcid.org/0000-0003-2898-9562
https://orcid.org/0000-0003-1535-9940
mailto:yzchen1006@163.com
mailto:ryan_yinzy@163.com
mailto:tehanrs@163.com
mailto:yqtang@csu.edu.cn
mailto:210010@csu.edu.cn
mailto:hhfeng@csu.edu.cn


6688 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

the best discriminative methods, has been successfully applied
to SVs [1], [2], [15]–[19]. It uses cyclic shift to construct training
samples and converts the correlation operation into element
multiplication by FFT, thereby improving accuracy and speed.
Despite achieving competitive performance, single hand-crafted
feature, such as histogram of oriented gradients (HOG) [21], may
be limited in the representations of objects in SVs. However, the
local spectrum inside an object region facilitates tracking [22].
Meanwhile, CFs [20], [22]–[24] update the template without
evaluating tracking confidence and cause the template contami-
nated. The tracking drift is an inherent drawback of CFs, result-
ing in the sample drifting away from the object. Several methods
[25]–[27] have been used to overcome tracking drift, but at the
cost of high time consumption. These methods ignore a motion
model that may be a simple and efficient means. To address
problems of limited feature representation and tracking drift,
we propose a CF-based dual-flow (DF) tracker. The proposed
approach has the following contributions.

1) A CF-based DF tracker that cooperates spatial–spectral
features and adaptive motion model is proposed for SOT
in SVs. Complementary features representing texture and
spectrum of objects are fused to enhance the representation
in feature flow. In motion flow, a dual-mode prediction
model is constructed synthesizing the linear and nonlinear
motion patterns to prevent tracking drift.

2) A state-aware indicator (SAI) is defined to perceive the
confidence of tracking. It achieves the adaptive selection of
feature weights in feature flow while sensing the abnormal
states in motion flow.

3) Ablation experiments are conducted to verify the necessity
and performance of the above works for tracking in SVs.
Extensive comparisons with 13 representative trackers are
used to prove the superiority of the proposed method.

The rest of this article is organized as follows. Related work on
SOT is presented in Section II. Section III presents the general
tracking framework of Staple [23]. The proposed approach is
detailed in Section IV. Section V describes the experiments
conducted on SVs. Finally, Section VI concludes this article.

II. RELATED WORK

A. Single Object Tracking

SOT is an open and fascinating field with a wide range of
applications such as in surveillance [28], self-driving [29], sports
competitions [30], and atmospheric motion [31]. However, many
factors constrain the effects of SOT, such as occlusion and defor-
mation, requiring a more robust and accurate tracker. Currently,
SOT can be divided into generative and discriminative methods.
Generative methods construct a model to represent the object and
find a region that is most similar in the search region. Typical
methods include mean shift [32], particle filters [33], and sparse
representation [34]. How to find efficient features to represent
the object is a challenge that has a significant impact on the
tracking accuracy and speed. Moreover, generative methods only
consider the characteristics of the object itself, which makes it
easy for the sample to drift away from the object. Discrimina-
tive methods have become a mainstream research issue. Both

objects and background regions are used to train the classifier,
which makes such trackers more discriminative. Discriminative
methods include two frameworks: deep learning based and CF
based. CNN-SVM [35], one of the earliest deep learning based
algorithms, combines a convolutional neural network (CNN)
with a support vector machine (SVM) [36] for SOT. MDNet
[37] uses large amounts of data to pretrain the CNNs offline and
then fine-tune it online to adapt to changes in objects during SOT.
These methods have difficulty in running real time due to their
in-depth structure and online fine-tuning. To solve these prob-
lems, Bertinetto et al. [38] proposed SiamFC, which uses fully
convolutional Siamese network architecture trained end-to-end
for SOT. The CNNs are trained offline to solve the similarity
learning process and avoid fine-tuning online. In this way, the
SiamFC has a good balance of accuracy and speed, earning it
the attention of many researchers. Subsequently, many trackers
have been proposed such as SiamRPN++ [39] and SiamMask
[40]. Although these methods [39]–[44] have performed good
performance in natural videos, it remains unknown whether they
would work well in SVs. CF-based trackers have emerged as
a highlight since the MOSSE [45] was first proposed. CSK
[46] introduces a circulant matrix and kernel trick based on
MOSSE. KCF [20] then extends the CSK to use multichannel
features and introduces multiple kernel functions. However, the
scale variation of the object was an unresolved issue until the
release of DSST [24] and SAMF [47], which adopt a scale
filter to address scale change. To obtain better performance,
convolutional features are also used for CFs, but the speed is
inferior, such as in C-COT [48] and ECO [49]. In general,
tracking results achieved by a single feature are not satisfactory.
Thus, the Staple [23] combines the HOG and GCS features for
tracking. The GFS-DCF [50] fuses convolutional features, HOG
and CN. These trackers fuse multiple features for SOT and get
improvement in performance. However, tracking drift is a hassle,
and current solutions [25]–[27] mostly come at the expense of
running speed.

