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Application of Convolutional Neural Networks With
Object-Based Image Analysis for Land Cover and
Land Use Mapping in Coastal Areas: A Case
Study in Ain Témouchent, Algeria

Narimane Zaabar

Abstract— Land use and land cover (LULC) information is
a fundamental component of environmental research relating to
urban planning, agricultural sustainability, and natural hazards
assessment. In particular, remote sensing technology has demon-
strated a powerful capacity for LULC modeling with a corre-
sponding increase in sensor number and type. Here, an advanced
convolutional neural network (CNN) deep learning model was
developed in combination with object-based image analysis (OBIA)
to map LULC in Ain Témouchent coastal area, western Algeria,
using sentinel-2 and Pléiades imagery data. First, the CNN model
was constructed based on convolution, hidden, and max pooling
layers. The parameters of CNN architecture were optimized to
improve the model for further processing. Then, based on high
levels of CNN feature extraction, the OBIA was applied to classify
the segmented objects, and detect the LULC features. Furthermore,
machine learning methods, including random forest and support
vector machines were tested for comparison. The proposed method
achieved a high overall accuracy (93.5%) using Pléiades imagery,
revealing significant improvements compared to other machine
learning techniques. Accordingly, it was concluded that the method
proposed here is useful for LULC detection, and can be applied at
larger scales in coastal areas. The derived maps can also inform
regional and national-level decision making.

Index Terms—Coastal areas, convolutional neural networks
(CNN), land use and land cover (LULC) mapping, machine
learning, object-based image analysis (OBIA), remote sensing.

1. INTRODUCTION

AND use and land cover (LULC) mapping in coastal
I J areas is a fundamental determinant of environmental
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monitoring and management. Indeed, LULC data maintains
several environmental applications, including urban planning,
agricultural sustainability, and natural hazard assessments in
coastal areas. Further, frequently updated LULC information
at fine spatial scales are necessary for achieving various
sustainable development goals [1]. In particular, coastal areas
are important for their strategic geographic location and natural
ecosystems. Accordingly, LULC data in coastal cities are
increasingly useful for monitoring human interference, such
as increasing agricultural encroachment and urban expansion
correlated to demographic growth. Over the past few decades,
greater consideration has been given to remote sensing imagery
applications for LULC detection [1]. Several satellites have
been launched (e.g., Landsat, sentinel, and SPOT) designed to
monitor urban development, forests, agricultural, and natural
hazards [2].

Moreover, for high and very high spatial resolution (VHSR),
remote sensing imagers are increasingly being used in LULC
mapping analyses based on classification concepts using ma-
chine learning methods [3]. In recent decades, machine learning
methods have been applied to remote sensing LULC classi-
fication tasks [4], [5], in particular, pixel- and object-based
image analysis (OBIA) methods [6], [7], particularly random
forest (RF) [8]-[10], support vector machine (SVM) [11], [12],
and artificial neural networks [13], [14]. As the most critical
elements of image classification, the OBIA method is capable
of identifying interspersed geographic features and objects [15].
Under OBIA, objects are extracted via segmentation processes
considering spectral, textural, and contextual information of
similar pixels [16]. Recently, OBIAs have been extensively
applied to remote sensing assessments of LULC mapping, es-
pecially in coastal areas [17], [18]. Li et al. [19] investigated
the performance of remote sensing data and machine learning
methods when assessing anthropogenic LULC expansion in the
Liaoning province coastal zone of China. Here, OBIA was used
to perform LULC classification applied to Landsat TM/ETM
+/OLI images from 1990 to 2014, and showed the potential to
monitor anthropogenic LULC changes over the analysis period
(as indicated via its good overall accuracy; OA). Consequently,
even in coastal zones with low elevation, OBIA has been adopted
for the accurate detection of LULC. Nandam and Patel [20]
employed a hybrid method based on an SVM and spectral
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features to map LULC in the city of Surat, situated in the
western coast of Gujarat, India, using Landsat 5-TM, 7-EMT
and 8-OLI/TIRS series imagery data. In addition to the SVM
learning algorithm chosen to perform the classification process,
a set of spectral indices were extracted from the satellite images
aiming to improve classification accuracy, including the normal-
ized difference vegetation index, and the modified normalized
difference water index (MNDWTI). The SVM classifier was also
compared to RF to evaluate the more effective algorithm for
LULC classification in the coastal area, and the results revealed
that although both algorithms were statistically significant, ac-
curacy assessments showed that the SVM classifier was superior.
Furthermore, the results of some spectral indices with SVM
(e.g., MNDWI) have been validated across other testing sites
(OA value <92%), showing that the proposed approach can
be successfully implemented for LULC mapping of the coastal
urban plains.

However, despite the success of OBIA at accurately address-
ing LULC, the method remains relatively limited owing to
several classification uncertainties related to irregular objects
obtained by segmentation [21]. Additionally, OBIA accuracy
can be compromised under a large variety of LULC types,
especially in urban areas [22], resulting in inadequate fea-
ture extraction. Furthermore, OBIA based on machine learning
classifiers using the conceived features, or a binary classifier
typically do not consider deep level features extraction [23].
Deep learning models as a part of machine learning methods are
designed to resolve various tasks in image processing [24], and
their integration in remote sensing brings increased adaptability
in object representation, with high levels of feature extraction
from imagery data. Deep learning can increase the quantity of
information extracted, thereby improving classification results
for particular LULC tasks [25], [26]. Among deep learning
algorithms, convolutional neural networks (CNNs) [27], [28]
have been widely used in many classification tasks, particularly
in LULC modeling and change analyses [26], [29].

