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Abstract—Wetland is one of the most productive resources on
earth, and it provides vital habitats for several unique species of
flora and fauna. Over the last decade, mapping and monitoring
wetlands by utilizing deep learning (DL) models and remote sensing
data gained popularity due to the importance of wetland preser-
vation. In general, DL-based methods have shown astonishing
achievement in wetland classification, but some practical issues,
such as limited training samples, still need to be addressed. More-
over, the performance of most of the DL approaches is decreased
when moderate-resolution images with few features are used as
input data. One solution to breaking the performance bottleneck
of a single model is to fuse two or more of them. To this end,
we strive to investigate and develop a multimodel DL algorithm
for wetland classification based on the combination of a graph
convolutional network (GCN) and a shallow convolutional neural
network (CNN), which is called the Wet-GC algorithm hereinafter.
In doing this, moderate-resolution Sentinel-1 (S1) synthetic aper-
ture radar (SAR) and Sentinel-2 (S2) multispectral optical imagery
are fed into the GCN and CNN models, respectively. As we know
from the literature, the synergistic use of S1 SAR and S2 optical
imagery can be used to extract different types of wetland features
and increase the class discrimination possibility. Hence, wetland
mapping by jointly using GCN and CNN has the ability to boost
the wetland classification task. Findings indicate that the efficiency
of Wet-GC with an overall accuracy (OA) of 88.68% outperforms
the results obtained from random forest (OA = 84.88%), support
vector machine (OA = 82.86%), extreme gradient boosting (OA
= 86.55%), and ResNet50 (OA = 86.93%). The outcomes reveal
that the Wet-GC architecture proposed in this article has an ex-
cellent capability to be applied over large areas with minimal need
for training samples and can perform acceptably in supporting
regional wetland mapping.

Index Terms—Canada, classification, convolutional neural
network (CNN), deep learning (DL), graph convolutional network
(GCN), remote sensing (RS), sentinel, wetlands.
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I. INTRODUCTION

W ETLANDS are most simply defined as areas that are
at least periodically covered by or saturated with water

and include active plants during each year’s growing season and
water saturation period [1]–[5]. Wetlands are some of the most
productive resources on earth and support a host of ecosystem
services [1], [4], [6], [7]. In particular, they provide innumerable
functions, such as natural drinking water filtration, flood and
drought relief, shoreline erosion protection, soil conservation,
biodiversity preservation, and carbon sequestration, to name a
few [3], [6], [8]–[10]. Wetlands also have an impact on climate
change in that they help regulate regional climate [4], [11]. As
such, these considerations confirm that wetlands can provide
huge economical, ecological, cultural, recreational, and aes-
thetical worldwide benefits [12]–[14]. In spite of these positive
impacts, due to human disturbance, wetlands have been polluted
and drained severely over the past five decades as some regions’
land covers have changed (e.g., wetlands conversion to urban
or agricultural land use) [1], [3]. The loss in wetlands areas has
severe impacts on the valuable services they provide for humans
and nonhumans alike [3], [7], [15]. Therefore, improving the
requirements for wetland studies and monitoring the status of
wetlands is essential for maintaining such vital features of the
landscape.

Remote sensing (RS) is the foremost source of spatial and
temporal information about earth’s surface constitution [16].
Despite several advances in RS technology, certain factors make
wetlands challenging to map through satellite imagery [17]. Of
these factors, the main ones are 1) ecological similarities of
wetland classes with each other (among types of wetlands are
bog, fen, marsh, and swamp, as outlined and explained by the
Canadian Wetland Classification System [18]) and also with
other nonwetland classes (e.g., water, forest, agriculture, …)
[19]–[21]; and 2) highly dynamic characteristics of wetland
classes that substantially alter their reflectance and energy
backscatter properties, especially within a growing season [22],
[23]. However, these challenges can be overcome by selecting
appropriate machine learning (ML) algorithms.

Given the need for up-to-date landscape information, along
with broad-scale coverage of wetland areas (i.e., regional, na-
tional, and global context), satellite RS plays the main role as an
efficient and cost-effective method in such a vital task [24], [25].
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Different sensors in RS, however, capture a wide range of earth
surface information from different perspectives. Within the RS
community, a particularly interesting challenge is how to effec-
tively combine multiple complementary data sources. Previous
studies highlight improvements in the performance of a variety
of RS-based applications by integrating multisource/multisensor
RS data. For instance, by using multisource moderate resolution
RS data, Shen et al. [26] applied deep learning (DL) technique
to predict the main factors for drought monitoring. In [27], a
multiple-layers DL architecture was designed for change de-
tection with multisource VHR satellite images. Li et al. [28]
proposed a DL network to extract water bodies based on multi-
source RS data. The use of integrated features of multisource
datasets has also contributed to the classification of wetland
areas [29].