B. SOT in SVs

Some methods are developed for SOT in SVs that include
detection-based and discriminative. For detection-based meth-
ods, Du et al. [9] propose a multiframe optical flow tracker that
combines the motion feature (optical flow), integral image, and
multiframe difference for SOT. However, the performance of
detection-based methods is far from satisfactory on SVs due
to the demands on detection accuracy. Discriminative methods
are divided into deep learning based and CF based. For the
former, the Siamese network is used for SOT in [12], [13],
and [51], but the parameters and structures of the networks
may need to be adjusted for different SVs. In addition, the
deep subnetwork obtains low-resolution representations, which
may not be suitable for tracking small objects in SVs [12].
For the latter, faster and more robust CFs are used. Du et al.
[2] combine the KCF [20] and frame difference, and a fusion
strategy is embedded in the tracking framework for SOT in SVs.
Shao et al. [16], [17] incorporate motion feature (optical flow)
into the KCF framework achieving superior results. In [19],
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Fig. 1. Overall framework of the proposed CF-based DF tracker. It consists of feature and motion flows. In feature flow, complementary features of HOG, GCS,
and CN are fused by adaptive selection of weights γhog, γgcs, and γcn. In motion flow, a SAI is proposed to sense the abnormal states of the object. If the SAI value
of the fusion response map is greater than threshold κ, the object’s position will be determined by the fusion results. Otherwise, a dual-mode prediction model is
constructed synthesizing the linear and nonlinear motion patterns to prevent tracking drift and obtain the object’s position when encountering abnormal states.

the KCF framework is also used to track rotating object. Xuan
et al. [18] propose a CF embedded with a motion estimation
algorithm. However, the tracker [18] is based on the assumption
that the motion pattern of the object is linear. The object may be
lost when being subjected to a curved path. In addition, using
the HOG feature alone in [18] does not guarantee the robustness
of the tracker. Thus, some trackers [2], [11], [17] fuse multiple
features, but a spectral feature is ignored even though it is as
faint as a spatial feature.

III. TRACKING FRAMEWORK

The proposed CF-based DF tracker is modeled on the trans-
lation structure of the Staple [23]. The overall motivation of
the Staple is elaborated in the following. The desired window
pt locates the object’s position in image xt of frame t and is
obtained from set St to maximize the score

pt = argmaxp∈St
f (T (xt, p) ; θt−1) (1)

where T denotes the image transformation and θ denotes the
model parameter to be solved. Based on parameters θ, function
f(T (x, p); θ) assigns a score to window p on image x. θ should
minimize loss L(θ;Xt).

The loss is determined by the previous images
xi (i = 1, 2, 3, . . . , t) and the object’s positions
pi (i = 1, 2, 3, . . . , t), and Xt can be written as
Xt = {(xi, pi)}ti=1 . The solution of θ is

θt = argminθ∈ϑ {L (θ;Xt) + λR (θ)} (2)

where ϑ denotes the space of parameters and R(θ) denotes the
regularization term with relative weight λ to limit the complexity
of the model.

The final score function is a linear fusion of the HOG and
GCS scores

f (x) = γhogfhog (x) + γgcsfgcs (x) (3)

where γhog and γgcs are the weights of the HOG and GCS fea-
ture scores, respectively. The overall parameters are θ = (β, δ,

γhog, γgcs), in which β and δ can be obtained via training and
detection parts [23]. The fusion result f(x) is calculated by (3),
and the new position of the object is estimated by finding the
maximum of f(x). Finally, the parameters β̂ and δ need to be
updated to adapt to changes in the object.