CNNs employ stacked convolution kernels to learn spectral
and spatial information, thus improving identification of high
level abstract features. Nevertheless, conventional CNN meth-
ods are characterized by a large number of layers, incurring large
computational costs [30]. In addition, CNN classification meth-
ods are often performed at the pixel-level; thus, the extracted
features can be confused due to the mixed spatial distribution
of LULC types and spectral mixing [31]. Alternatively, OBIA
methods utilize homogenous multi-pixel sets to classify objects;
thus, it could be optimal to integrate CNN models with OBIA
when performing the classification of segmented objects. This
advanced method has been tested under various LULC map-
ping applications [32], coastal LULC change monitoring [33],
and cropland classifications [34]. Furthermore, this integrated
method has been shown to be capable of powerfully extract-
ing high level image features, effectively defining LULC type
boundaries, and increasing classification accuracy.

Here, the primary objective of the study was to map LULC
in Ain Témouchent coastal area of western Algeria using an
OBIA-CNN method. The main remote sensing data employed
in the proposed methodology were Pléiades VHSR images (2 m

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

SIDI BELABBES

- iy ol Algeria

TLEMCEN

[ 20 30 p
- —

] Study Area [l Ain Témouchent -

Fig. 1. Ain Témouchent study area.

resolution) and sentinel-2A data (10 m). Assessments of the final
LULC classifications were conducted in terms of OA. Final maps
produced will be a useful tool in supporting regional and national
decision making in and around the study area. Additionally, the
following subobjectives were considered in the article.

1) Employing a simple CNN model with the fewest possi-
ble layers integrated in eCognition software for limiting
computational demand.

2) Optimizing CNN hyperparameters to improve classifica-
tion accuracy.

3) Comparing the proposed method with machine learning
methods (RF and SVM algorithms).

4) And, evaluating the contribution of each dataset used in
terms of the final LULC classification accuracy.

II. METHODS
A. Study Area

The area of interest is situated in northwest Algeria, at the
crossroads between three major cities; Oran, Sidi Bel Abbes,
and Tlemcen (see Fig. 1). The area includes the Mediterranean
coastal region of Ain Témouchent and the city center; moreover,
it incorporates the Sennane watershed, which crosses the urban
city (total area of 84 km?) as its control point downstream of
the city. The city is surrounded by mountainous areas with an
average altitude of ~500 m. Influenced by the Mediterranean
climate, the Ain Témouchent region is characterized by a warm
summer and temperate winter. Additionally, the winds from the
northwest and southeast bring little moisture to the area, as they
cross the Moroccan reliefs from the south. The study area is
characterized by heterogeneous LULC due to its confinement
to a narrow valley, while being surrounded by vineyards and
agriculture arranged on a high fertility basaltic soil. The most
dominant LULC categories in the region are built-up areas,
forests, and agricultural land, with the latter two being located
primarily in the rural area. The region is characterized by its
higher agricultural production and vineyard activity, totaling
25% of all national production. These agricultural activities
are accompanied not only by the service sector in line with its
geographical location, but by significant university community
growth as well. The vegetation cover consists of forest massifs,
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TABLE II
SENTINEL-2A SPECIFICATIONS

Spatial
Data type Band ‘Wavelength (nm)
Resolution (m)
Band 1(blue) 430-550 nm
Band 2
490-610 nm
Pleiades 14 (green) 2
Band 3 (red) 600—720 nm
Band 4 (NIR) 750-950 nm

but has been replaced by mountain farms in several places. The
urban city is featured by its layout and French style architecture.
Today, the city continues to experience great urban development
to the detriment of farmland and vineyards. Ain Témouchent
is also characterized by rapid population growth. The current
estimated population of the city in 2014 is ~97,812, with a
growth rate of —i—].E’;8%-yr‘l from 1987 to 1998, and +2.52%
from 1998 to 2008 according to the National Statistics Office.
Accordingly, the diversity of LULC categories in the study
area provides the opportunity for evaluating the ability of the
proposed method to extract LULC objects. Furthermore, the
town of Ain Témouchent is highly exposed to floods risks [32],
which requires up-to-date LULC information, in particular, in
some flood prone areas. Hence, final LULC will be exploited as
part of the strategy of local and national authorities to plan flood
prone zones and combat illegal construction in the parts where
the flood risk is high.

B. Remote Sensing Data and Preprocessing

Two different data sources were acquired to produce LULC
maps. First, Pléiades VHSR imagery are derived from a dual-
optical satellite (Pléiades 1A) and 2012 (Pléiades 1 B) designed
for earth observation available to order. The PléiadeslA and
Pléiades 1B were launched on a Soyuz ST from Europe’s space
port in Kourou, French Guiana, on December 17, 2011 and
on December 2, 2012, respectively. Accordingly, two Pléiades
datasets were required to cover the entire study area, and were
acquired from the 1A platform on October 17, 2020. All images
were obtained under good cloud cover conditions (0%), while
the data included panchromatic images and four multispectral
channels (red, green, blue, and near-infrared—NIR), at a spatial
resolution of 2 m. The acquisition properties of Pléiades are
given in Table I.

The second image was derived from sentinel-2A data, as
acquired freely through the sentinel-hub.! The sentinel-2 image
was acquired on the same date (October 17, 2020), allowing for
a comparison of the results from both the proposed methods.
These images have 13 spectral bands. Accordingly, the high
spatial, spectral, and temporal resolution of sentinel satellites
are appropriate for LULC monitoring programs, given its high
revisit frequency (ten days for a single sentinel-2 satellite and
five days for the combined constellation). Table II gives addi-
tional acquisition properties of sentinel-2 imagery.

![Online]. Available: https:/scihub.copernicus.eu/
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Fig. 2. Overview of the Pléiades (left) and sentinel-2A (right) images.