Specifically, optical and synthetic aperture radar (SAR) sen-
sors are based on range and angular measurements and collect
information about wetland vegetation’s chemical and physical
characteristics, respectively [8]. The combination of optical and
SAR images has a number of advantages and can be applied
to improve the wetland mapping, thanks to the complementary
information provided by both sources. The optical sensors obtain
information from the reflection and emission characteristics of
the earth’s surface, while the SAR sensors provide information
based on the structural and dielectric properties of natural and
man-made objects [30]. So, a feature that is not visible in the
optical images may be visible in the SAR data (and vice versa),
and using only the optical images can lead to misclassification.
The inclusion of SAR data can avoid this distinction, as features
with similar spectral characteristics may have different distribu-
tion patterns in the SAR images. Therefore, incorporating both
optical and SAR datasets adds more information on wetlands and
consequently enhances the discrimination of different wetland
types [31]–[33].

Fortunately, through the development of innovative models,
numerous studies in the literature have attempted to deal with
wetland classification challenges with a minimal need for in situ
measurements. However, for the following reasons, most models
related to large-scale scattering are not very effective in wetland
classification.

1) Current large-scale satellite imagery does not use high
spatial and spectral resolution sensors, and this imposes
challenges in distinguishing classes exclusively by ana-
lyzing their spectra.

2) Cost and accessibility issues associated with some kinds
of satellite images (e.g., high-resolution and hyperspec-
tral data) prevent the utilization of several approaches in
practice [34], [35].

3) A large amount of in situ measurements are not available
for large-scale and inaccessible wetland areas, and since
the efficiency of DL methods significantly depends on
the availability of a large number of training samples, not
every methodology is executable.

4) Wetland classes have considerable internal variability
caused by the large spatial coverage of satellite retrieved
data; thus, the class separability in a restricted neighbor-
hood is a complex problem.

Considering the points raised previously, proposing a proper
ML algorithm and utilizing available free-of-charge satellite
imagery is still needed in order to make a significant contribution
to wetland mapping.

To date, several DL approaches have been developed for
diverse kinds of RS images, from coarse resolution to high-
resolution satellite imagery and from multispectral to hyperspec-
tral datasets with hundreds of bands. Owing to the impressive
feature representation power of the convolutional neural network
(CNN), it has been employed in a broad scope of RS applications
such as image classification [36], [37], change detection [38],
and semantic segmentation [39]. For classification purposes, for
instance, Wang et al. [40] introduced a deep feature learning-
based method to improve scene classification by incorporating
rich hierarchical features of a CNN model. Liu et al. [41] pro-
posed a scene classification approach based on Siamese CNN,
which combines verification and identification models to boost
performance. These two models are used to predict the input
images’ identity labels and measure the similarities between
image pairs, respectively. To support arbitrary sizes of the input
images without any resizing process, Xie et al. [42] designed
a scale-free CNN to prevent information discard in high spatial
resolution images and improve scene classification performance.

Several attempts have been made to use DL models for
wetland classification in the last few years. For instance, in
[43], a pretrained AlexNet model was applied to the RapidEye
multispectral dataset to classify complex wetland land cover. Its
results were compared with those of the random forest model.
DeLancey et al. used optical and SAR images to investigate the
effectiveness of deep CNN on large-scale wetland classification.
They reported the successful discriminability of the wetland
categories using CNN models [21]. Furthermore, in [44], an
encoder–decoder CNN model was proposed to classify wetland
classes using LiDAR and spectral indices as input. To pro-
vide an spatio-temporal architecture, Hosseiny et al. established
a workflow named WetNet for wetland mapping considering
2D-CNN, 3D-CNN, and LSTM layers. The efficiency of their
model was evaluated utilizing S1 and S2 images [29]. In a
recent publication, Jamali and Mahdianpari [45] focused on the
integration of CNN models with transformers and suggested
a multimodel DL network for wetland classification by the
integration of a modified version of VGG-16, a 3D-CNN, and
the Swin transformer.