IV. PROPOSED APPROACH

In this section, we first introduce the overview of DF tracker.
We then cooperate complementary features for tracking. In
addition, the SAI and adaptive fusion mechanism of feature flow
are described. Finally, a dual-mode prediction model of motion
analysis flow is detailed.

A. Overview of Proposed DF Tracker

Fig. 1 shows the overall framework of the proposed DF
tracker, including feature flow and motion flow. In feature flow,
complementary features including the HOG, GCS, and CN
of objects are exploited to represent the object. An adaptive
fusion mechanism based on a SAI is then used to obtain the
fusion results of feature flow. For further refinement, the results
are transferred to motion flow. If the SAI value of the fusion
response map is great, the object’s position will be determined
by the fusion results. Otherwise, a dual-mode prediction model
is activated to predict the position, which analyzes the previous
motion pattern to simulate the motion model.

B. Complementary Features for Tracking

Spatial–spectral features, commonly used by CFs [2], [15],
[17]–[19], are extracted and fused to represent objects in SVs.

1) HOG: It can capture the spatial texture and contours, and
has inherent illumination invariance, which makes the
HOG suitable for SOT in SVs. However, it is sensitive
to deformation because it relies on the spatial layout of
the object. It cannot achieve robust tracking for interested
objects.
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2) Global Color Statistics: The GCS feature is a global
spectral probability model trained from the foreground
and background regions in the first frame. It is inherently
invariant to permutation. However, the response map of
the GCS feature is flat-peaked, which means it can serve
as an auxiliary for SOT.

3) Color Names: It is an 11-dimensional spectral label
excavated from the spectral features of the target. It can
compensate for the information limitation of HOG and
GCS with a detail spectrum.

In the training part, the CN is an H-channel image Fx : D →
RH obtained from image x and defined as finite grid D ⊂ Z2.
The per-image loss is

L (x, p, α) =‖
H∑

n=1

αn � Fn
T (x,p) − y‖2 (4)

where αn is channel n of multichannel image α and � is circular
correlation. The label function y is a desirable Gaussian function
that decays from 1 for the center of the object to 0 for the shifted
samples of the edge.

For efficiency, α is computed in the Fourier domain, which
transforms the circular correlation into a Hadamard product. α̂n

is the discrete Fourier transforms of αn, ∗ is a complex conjunc-
tion, and � denotes pointwise. According to an approximate
formulation in [24], (4) is minimized by choosing

α̂n = 1/ (r̂ + λ) · d̂n (5)

where

r̂ =

H∑
n=1

(
F̂n

T (x,p)

)∗
� F̂n

T (x,p) (6)

d̂n = (ŷ)∗ � F̂n
T (x,p), n = 1, . . . , H. (7)

In the detection part, the response score fcn can be obtained
from

fcn (x;α) =
∑
u∈D

α[u]T Fx [u] . (8)

To adapt to changes in the object, α̂ needs to be updated. ηcn
denotes the learning rate of the CN feature. The parameters r̂′t
and d̂′t at frame t are separately computed from (6) and (7) in
the new position. For α̂, parameters r̂ and d̂ are updated as

r̂t = (1− ηcn) r̂t−1 + ηcnr̂
′
t (9)

d̂t = (1− ηcn) d̂t−1 + ηcnd̂
′
t. (10)

After obtaining the HOG, GCS, and CN feature scores, avoid-
ing complex functions, we straight use a linear score function

ffin (x) = γhogfhog (x) + γgcsfgcs (x) + γcnfcn (x) (11)

where ffin is the fusion result and γhog, γgcs, and γcn are the
weights of the HOG, GCS, and CN feature scores, respec-
tively. The object’s new position is then estimated by finding
the maximum in ffin. Thus, the overall model parameters are
θ = (β, δ, α, γhog, γgcs, γcn) , in which β, δ, and α can be
obtained from the training and detection part, whereas γhog, γgcs,
and γcn can be determined from the adaptive fusion mechanism

that will be described in next part. θ will be updated to adapt to
changes in the object.