Pléiades images were mosaicked to obtain a single image;
whereas sentinel-2A data were already geometrically corrected
at the time of acquisition. Sentinel-2 bands with spatial resolu-
tion different to 10 m were resampled to 10 m using the sentinel
applications platform (SNAP v.5.0), as the classification process
requires the same size input images. An overview of the Pléiades
and sentinel-2A imagery in the Ain Témouchent study area is
shown in Fig. 2.

C. Methods

The workflow of the proposed experiments consisted of the
following steps.
1) Training and test samples generation and spectral feature
extraction.
2) LULC classification via the proposed integrated method
of CNN deep modeling with OBIA.
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Fig. 3. Flowchart of the developed methods.

3) LULC classification using pixel-based and OBIA meth-
ods (RF and SVM were the machine learning classifiers
employed).

4) Accuracy assessment of LULC maps. Fig. 3 shows the
flowchart of the developed methods.

1) Sample Generation for Training and Validation Classifi-
cation Process: LULC categories were identified using visual
analysis and interpretation of the Pléiades VHSR image, pro-
ducing ten predominant classes: forests; cultivated land; green-
houses; built-up areas; barren land; follow land; uncultivated
land; roads; stadiums; and water. Since the spatial resolution
of the sentinel-2A image is lower than that of the Pléiades
data, six corresponding LULC categories were identified: water,
cultivated land, uncultivated land, barren land, built-up area, and
forests.

Sample generation was split into two categories: training and
test samples. The generation provided two vector datasets using
quantum geographic information system (version: 3.16). The
training vector was applied during the classification process;
whereas the test vector was used in both accuracy assessments.

2) Classification Process:

a) Classification of the CNN deep model integrated with
the OBIA approach: 1) CNN architecture: CNN is a deep
learning model technique designed for image classification,
and inspired by the architecture of the biological multilayer
neural networks, which allows for the construction of high-level
semantic features from low-level given features [31], [35]. A
representative CNN architecture consists of sequential layers
(e.g., convolutional, pooling, and fully connected layers) and
interconnected output layers using nonlinear operations [23].
Two important characteristics are considered in any CNN ar-
chitecture: local connectivity designed to simplify the CNN by
limiting the number of connected neurons, and shared weights
responsible for reducing and simplifying model parameters
by considering the same connected weights between different
neurons in a given layer. [30]. Similarly, through the convo-
lutional layers, the CNN model can extract features based on
multiple convolutional operations in an input image, thereby
transforming a local receptive field of the connected region on

—_————————

Input Layer : nage patch Hidden layer 1

Fig. 4. CNN architecture of Pléiades image.

the input data into a pixel of the next layer. Furthermore, the pool-
ing layer is important in any CNN model which merges similar
features into one, capable of reducing feature map dimensions
[36], [37]. Average and max pooling are typically the most ap-
plied layers in CNNs. Additionally, each CNN layer is produced
by small sample patches of a certain size scanned across the input
image to capture different feature characteristics.

In CNN model design, it is essential to find the appropriate
architecture capable of meeting the research needs. Because, the
CNN process for deriving output layers is constructed across
several stages producing a set of feature maps [38], the training
of any CNN model allows for the optimal combination of model
parameters. Thus, the optimization of CNN hyper-parameters
(e.g., sample patch size, hidden layers, and learning rate) is an
essential step for obtaining a performant model.

Here, the CNN architecture was created in Trimble eCog-
nition Developer v.10. The main layers characterizing CNN
structural design implemented were the hidden, convolution,
pooling, and fully-connected layers; whereas the process con-
sisted of three main steps: creation of sample patches; generation
of and training the model; and model application. ECognition
is advantageous for its integrative ability to perform CNN
classifications with OBIA. Detailed CNN architecture using
Pléiades and sentinel-2A input data are shown in Figs. 4 and
5, respectively. Further, two optimal CNN models were adopted
for both Pléiades and sentinel-2A input imagery, in accordance
with previous studies [31], [35], [39].
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Fig. 5. CNN architecture of sentinel-2A image.

3) Labeled sample patch generation for the CNN deep model:
Labeled sample patches were generated from the entire input
image. Sample patch sizes are considered as one of the most
critical parameters in optimal CNN architecture [40]; thus, dif-
ferent sizes were considered for both images: 8 x 8, 10 x 10, 16
x 16,20 x 20,32 x 32, and 64 x 64 pixels. In addition, through
a cross validation method, the sample patch size of 16 x 16 was
attributed for Pléiades data, and 32 x 32 for sentinel-2A data.
Further, sample count and image bands are required parameters
that should be reviewed; thus, all spectral bands were used, and
a set of 10000 labeled sample patch were generated for each
model in both images.

4) Creating and training the CNN deep model: Based on
integrated algorithms of the CNN creation architecture in eCog-
nition, the model was derived using all spectral bands of data
for the input, and generated LULC classes for the output. The
number of hidden layers, feature maps, kernel sizes, and max
pooling layers are user-defined parameters; thus, for Pléiades
data, two hidden layers were built for the CNN model after
a cross validation execution, and the assessment of the CNN
output accuracy results. A max pooling was applied in the study
here with an even number size. The goal was to decrease the
number of units by preserving only the maximum response of
multiple units in the hidden layer [41]. Similarly, after a cross
validation method, a convolution was implemented for each
layer with a kernel size value of 3 x 3 for the first hidden layer,
and 5 x 5 for the second layer; however, in the case of CNN
model creation using the sentinel-2A image, only one hidden
layer was created and applied with max pooling, convolution
layer, and a kernel size of 7 x 7, based on CNN accuracy results.