Benefiting from the fast development of DL approaches, the
progress in RS image classification has been accelerated. Sev-
eral graph convolutional network (GCN) based methods have
recently been proposed in the RS community. These studies
have investigated the potential of such a powerful model for
RS scene classification using optical data [46], [47]. In [48],
a graph attention network, which is a modification of GCN,
was suggested for hyperspectral image classification. To exploit
the spatial information of a hyperspectral image as well as its
spectral information, context-aware GCN, and multiscale GCN
algorithms were established in [49] and [50], respectively. In
addition, a nonlocal GCN, which took the whole hyperspectral
image as input to learning graph representations, was explored
in [51].
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Given that the traditional GCN model utilizes the adjacency
matrix, it suffers from a high computational cost, particularly
in large-scale RS problems. To solve this issue, very recently,
Hong et al. [52] proposed a minibatch GCN framework for
hyperspectral image classification. Instead of feeding all the
data into the network at once, this method proceeds in sev-
eral batches, reducing the computational cost compared to the
traditional GCN model. Despite the effectiveness of the GCN
structure, there is no documented research on the application
of this powerful model either for wetland classification or the
combination of SAR and optical imagery. The literature review
indicates that GCNs have not been widely applied to commonly
used free publicly available satellite imagery (e.g., Sentinel and
Landsat images) compared to hyperspectral data. Since these
publicly available moderate-resolution datasets (e.g., 10–30 m)
are extensively used in both RS-based academic and practical
fields, there needs to be more research on the potential of GCNs
on such imagery.

With the current status of DL algorithms employed in wet-
land mapping in mind, we will propose a new classification
framework that combines GCNs and CNNs utilizing moderate-
resolution S1 and S2 satellite imagery. The focus of this article
lies in the prediction of wetland classes. Here, we summarize
the contributions of this article in addressing the issues of
large-scale wetland landscape classification through RS imagery
and provide a framework to reach better results. In order to
make the synergistic use of the S1 and S2 datasets, the proposed
framework (i.e., Wet-GC) is devised in two branches as follows.

1) The GCN branch: The GCN architecture will be intro-
duced first, focusing on incorporating the spatial context of
images in wetland classification as the spectral context. As
verified, this framework is able to produce good results in
the classification of hyperspectral benchmark datasets. To
our knowledge, this article is the first one that modifies and
employs such a potentially effective network for wetland
classification.

2) The CNN branch: A simple shallow CNN architecture will
also be introduced and added to the model as the second
branch.

The main objective for creating a two-branch Wet-GC net-
work in this article is to take advantage of each branch’s unique
capabilities when dealing with multisource data. The optical
imagery contains rich spectral information that offers an oppor-
tunity to study land covers. Studies using DL have demonstrated
that CNNs can learn image features automatically by collecting
spectral contextual information from multispectral images. As
a result, CNNs are frequently cited in the literature as effective
models for classifying land covers using S2 optical data [53],
[54]. As such, S2 is the input of the CNN branch of the proposed
Wet-GC. With less contextual information available in SAR
data, the CNN branch is inefficient for exploring S1 imagery,
as frequently reported in the literature. Therefore, the Wet-GC
approach employs a GCN branch to establish the directional
associations between pixels in S1 SAR data. In comparison to the
CNN branch, the GCN branch is more capable of polarimetric
information extraction in SAR data. Thus, SAR data have been
considered as input in the GCN branch of the proposed Wet-GC
network.

In Section II, the basic preliminaries of GCN are presented.
The details of Wet-GC architecture are introduced in Section III.
Section IV contains an introduction of the study area, datasets,
and the experimental setup utilized in this article. Discussion of
the results appears in Section VI. Finally, Section V concludes
this article.

II. RELATED WORK

This section provides basic preliminaries of GCN and mini-
GCN and the related equations. First, consideration is given as to
what a “graph” is. Subsequently, we will discuss constructing the
adjacency matrix and using it with Fourier transform equations
to express the convolution operation on a graph.

The neural network concept for directly processing graph data
was first introduced in [55]. In the case of RS data analysis, a
graph is explained as the relations of spectral/ backscattering
signatures in an image domain. A graph G is defined by two
components: G = (V, E) in which V denotes the vertices (i.e.,
the pixel vectors in the image domain) and E denotes the edges
(i.e., the similarities between the two Vi and Vj vertices) [52].
This similarity is defined by an adjacency matrix denoted as A,
which is computed using the radial basis function (RBF) for any
two xi and xj spectral signatures associated with the vertices Vi

and Vj as given by

Ai,j = exp

(
−xi − x2

j

σ2

)
(1)

where the value for the σ parameter controls the width of the
RBF. By knowing both the adjacency matrix (A) and the matrix
trace of A (sum of diagonal elements of the matrixA, i.e.,Di,i =∑

j Ai.j [52], [56]), the Laplacian matrix L and the symmetric
normalized Laplacian matrix (Lsym) can be computed as

L = D −A (2)

Lsym = D− 1
2 L D− 1

2 = I −D− 1
2AD− 1

2 . (3)