C. SAI and Adaptive Fusion Mechanism

In tracking, the ideal tracking response map tends to a sharp
Gaussian distribution, which is vulnerable to interferences (e.g.,
occlusion, background clutter, motion blur). In order to describe
the concentration of distribution, the SAI (12) is proposed to
sense the abnormal states of objects and achieve the adaptive
selection of feature weights

SAI =
wh

∑
w,h (sw,h − s̄)4(∑

w,h (sw,h − s̄)2
)2 − 3 (12)

where w and h are the width and height of the response map,
respectively, s̄ is the average score of feature response map s.
If the SAI value of a feature response map is greater than the
threshold, the feature is dominant and the result is reliable. Then,
we use a mechanism to adaptive fuse the complementary features
in Section IV-B, whose weights in (11) are defined by

γhog =
|SAIhog|

|SAIcn|+ |SAIhog| (13)

γgcs = fixgcs (14)

γcn =
|SAIcn|

|SAIcn|+ |SAIhog| (15)

where SAIhog and SAIcn are the SAI values of the HOG and CN
feature response maps, respectively, fixgcs = 0.2 is derived
from extensive experiments.

Based on the adaptive fusion mechanism, the DF can make
full use of the dominant feature to track small objects in SVs. The
tracking confidence is then assessed for abnormal states based
on SAI. If SAI > κ, the confidence of feature flow results is high
and the object’s position will be determined at the maximum of
the fusion results. Otherwise, the confidence is low and the state
of the object is abnormal, in which the position will be obtained
base on a dual-mode prediction model.

D. Dual-Mode Position Prediction Model

Objects in SVs are vulnerable to abnormal states such as
occlusion, rotation, background clutter, overtaking, and mo-
tion blur. Despite the proposed adaptive fusion mechanism can
mitigate such impact, abnormal states inevitably degrade the
tracking effects and cause tracking drift. Thus, we propose a
dual-mode prediction model to obtain the object’s position in
motion flow. Specifically, after obtaining the object’s trajectory
on the basis of the historical results, the curvature of the previous
trajectory is used to determine the prediction patterns. If the
curvature is small, a Kalman filter [52] will be used to obtain the
object’s position via its linear prediction pattern. Otherwise, the
object’s trajectory tends to be in a quadratic nonlinear pattern,
so its position will be predicted by nonlinear regression.

1) Kalman Filter for Predicting Linear Trajectory: The
Kalman filter [52] is a method for estimating the position
and velocity of an object from observations with errors. Let
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Sk = [xk, vx,k, yk, vy,k]
T denote the state vector, where xk and

yk are the horizontal and vertical positions of the object at frame
k, respectively, and vx,k and vy,k are the horizontal and vertical
velocities at frame k, respectively. The estimation process can
be divided into two parts: time update and state update.

In the time update part, the state equation and error transfer
equation of the prediction process can be written as

Ŝk̄ = MŜk−1 +Duk−1 (16)

Ek̄ = MEk−1M
T +Qk (17)

where Ŝk̄ is the priori estimate of the state vector at frame k,
Ŝk−1 is the posterior estimate of the state vector at frame k − 1,
D is the control vector, uk−1 is Gaussian noise with covariance
matrix Q at frame k − 1, and Ek̄ is the priori estimate of the
error covariance matrix at frame k in the prediction step. The
state transition matrix M can be written as

M =

⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ . (18)

The observation equation is

Zk = HSk + Vk (19)

where Zk is the observation vector at frame k, Sk is the object’s
actual state at frame k, and Vk denotes Gaussian noise with
covariance matrix R. H is a 2 × 4 observation matrix

H =

[
1 0 0 0
0 0 1 0

]
. (20)

In the state update part, the main three equations can be written
as follows:

Kk =
Ek̄H

T

HEk̄H
T +Rk

(21)

Ŝk = Ŝk̄ +Kk

(
Zk −HŜk̄

)
(22)

Ek = (I −KkH) Ek̄ (23)

where Kk denotes the Kalman gain matrix at frame k, Ŝk is the
posteriori state estimate corrected by observation vector Zk at
frame k, and I denotes the identity matrix.