Next, the CNN model was trained using the labeled sample
patches and parameter configurations, and the model weights
were adjusted using backpropagation. Notably, parameter ad-
justment is important in this step. The learning rate is an
important parameter which controls the learning step size for
each training iteration; thus, inappropriate rates can lead to
slower divergence or convergence [31]. Accordingly, values of
0.0006, 0.0009, 0.001, 0.005, and 0.01 were tested, with lower
values slowing the learning process by finding local minima or
suboptimal weights; whereas higher values speed up the rate at
anincreased risk of missing the optimal minima [41]. Ultimately,
the accuracy results indicated a rate of 0.0006 most accurately
represented the amount of weight adjustment during statistical
gradient descent optimization. Training steps and samples were
set as 5000 and 50, respectively, for both input data.
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5) Application CNN deep model: Finally, fully connected
layers (heatmaps) were generated after applying the created
CNN model, where heatmap layers corresponded to the LULC
categories. The heatmaps had a unit for each category predicted
by CNN, where two possibilities existed: a value close to 1
indicated a higher likelihood of the category, while a value near
0 indicated a lower likelihood. For the Pléiades image, the ten
produced heatmaps layers were equivalent to the ten identified
land cover categories; whereas six heatmaps were generated for
the sentinel-2A image, six heatmaps layers were produced as
output.

6) OBIA classification: As the CNN model was performed at
the pixel level, the classification of the integrated model with
OBIA consisted of applying the latter approach to classify the
entire input image at the object-level. Here, the heatmap was
utilized as the input features to perform the OBIA. The sentinel-
2A and Pléiades data were transformed into segmented images
through a multiresolution algorithm [42]. Multiresolution mod-
els are region-growing models, and assemble pixels to provide
objects through iteration, while maintaining the homogeneous
conditions defined by the user [34]. Based on trial-and-error,
different scale parameter values from both sets of input data
were tested to obtain the highest possible classification accuracy.
Through the cross validation of Pl¢iades and sentinel-2A images,
values of 15 and 5 were selected for the scale parameters, respec-
tively. The other homogeneous criteria (shape and compactness)
were set to default values of 0.1 and 0.5, respectively.

a) Methods based on machine learning algorithms for
comparison: Two machine learning algorithms were chosen for
the comparison with current proposed method: RF and SVM.
These algorithms have been frequently applied in remote sensing
analyses, are recognized for their powerful features and often
considered the default techniques for LULC modeling [11], [12],
[43].

RF [38] is a powerful machine learning algorithm with excel-
lent LULC mapping capabilities using different source data [39].
RF is a nonparametric model that creates multiple decision trees,
with each tree constructed by assigning the most popular class to
the input images. In LULC classification, the RF classifier has
shown to be consistent and relatively efficient, requiring few
user-imposed parameters, and producing an OA that is often
consistent or better than other algorithms (e.g., conventional
decision trees and maximum likelihood) [44]. For training the
RF classifier, two important parameters must be assigned: the
maximum number of trees (Ntree), and the number of features
should be selected for each tree (Mrry). Together, these two
parameters have a high impact on the classification performance
[45], [46].

Alternatively, the SVM is a non-parametric algorithm for
classification and regression image analyses [39]. It is often
used in LULC mapping tasks, as it is a discriminant classifier
that minimizes inaccuracy of images by identifying solutions
in a hyperplane that transforms data into predefined classes. In
instances where the data features are inseparable, SVM has a
kernel function that projects the data into higher-order functions
[47]. Several kernel features are used in the SVM model: the
Gaussian radial basis function (RBF), in addition to polynomial,
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TABLE IV
ACCURACY ASSESSMENT OF LULC CLASSIFICATION FROM PLEIADES IMAGES

TABLE III
TUNING MACHINE LEARNING PARAMETERS
Data Method Classifiers Hyperparameters
RF Ntree: 300
OBIA Mtry: 10
SVM Gl
Pléiades Gamma: 0.5
) RF Ntree: 100
rmase Pixel Miry: 10
SVM Gl
Gamma: 0.5
RF Ntree: 200
OBIA Mtry: 10
_ SVM C:2
Sentinel Gamma: 0.1
24 RF Ntree: 100
; Pixel Miry: 2
image
SVM C:2
Gamma: |

linear, and sigmoid functions. Here, an RBF kernel was applied
for SVM classification. The C and ~ parameters are the two
fundamental components controlling the performance of SVM
when the RBF is considered as the kernel function [48], [49].
Indeed, the parameter C is used to control the magnitude Penal-
ties for regularizing misclassified training dataset and plays an
important role in affecting accuracy and/or the generalization
ability of the algorithm [12]. The ~ parameter gamma effect is a
control Kernel widths, as well, in SVM classification based on
RBF kernel, the effect of vy is similar to C because if a high When
assigning value, the model is over-fitted and the generalization
is not good [49].

A large dataset was tested to optimize and choose the param-
eter values for the two algorithms, with the aim of creating the
most efficient classification model. For RF algorithm, values of
Ntree = 50, 100, 200, 300, 400, and 500 of were tested by main-
taining the Mtry at default value. Further the best determinate
value of Ntree was set as default value a set of values of Ntry
were experienced ranged between 2 and 30 (2, 5, 10, 15, 20, 25,
and 30). Further, the same process was followed considering
SVM algorithm, values ranged for 1 to 20 (C =1, 2,4, 5, 8, 10,
15,20),and 0.5t0 5 (y = 0.5, 1, 2, 3, 4, 5) for both C parameter
and Gamma respectively. The hyperparameter values derived for
the optimization process using cross validation method are given
in Table III. It should be reported that the pixel-based method
was performed in Orfeo Toolbox, and OBIA was performed in
eCognition.

7) Accuracy Assessment: Accuracy assessments aim to val-
idate results and confirm the stability of each applied classifier
in the proposed methodology. The obtained classification accu-
racies were assessed using OA, user accuracy (UA), producer
accuracy (PA), and the kappa index (K) derived from a confusion
matrix, as these are the most common metrics used for evaluating
LULC classification accuracy [S0]. OA represents the overall
performance of the applied method by calculating the ratio of
the total number of correctly classified pixels to the total number
of pixels for terrestrial investigation across all categories. PA was
calculated by dividing the number of correctly classified pixels
in each LULC class by the total number of pixels in that row

Land cover Metrics RF_ SVM_ RF_ SVM_ OB_
type (%) Pixel Pixel OBIA OBIA CNN

PA 98.5 97.7 97.4 95.1 99.3
Water

UA 100 97.7 99.6 99.1 99.4

PA 91.1 73.0 92.4 89.5 91.2
Culti 1 land

UA 85.6 88.9 68.03 68.3 70.9
G PA 84.3 91.2 91.9 92.9 89.5

h

UA 89.7 47.1 92.7 733 94.3

PA 752 82.5 84.7 80.8 96.2
Built-Up

UA 67.9 59.7 98.7 87.2 95.1

PA 79.6 45.8 92.01 86.91 93.9
Fallow

UA 95.6 78.4 96.2 96.1 95.2

PA 92.4 81.3 88.7 90.5 89.2
Barren land

UA 95.9 28.5 67.4 532 94.3

PA 88.7 73.6 88.4 86.6 91.3
Roads

UA 86.8 87.4 94.4 92.7 97.7
Uncultivated PA 88.3 69.30 84.7 79.6 90.8
land UA 87.4 88.1 98.7 98.8 97.6

PA 71.8 72.8 76.0 82.2 93.1
Forest

UA 77.5 45.5 92.0 94.3 90.8

PA 95.2 97.7 94.0 92.2 49.9

UA 95.4 100 97.3 88.9 96.1

and column, providing individual class precision, whereas UA
represents the probability that a pixel assigned to a given class
is part of that class [29].

III. RESULTS

Here, the results of accuracy assessments for all performed
methods are presented, in addition to final land cover maps for
each method from three subset regions within the study area. To
improve visual analyses, these three classification subsets were
extracted, and included the Ain Témouchent center as an urban
area, in addition to the coastal area.

A. Statistical Accuracy Assessment

1) Pléiades Data: Table IV gives the results of achieved
accuracy assessment among the applied methods. The proposed
OBIA-based CNN method yielded an OA of 93.5%, and a kappa
of 0.91 for the 10 LULC categories in the study area. The
OA achieved by the proposed CNN method thereby exhibited
significant improvement compared to other tested methods. In
addition, RF-OBIA and SVM-OBIA achieved OAs of 91.8%
and 88.2%, as well as kappas of 0.91 and 0.84, respectively;
whereas pixel-based RF and SVM achieved OAs of 84.8% and
72.9%, as well as kappas of 0.83 and 0.70, respectively. Based
on the CNN deep model, water and roads maintained the highest
UAs—99.3% and 97.7%, respectively. Further, the majority of
classes held UA values >93%, including greenhouses, built-up
areas, uncultivated lands, and barren lands. Cultivated lands
were considered the poorest classes in terms of UA (average
~80.8%) their overlapping pixel reflectance values and confu-
sion with oter classes; however, each were detected with UA
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TABLE V
ACCURACY ASSESSMENT OF LULC CLASSIFICATION
FROM SENTINEL-2A IMAGE
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TABLE VI
OVERALL ACCURACY (OA) AND KAPPA WITH PLEIADES
AND SENTINEL-2A IMAGERY

RF_ SVM_ RF_ SVM_ OB_

Land cover type Metrics Image data Model OA (%) kappa
Pixel Pixel OBIA OBIA CNN
PA 972 95.5 96.5 983 100 RF_Pixel 84.8 0.83
Water -
UA 98.1 100 98.9 96.7 100 SVM_Pixel 72.9 0.70
PA 60.1 66.2 98.7 63.3 99.6 Pléiades RF_OBIA 91.8 0.85
Barren lands -
UA 64;0 84.0 94.8 90.8 82.6 SVM_OBIA 88.2 0.84
PA 71.1 70.1 98.0 47.9 82.6
Cultivated land OB_CNN 935 091
UA 50.5 99 85.0 75.1 84.1 RF Pixel 0.1 0.71
PA 84.0 78.0 89.0 83.6 65.5 SVM Pixel 774 0.69
Built-Up — . i
UA 73.0 75.0 98.0 67.4 99.9 Sentinel-24 RF_OBIA 91.0 0.87
PA 72.0 98.9 98.9 84.4 83.3
Unculti I land SVM_OBIA 72.0 0.70
UA 46.4 47.0 96.6 64.0 71.7 OB CNN 834 0.80
PA 522 99.0 96.6 86.2 74.7 -
Forest
UA 322 46.0 98.9 26.6 63.3

of 68% and 90.8%, respectively. Additionally, some confusion
was observed between roads and built-up areas, which were
classified with UAs of 97.7% and 95.1%, respectively.