2) Nonlinear Regression for Predicting Nonlinear Trajec-
tory: The Kalman filter is derived from the linear system,
which is prone to tracking failure for nonlinear. Frequently,
objects in SVs are moving smoothly along curved roads. We
use quadratic nonlinear regression to simulate the trajectories
with nonlinear pattern and predict the object’s position. Let
(zi, xi), i = 1, 2, 3, . . . , k denote the object’s position xi in
the x-axis direction from frames z1 to zk. The quadratic function
of the trajectory can be expressed as

xi = b0 + b1zi + b2z
2
i (24)

where b0, b1, and b2 are obtained by solving

min
k∑

i = 1

(
b0 + b1zi + b2z

2
i − xi

)2
. (25)

Fig. 2. Overview of SV dataset used in experiments. In each video, a selected
vehicle object (marked by a red rectangle) is enlarged and displayed in the
lower right corner. The trajectories of the objects are roughly indicated by the
yellow arrows. Minneapolis _1 is the first cropped sequence of the Minneapolis
SV, whereas Minneapolis∗ and Minneapolis are different SVs acquired from
the same area. (a) Valencia_1. (b) Hong Kong_1. (c) Minneapolis_1. (d) San
Diego_1. (e) Jeddah_1. (f) Muharraq_1. (g) Minneapolis∗_1. (h) Jeddah_2.
(i) Muharraq_2. (j) San Diego_2. (k) Muharraq_3. (l) San Francisco_1. (m)
Adana_1. (n) Minneapolis∗_2.

Through simplification, the normal equation of (25) can be
written as⎡
⎣ k

∑k
i = 1 zi

∑k
i = 1 z

2
i∑k

i = 1 zi
∑k

i = 1 z
2
i

∑k
i = 1 z

3
i∑k

i = 1 z
2
i

∑k
i = 1 z

3
i

∑k
i = 1 z

4
i

⎤
⎦
⎡
⎣ b0
b1
b2

⎤
⎦ =

⎡
⎣

∑k
i=1 xi∑k

i=1 zixi∑k
i=1 z

2
i xi

⎤
⎦ .

(26)
By solving the coefficient matrix [b0, b1, b2]

T , the trajectory
equation (24) can be obtained to simulate the motion pattern of
the object. Similarly, the function in the y-axis direction can be
solved, and the object’s position can also be obtained.

V. EXPERIMENTS

A. Experimental Setups

1) Dataset: For comprehensive evaluation, nine large-size
SVs (Valencia: 4096 × 2160, Hong Kong: 4096 × 3072, Min-
neapolis: 4096 × 2160, San Diego: 4096 × 2160, Jeddah: 4096
× 3072, Muharraq: 4096 × 2160, San Francisco: 3840 × 2160,
Adana: 4096 × 2160 and Minneapolis∗: 4096 × 2160) are
cropped into 14 small-size SVs. Fig. 2 presents the experimental
dataset, and Table I presents the size of objects and frames.
Supported by Chang Guang Satellite Technology Co., Ltd., the
SVs have a GSD of 0.92 m, and the videos are 8-b quantization
RGB images with spectra ranging from 437 to 723 nm. A total
of 14 moving vehicles are labeled by 4374 minimum horizontal
bounding boxes. The vehicles have a maximum size of 12 ×
14 pixels and a minimum size of 6 × 8 pixels. Each video has
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TABLE I
INFORMATION OF THE 14 CROPPED SVS, IN WHICH “VALENCIA_1” DENOTES

THE FIRST CROPPED REGION OF THE VALENCIA VIDEO

TABLE II
LIST OF ABNORMAL STATES AND CORRESPONDING SV DATASET

a dominant abnormal state based on the characteristics of the
scenario, and a short description of all states is given in Table II.