The OA achieved with respect to methods based on RF/SVM
algorithms was generally satisfactory, with the results demon-
strating that OBIA RF and SVM algorithms outperformed pixel-
based RF and SVM, producing a 7% difference in OA (84.8%—
91.8%). The optimal results provided by the OBIA methods
was achieved with RF, which had an OA of 91.8%, and kappa of
0.85. Alternatively, SVM reached an OA of 88.2%, and kappa of
0.84. Further, the same trends were observed when comparing
pixel-based algorithms, where RF achieved an OA of 84.8% and
kappa of 0.83, while SVM achieved an OA of 72.9% and kappa
of 0.70. The LULC classes most efficiently detected by RF were
water and stadiums, with UAs of 99.6% and 99.3%, respectively
(see Table IV). In contrast, cultivated and barren land was
the most poorly classified, with UAs of 68.03% and 67.4%,
respectively. In pixel-based RF, water and barren land were well
classified, with UAs of 100% and 95.9%, respectively; however,
built-up areas and forest were the least accurate in terms of
UA (67.9% and 77.5%, respectively). Furthermore, confusion
remained between built-up areas and roads, in addition to forest
and cultivated lands, due to pixel reflectance.

2) Sentinel-2A Data: The results obtained for sentinel-2A
data were tiered (see Table V). Additionally, the proposed
CNN deep model with OBIA, and other tested methods based
on RF/SVM achieved satisfactory results, with OAs ranging
from 77.4%-91.0%. Furthermore, OBIA based on RF produced
superior results, with an OA of 91% compared to the CNN
model with 83.4%. This can likely be explained by the effects of
spatial resolution in the classification process. Moreover, in both
methods, water and built-up areas were well classified, with UAs
of 100% and 99.9% for the CNN based OBIA, and 98.9% and
98.0% for RF-OBIA, notably similar to that of forests, which
were also well classified under this method (98.9%). For the
pixel-based method, water and built-up were well detected, with
UAs of 98.1% and 73.0% for RF. For both classifiers, forests
were the least accurately classified, with UA< 35% for RF and<
47%. for SVM.

With respect to machine learning methods, the results
achieved with RF were vastly superior to those with SVM
for both OBIA and pixel-based methods. RF-OBIA and SVM-
OBIA achieved 91% and 72%, respectively, while RF-Pixel and
SVM-Pixel achieved 80.1% and 77.4%; thus, RF outperformed
SVM regardless of method used.

The achieved results for both data types were compared. In
terms of OA, Pléiades data provided better results than sentinel-
2A under the tested methods, including the proposed OBIA CNN
method, with a difference of 2.5%. Similarly, machine learning
based on RF and SVM methods achieved better results, with
differences of 0.8% and 16.2%, respectively. For the pixel-based
method, Pléiades data outperformed sentinel-2A by 4.7% for
RF, and 4.5% for SVM. The obtained OA and kappa among all
methods are given in Table VI.

B. LULC Mapping From Pléiades and Sentinel-2 Data

Figs. 6-8 present the classification results of the methods
for the Pléiades image. Through the visual examination of the
land cover maps, the 10 LULC categories were detected in all
methods, though a number of differences were observed. Thus,
OBIA-based CNN was the most suitable method for detection
and delineation of LULC categorical boundaries. In particular,
built-up areas, cultivated land, roads, and stadiums were well
delineated. Regarding the other methods, some confusion was
observed in the derived maps between roads and built-up areas,
as well as forest and cultivated land.

Notably, pixel-based RF and SVM presented the worst classi-
fication. Built-up areas were well detected in CNN compared to
all other methods, as confirmed in the coastal area (see Fig. 8),
where CNN accurately delineated the port from barren lands
(i.e., beaches). In contrast, the coastal buildings were misclas-
sified with both the OBIA and pixel-based analysis methods.
Similar results were observed for cultivated land (see Figs. 7 and
8), as CNN had the capacity to distinguish between cultivated
lands and forests, while the majority of agricultural areas were
also well delineated. Comparing the classifiers for each machine
learning method, a slight difference in classification was de-
tected between RF and SVM. In general, there was confusion
in distinguishing between roads and buildings in final LULC
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maps. In the SVM-pixel map, forests were misclassified, being
confused with cultivated and fallow lands.

Figs. 9 —11 present the classification results of the different
methods provided for the sentinel-2A image. The six categories
were detected for all methods, though there were a number
of remarkable differences in the final LULC maps. For the
proposed CNN based on OBIA, buildings, uncultivated land, and
cultivated lands were well defined. CNN classification displayed
similar results to RF-OBIA (see Fig. 9). Similarly, uncultivated
land was well identified, albeit with limited confusion. In SVM

SVM-OBIA

RF-Pixel

RF-OBIA

suitp [ Fallow 0 025 o0Skm
Stadiums Roads

Bl v B Culiivated land Greenhouses [
Uncultivated land [ Bareoland [ Forest ]

Fig. 8. Pléiades LULC map of subset 3: Ain Témouchent coastal area.

learning methods, confusion between cultivated land and forests,
as well as uncultivated land and built-up areas were observed,
indicating poor classification (see Fig. 11). Roads, included in
built-up areas, were also well delineated with the majority of
methods. Comparisons of the final maps provided from sentinel-
2A data and Pléiades data showed that LULC maps based on the
latter were of higher quality in terms of delineating each LULC
category due to the effects of enhanced spatial resolution during
the classification process.
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Fig. 10.  Sentinel-2A LULC map of subset 2: Ain Témouchent center.

IV. DISCUSSION

Although the application of machine learning methods in
LULC mapping, in particular OBIA-based classification, has
achieved good results in several studies [ 15], [16], these methods
suffer from problems related to misclassifications, due in part to
the heterogeneity of LULC classes, and the similarity between
their spectral signatures. Accordingly, an extraction technique
with a higher level of features is required. In this regard, the
development of CNN techniques has recently increased, and

- Water - Cultivated land - Built-up Barren land :'L‘nmlnvawd land - Forest L E—
Sentinel-2A LULC map of subset 1: Ain Témouchent center.
CNN-OBIA

CNN-OBIA SVM-OBIA

] water [l Coltivated tand [JI Built-vp Barren land [___| Uncultivated land [l Forest
o

0.25 0.5 km

Fig. 11.  Sentinel-2A LULC map of subset 3: Ain Témouchent coastal area.

demonstrated a high capability for LULC mapping. Several
analyses based on CNN models have addressed LULC detection,
especially in coastal areas [51], [52]. Experimental results of
these studies demonstrated a high potential in LULC detection,
and accuracy improvements in classification > 90%. In spite
of the high performance of traditional CNN models in LULC
classification, analyses are conducted at the pixel-level, which
can result in misclassifications due to the spatial distribution of
classes, in addition to the large number of CNN layers created



5186

mm OA-pleiades === OA-Sentinel

100
80 / :

60

OA (%)

40

20

8 10 16 32 64

Size of sample patch

Fig. 12.  Effect of sample patch size of CNN on OA.

to perform the classification. CNN-based OBIA methods can
address these limitations by classifying images via segmented
objects; thus, features generated automatically with a high level
extraction through a CNN model.

In this article, a CNN deep learning model combined with
an OBIA method was used to extract LULC features in Ain Té-
mouchent, Algeria. The proposed methodology integrated CNN
for in features extraction with OBIA classification. The method-
ology proposed was performed on two distinct sources of remote
sensing imagery: Sentinel-2A and Pléiades data, acquired on the
same day in October 2020. In addition to the deep CNN method
integrated with OBIA, two further methods (OBIA pixel-based
analysis) based on machine learning algorithms (RF/SVM) were
tested on both datasets as well, to compare the capabilities of the
proposed CNN-based methods. Furthermore, an optimized CNN
model and OBIA was used to improve classification accuracy,
and produce LULC maps with higher quality interpretation. For
the Pléiades image, two primary layers (convolutions and max-
pooling layers) were adopted as the CNN architecture, with a 16
x 16 input sample patch size. The CNN parameters (e.g., sample
patch size, hidden layers, and learning rate) were optimized
based on cross validation methods to obtain the final architecture
with optimal accuracy. Similarly, the same process was applied
to sentinel-2A imagery; whereas a single hidden layer with
convolution, and max pooling layers were incorporated, along
with an input sample patch size of 32 x 32. Notably, the CNN
parameters, especially sample patch size, significantly affected
the accuracy of classification performance. For sentinel-2A,
one hidden layer was generated to achieve a positive result.
Contrary to Pléiades data, the optimal OA results were obtained
by generating two hidden layers. Similarly, according to prior
experience, sample patch size assigned to the classification
process also exerted a significant influence. Indeed, a number
of the tested sizes produced inaccurate classifications, while
others produced the optimal LULC maps with respect to OA.
Furthermore, Fig. 12 shows the results of the tested patch size
values from both datasets used to generate the CNN model.

The graphs evaluated the influence of patch size on OA. For
the Pléiades data, large (64 x 64) and small patch sizes (8 x
8) produced inaccurate classifications; whereas similar patterns
were observed for sentinel-2A data. Moreover, the generation

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

RF-OBIA m— SVM-OBIA
100
80

60

OA(%)

40

20

5 10 15 20 30 40 80
Scale

Fig. 13.  Effect of scale parameter on OA.

of a CNN model with a large patch size requires greater degrees
computational power, material, and time. Overall, the work here
highlighted the benefits of a simple CNN architecture compared
to other studies that have used multiple layers and large patch
sizes [28], [51], [57]. For example, Zhao et al. [53] assessed the
effects of CNN architecture depth on deep extraction learning,
training CNN models with 1-5 different depths for evaluating the
corresponding impacts. Results confirmed that the deeper CNN
architectures produced the highest classification accuracies (<
95%); however, generating these models requires significantly
more time and computational power. Comparing these findings
to those revealed here, similarly accurate results (OA > 93%)
were obtained by via a simplistic CNN architecture with two
hidden layers. Moreover, our results is conformed to Ghor-
banzadeh et al. [35] results, who also found that the size of
input sample patches for CNN models could significantly affect
classification. Here, through an optimization method, the size
of the optimal sample patch was set to 20 x 20 in order to
perform the CNN-based classification combined with OBIA,
with the findings confirming that in addition to CNN capacity,
OBIA through (multiresolution segmentation) also improved the
classification, ultimately improving extraction.

Furthermore, despite the ability of CNN architecture selection
and OBIA input features to improve classification, it is essential
to consider the influence of scale parameters on segmentation
processes. As mentioned in Fig. 13, OA values were affected by
scale parameter (as also seen in [52] and [53]). Here, the shape
and compactness parameters were set to default values of 0.1 and
0.5, respectively. This key parameter was that controlling the size
of the segmented objects, thereby adjusting the desired level of
detail; consequently, tuning this parameter is an essential step to
obtaining optimal classification results. Here, 15 was the optimal
value of the scale parameter in CNN-based OBIA methods and
the other machine learning methods for both input images.

Hence, the CNN combined with OBIA significantly improved
OA classification by 1.7% over what RF-OBIA achieved when
assessing the Pléiades VHR image. The results here thus demon-
strated the effectiveness of CNN as a classifier, and its potential
to identify the boundaries of LULC categories. Consequently,
CNN is very useful for LULC classification, in particular, over
large-scale environments. For the sentinel-2A image, the com-
petition was remarkable between CNN and RF performed with
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OBIA, while the RF classifier obtained the best results, with an
OA > 7% stronger. Therefore, for the machine learning methods,
results of the classification affirmed that OBIA outperformed the
pixel-based analyses for both datasets, as has been seen in earlier
LULC studies [54], [55]. Conversely, when comparing machine
learning classifiers (RF and SVM), both achieved good results,
with OAs > 70%.