2) Evaluation Methodology: The precision plot and success
plot are applied to measure the tracking performance [53], [54].
Center location error (CLE) calculates the average Euclidean
distance between the center of the ground truth and estimated
bounding box. The precision plot shows the percentage of frames
for which the CLE is smaller than predefined thresholds Tp.
Considering the low resolution of SV accompanied by small
size of objects, we use thresholds Tp ∈ [1, 20] to measure the
performance in positioning. In the success plot, the overlap
is used for evaluation. Given ground truth RG and estimated
bounding box RT , the overlap can be calculated by

overlap =
|RG ∩RT |
|RG ∪RT | (27)

TABLE III
EFFECTS OF SAI THRESHOLDS ON TRACKING EFFECTS

The first is shown in bold.

Fig. 3. Monitoring process of abnormal states. From first to third row: SAI
versus frames, tracking samples (tracking results in red and search regions in
yellow), and response maps. The state is normal in frame #002. In frames #041,
#162, #285, and #405, the object is under abnormal states, and the response maps
change more or less compared with #002. The abnormal states are perceived by
comparing the SAI with threshold κ.

where ∩ and ∪ denote intersection and union operators, respec-
tively, and | · | is the number of pixels in the region [53], [54]. The
success plot shows that the success rate surpasses the threshold
range Ts ∈ [0, 1] , and measures the tracker’s performance in
positioning and estimating the size of the object. In this article,
all trackers are ranked by the area under the curve (AUC) of the
precision plot and success plot. Compared with the precision
plot, the success plot is more representative [9]. Thus, we mainly
rank trackers based on the AUC of the success plot, and use the
FPS to evaluate tracking speed.

3) Implementation Details: The weight λ is set to 1e− 3,
and the fixed area is 602. Considering that the changes of objects
are stable, the learning rates ηhog, ηgcs, and ηcn are set to 0.01,
0.005, and 0.005, respectively. The effects of SAI threshold κ
on tracking result are presented in Table III. An optimal result is
obtained with κ = −0.6, and a sample is shown in Fig. 3.
The other parameters are set to the same as those in Staple
[23], and all trackers are executed on a workstation with a 3.20
GHz Intel(R) Xeon(R) Gold 6134 CPU (32-core) and NVIDIA
GeForce RTX 2080 Ti GPU.
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Fig. 4. (a) Precision plot and (b) success plot of the variant trackers on 14 SVs.
The values in the legends are the AUC. “OPE” = One-pass evaluation, which
initializes a tracker in the first frame and lets it run to the end of the sequence.

TABLE IV
COMPONENTS AND RESULTS OF ABLATION EXPERIMENTS

Four components are listed to represent the variants. “CF”= Translation structure of staple.
“AF” = Adaptive fusion of complementary features. “KF” = Kalman filter in the motion
flow. “RE” = Nonlinear regression in the motion flow.

B. Ablation Study

To validate the proposed DF, five variants are conducted,
including two of addition experiments (DF_CF and DF_CFAF)
and three of removal experiments (DF_NAF, DF_NRE, and
DF_NKF). Fig. 4 shows the precision and success plots, and Ta-
ble IV summarizes the components and experimental results of
these trackers. DF_CF is the baseline tracker, indicating that DF
has only the translation structure of Staple. DF_CFAF achieves
adaptive fusion of CN over DF_CF, and DF_NAF removes the
adaptive fusion of CN from DF. DF_NRE and DF_NKF remove
the nonlinear regression and the Kalman filter of the dual-mode
prediction model from DF, respectively.

1) For Feature Flow: In Table IV, by comparing with the
baseline DF_CF and DF_CFAF, it can be seen that the AUC of
the precision plot is improved from 0.675 to 0.731 (5.6% im-
provement) and the success plot is enhanced from 0.477 to 0.555
(7.8% improvement) using the feature flow. While comparing
the DF and DF_NAF, we find a 14.6% and 10.5% reduction in
the AUC of the precision and success plots after removing the
adaptive fusion part from DF. Due to the absence of feature flow,
the DF_NAF cannot adaptively fuse the complementary features
of the object, making it difficult to represent small objects, which
leads to tracking failure. Fig. 5 shows the tracking examples
of DF_NAF and DF, where DF can discriminate object from
background and avoid tracking drift.