Considering the LULC maps (see Figs. 6-11), the proposed
methods here produced the most accurate LULC features in
the study areas, where nearly all LULC classes were well dis-
tinguished. Furthermore, for LULC classification based on the
Pléiades image (see Figs. 6-8), the proposed method allowed for
the detection of all desired LULC classes water, cultivated land,
greenhouses, built-up area, fallow, uncultivated land, roads, bar-
ren land, forests, and stadiums. Moreover, classification bound-
aries were well delineated, with buildings being particularly
well distinguished from roads. Similarly, despite the similarity
in pixel reflectance between forests and cultivated lands, both
classes were well extracted. For sentinel-2A image analyses (see
Figs. 9-11), LULC categories water, cultivated land, unculti-
vated lands, built-up areas, barren lands, and forests were also
well identified using the proposed and machine learning meth-
ods. Notably, the derived LULC maps for the proposed method
and RF-based OBIA algorithms were much more similar. Thus,
due to various misclassification, CNN based OBIA was shown
to be the most suitable for LULC class detection. Regarding
spatial resolution, LULC maps provided from Pléiades were
had a higher level of spatial detail.

Despite the superior accuracy derived by CNNs combined
with OBIA when compared to machine learning methods alone,
the latter methods, especially those based on the RF classifier,
were competitive, and achieved successful results in LULC
classification. As mentioned in several previous studies [56],
[57], RF performed better than SVM regardless of the satellite
data used. For the Pléiades data, RF outperformed SVM by
11.9% with the pixel-based method, and by 3.6% using OBIA.
Similarly, for sentinel-2A data, the RF classification produced
an improvement in OA > 2.7% for the pixel-based analysis,
> 10% for OBIA. Accordingly, RF parameters affected the
training of the classification. Moreover, the optimization of RF
parameters, primarily the total number of trees, can enhance the
classification results. According to the cross-validation method,
a large number of trees (50 500) were tested here, and OAs were
evaluated for each value. Fig. 14 illustrates the impacts of the
RF tree number on the OA for the classification from OBIA
and pixel-based methods, where the hyperparameter’s strong
influence on classification accuracy can be confirmed.

In fact, as part of automated LULC mapping methods, this
article demonstrates the potential of CNN for LULC classifi-
cation provided for object segmentation from high and very
high-resolution data. Although, deep learning models require
multiple data samples with high quality for algorithm optimiza-
tion. LULC classes are better identified by using only semantics
rather than just images, which is reflected in accuracy scores
and qualitative analysis. A principal component in CNNs is the
availability of large training data which allow to successfully
training of the model. Consequently, performance is investigated
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with some perspectives, in particular; examines the overall per-
formance of the LULC classifications, and discusses the per class
accuracies. It also discusses qualitative analysis and clarifies
how semantics can be used as a source of information in the
LULC classification. In particular, the LULC classes related to
artificial structures, such as the built-up class, have higher classi-
fication accuracy. Globally, our proposed deep learning method
successfully discriminates, classifies very similar classes based
on spectral cues, and generates highly accurate LULC maps.
Despite the superiority of the proposed model, we find that our
deep learning model typically requires more training samples
than traditional machine learning methods

V. CONCLUSION

The study here assessed and mapped LULC in the Ain
Témouchent coastal area situated in western Algeria. A CNN
deep learning model developed in combination with OBIA was
applied, and machine learning methods based on RF and SVM
classifiers were tested. The proposed methods were conducted
on two different remote sensing data types, Pléiades VHSR and
sentinel-2A high spatial resolution data, with the aim of testing
the contribution and potential of each dataset in the extraction
of LULC features. The parameters of CNN architecture, in
particular the size of sample patches and CNN layers (including
hidden, convolution, and max pooling layers) were improved to
produce optimal model architecture, and enhance classification
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accuracy. The proposed CNN deep model integrated with OBIA
showed significant improvements in LULC mapping compared
to other machine learning classifiers, achieving an OA and kappa
of 93.5% and 0.91 for Pléiades data, respectively, and 83.4%
and 0.80 for sentinel-2A data. In addition, despite the capability
of CNN models in high level LULC extraction, the OBIA
method should be improved by optimization of the segmentation
parameters. Notably, the scale parameter in multiresolution seg-
mentation is key to controlling the size of the segmented objects,
and should be optimized for improving OBIA classification.

Furthermore, results of machine learning methods confirmed
that OBIA outperformed pixel-based analysis, and that RF was
more stable than SVM for both datasets. In addition, given the ef-
fect of spatial resolution, the proposed CNN method performed
better with Pléiades data, showing significant improvements of
LULC maps regardless of the tested methods. Furthermore, the
method offers higher accuracies, and can be applied over larger
scales, with different remote sensing data sources.

The results here revealed that it is possible to map LULC in
coastal areas using machine learning algorithms applied to data
with different spatial resolutions. Accordingly, the final LULC
maps are different, and the level of LULC classes detected was
dependent upon the chosen resolution. Despite the lower resolu-
tion of sentinel-2 data, visibly usable maps were still produced.
Hence, for more detailed analyses that require fine-scale LULC
details, using VHSR products is recommended in heterogeneous
coastal areas. The final maps produced here can serve as a
database for other applications (e.g., assessments of flooding
vulnerability, which require detailed LULC information during
the modeling process), and can be considered a helpful tool in
supporting regional and national-level decision making concern-
ing LULC in and around Ain Témouchent coastal area.
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