2) For Motion Flow: By comparing the DF and DF_CFAF,
it can be seen that the AUC of the precision plot is reduced
from 0.912 to 0.731, whereas the success plot is reduced from

0.700 to 0.555 without the motion flow. This is due to the
inability to perceive the abnormal states of the object and predict
its position. Therefore, DF_CFAF encounters tracking drift.
Comparing the DF_CF, DF_NAF yields a gain of 9.1% in the
precision plot and 11.8% in the success plot. Furthermore, to
evaluate the effects of the motion flow, DF_NRE and DF_NKF
are added for validation. As presented in Table IV, the AUC of
DF is superior to those of DF_NRE and DF_NKF, and the DF
preforms optimal performance. This is because the dual-mode
prediction model cooperates the linear and nonlinear motion
patterns, allowing it to handle abnormal motions such as lane
changes and turns. As shown in Fig. 6(a), the vehicle moves
on a straight road when another one with similar features passes
by quickly. The DF_NRE locates the vehicle, whereas DF_NKF
encounters failure. This is because the Kalman filter predicts the
linear trajectory more precisely than the nonlinear. In Fig. 6(b),
a vehicle encounters complete occlusion by bridges while trav-
eling at high speed on a curved highway. In this case, DF_NKF
locates the vehicle, whereas DF_NRE loses it when subjected
to the occlusion by a bridge. This is attributed to the property of
nonlinear regression in DF_NKF. Overall, the proposed DF can
determine the prediction mode based on the motion patterns, so
it achieves superior results.

C. Comparison With State-of-the-Art Methods

We compared the proposed method with 13 trackers, namely,
KCF [20], SAMF [47], Staple[23], C-COT [48], fDSST [55],
ECO [49], SiamRPN [42], SiamRPN++ [39], ASRCF [56],
GFS-DCF [50], CFME [18], SiamFC++ [57], and TransT [58].
These methods include CF based and deep learning based. The
CF-based CFME is an open-source design for SOT in SVs. Few
trackers are tailored for SVs. The codes are not public and some
key variables are omitted. Moreover, these methods were tested
on unpublished datasets and different benchmarks. Therefore,
we selected CFME for comparison. Table V summarizes the
characteristics of trackers and experimental results, sorted by
AUC of the success plot. Fig. 7 presents the average precision
and success plots. With AUC of 0.912 and 0.700 in the precision
and success plots, the proposed method performs remarkable
performance, whereas KCF achieves the worst. CFME produces
competitive performance due to the fact that the motion average
and Kalman filter are embedded in KCF to mitigate tracking
drift, ranking the first in the compared trackers. The proposed
DF tracker boosts CFME by 10.2% and 9.8% in the precision and
success plots, respectively. Compared with ECO, the champion
of VOT2017, the proposed method provides a gain of 19.9% in
the precision plot and 17.3% in the success plot due to the ex-
ploitation of potential spatial–spectral features. Compared with
ASRCF and GFS-DCF, the proposed approach reaches 23.1%
and 20.6% boost in the success plot due to the consideration
of motion model. This suggests that the motion information
contained in adjacent frames facilitates tracking in SVs. In con-
trast with SiamRPN++, the proposed method achieves a solid
improvement in accuracy. Compared with Staple, DF increases
the precision and success plots by 24%+, and compared with
SiamFC++ and TransT trackers, the proposed method exceeds



6694 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 5. Visualization of the (a) DF_NAF and (b) DF in Valencia_1. The number in the upper left corner of image indicates the frame. The first row shows the
response maps. High response scores are in red and low scores are in blue. The second row presents the tracking results (in green rectangles) and ground truth (in
red rectangles).

Fig. 6. Visualization of tracking results of DF_NRE, DF_NKF, and DF in SVs: (a) Muharraq_2 and (b) Minneapolis_1. The current frame of the video is displayed
in the upper left corner of each image, best viewed in color.

Fig. 7. (a) Average precision plot and (b) success plot of all trackers over 14
real SVs.

them by 26% and 38.5%, 25.7% and 35%, in the precision
and success plots, respectively. Overall, experimental results
verify that the proposed DF tracker well tracks the objects. It is
attributed to both the adaptive fusion mechanism incorporated
in feature flow and dual-mode prediction model embedded in
motion flow. Moreover, DF is capable of running at over 155 FPS
on the CPU. Compared with trackers operating on the CPU or
GPU, DF can achieve real-time speed in tracking objects of SVs.

Experimental results demonstrate the state-of-the-art effects and
superior speed of the proposed tracker.

Fig. 8 shows the precision and success plots of per-state to
evaluate the strengths and weaknesses of trackers. For clarity,
Fig. 9 shows the radar plots for top seven trackers. We find
that, for the precision plots, the DF ranks highest in three
(occlusion, overtaking, and motion blur) out of five states and
achieves the first in overall AUC. For the success plots, DF
ranks among top two trackers in four out of five states. The
reason why DF achieves inferior results under rotation datasets
is that slight background jitter would affect the position of the
object, weakening the performance of the dual-mode prediction
model. The proposed method achieves the fourth place under
the background clutter data. This is because the object is rel-
atively similar to the background, which limits the extraction
of prominent features. It can be seen DF achieves significant
improvement under the occlusion state. This is attributed to the
SAI and dual-mode prediction algorithm. The SAI perceives
the occlusion and nonocclusion states, and the signal is then
transmitted to the dual-mode prediction algorithm. It synthesizes
the linear and nonlinear motion patterns to handle occlusion
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TABLE V
DETAILS OF TRACKERS AND EXPERIMENTAL RESULTS ON 14 SVS

The first, second best, and third best are shown in color. “MS” = Mechanisms for scale. “MTD” = Mechanisms for tracking drift. (For framework, KCF = Kernelized
correlation filter, Transformer = Transformer-like, CSK = Circulant structure of tracking-by-detection with kernels, SiameseFC = Fully convolutional Siamese network, DCF
= Discriminative correlation filter, II = Integral image, and CCF = Continuous convolution filter. For features, HOG = Histogram of oriented gradients, CN = Color names,
ConvFeat = Convolutional features, and GCS = Global color statistics. For FPS, G means that the ConvFeat extraction depends on the GPU and C means that the feature
extraction depends on the CPU.)

Fig. 8. (a) Precision plots and (b) success plots of comparison experiments with 13 trackers under five abnormal states: occlusion, rotation, background clutter,
overtaking, and motion blur.
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Fig. 9. AUC of (a) precision plots and (b) success plots under abnormal states. The top seven trackers are shown. The values in parentheses indicate the range of
AUC in terms of overall and per state.

Fig. 10. Qualitative examples for top four trackers. (a) Valencia_1. (b) Hong Kong_1. (c) Minneapolis_1. (d) San Diego_1. (e) Muharraq_1. (f) Minneapolis∗_1.
(g) Jeddah_2. (h) Adana_1.

of objects, yielding significant performance. Overall, DF is
capable of coping with the abnormal states of the objects through
the hybridization of the spatial–spectral feature fusion and the
motion model.

In visual comparison, tracking examples of the top four track-
ers are shown in Fig. 10. In Fig. 10(c), a vehicle is occluded
twice when moving along a curved highway. DF is capable of
sensing the abnormal state and predicting the object’s position,
whereas C-COT and ECO all lose the object. Although the
CFME can predict the object’s position, it loses it due to limited
consideration of the nonlinear motion pattern of the object. As an

overtaking case in Fig. 10(e), a vehicle, similar to the buildings
and vehicles parking on the sides of the road, travels along a
narrow street. Only the CFME and DF capture the object in all
frames, whereas the DF tracks more accurately. In other cases
shown in Fig. 10, the proposed DF could track objects with
higher accuracy.

VI. CONCLUSION

SOT has great potential in remote-sensing surveillance. In
this article, we explore the SV SOT from the perspective of
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spatial–spectral feature fusion and motion model and propose
a CF-based DF tracker to address problems of limited feature
representation and tracking drift. In feature flow, an adap-
tive mechanism is employed to fuse complementary features.
The results are then refined in motion flow. A dual-mode pre-
diction model is constructed to simulate the motion patterns
for searching the object’s position, allowing the tracker robust
to abnormal states. Extensive experiments on 14 SVs prove the
outstanding performance in tracking objects of SVs. Future work
should focus on solving the rotation of objects.
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