In mathematics and, in particular, functional analysis, the
“Convolution” is an operation involving two functions by the
integral of the pointwise multiplication of those functions. Let
us now discuss shortly on graph convolutions and their related
equations in the spectral domain. Through the practical Fourier
and inverse Fourier transforms [52], [57], the convolution theo-
rem of the given two functions f and g can be expressed as

f(t)⊗ g (t) = F−1 {F [f (t)] .F [g (t)]} (4)

where “⊗” denotes the convolution operation.
According to (4), the convolution operation on a graph can

be expressed in terms of the Fourier transform (F) and subse-
quently as a series of basis functions. In other words, as proven
in [52], the eigenvectors of L, i.e., U = (u1, u2, . . . , un) are
the same as the basis functions of F and is expressed as

L = UΛU−1 (5)

and since U is an orthogonal matrix, i.e., its transpose (UT) is
equal to its inverse matrix (U−1), then (5) can be written as

L = UΛ U−1 = UΛUT (6)
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Fig. 1. General flowchart of the proposed Wet-GC model. The feature extraction module extracts different features by using both CNNs and GCNs. The feature
fusion module concatenates the resulting features as the final classification input.

whereΛ is a diagonal matrix of L’s eigenvalues. So that consider-
ing (6), the Fourier transform and the inverse Fourier transform
of function f on a graph is identical to

GF [f ] = UT f (7)

f = UGF [f ] . (8)

Therefore, (4) can be converted to

G [f ⊗ g] = U
{[
UT f

]
.
[
UT g

]}
. (9)

If we write UT g as gθ and consider doing some computational
complexity simplification, the convolution on a graph can be
formulated as

G [f ⊗ gθ] ≈ θ
(
I +D− 1

2AD− 1
2

)
f. (10)

Finally, by using (10), the propagation rule for GCNs will be
as follows:

H(�+1) = h
(
D̃

− 1
2 ÃD̃

− 1
2H(�)W (�) + b(�)

)
Ã = A+ I, and D̃i,i =

∑
j

Ãi,j . (11)

Note that H(�) and h are the outputs of �th layer and the
activation function (with respect to the weights to be learned
{W(�)}P�=1 and the biases {b(�)}P�=1 of all layers), respectively
[52].

III. PROPOSED METHODOLOGY

The overall architecture of the proposed Wet-GC model is
shown in Fig. 1 and is composed of two parts: 1) feature
extraction module, including the mini-GCN-based branch and
the CNN-based branch; and 2) feature fusion module. The fea-
ture extraction module extracts different features by using both
CNNs and GCNs. Also, the feature fusion module concatenates
the resulted features as the final classification input. These steps
will be discussed further in what follows.

TABLE I
MINI-GCN CONFIGURATION OF THE PROPOSED WET-GC FRAMEWORK

A. Mini-GCN-Based Branch

GCN is a neural network that learns features by gradually
aggregating information in the neighborhood. Fig. 1 and Table I
show the architecture of the proposed mini-GCN-based branch.
There are some differences between traditional GCNs and mini-
GCNs. For the GCNs, all the data usually are used as input at
once, which requires a high volume of computations. However,
the mini-GCN architecture offers three benefits over the well-
known GCNs as follows.

1) It performs a minibatch learning procedure and con-
sequently reduces the computational complexity of the
Laplacian matrix and training process and performs fast
computations.

2) Minibatch learning acts as a feasible solution to combine
the GCN and CNN architectures, and in fact, the mini-
GCN procedure makes the GCN trainable in minibatch
fashion, analogously to CNN architecture.

3) Minibatch learning also provides spatially local connec-
tivity, which enables the mini-GCN to learn discriminative
features from input graph-structured data.
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TABLE II
CNN CONFIGURATION OF THE PROPOSED WET-GC FRAMEWORK

Considering (11), the graph convolution in S batches can be
stated as

H(�+1) = h
(
D̃

− 1
2

S ÃSD̃
− 1

2

S H̃
(�)
S W(�) + b

(�)
S
)
. (12)

In the last equation, S has reference to both the Sth subgraph
and batch in the training process of the network. The blocks’
sequences utilized for the mini-GCN branch of this article are
presented in Table I.

B. CNN-Based Branch

As shown in Fig. 1, the proposed CNN-based branch network
has a simple and shallow structure. Generally, CNNs contain
three layers: convolutional, pooling, and fully connected (FC)
layers. The convolutional layer plays a crucial role in a CNN
architecture, and convolution refers to a mathematical operation
that merges the input image and filters. This layer includes mul-
tiple filters with different sizes that slide across the image grid
and learn different portions of input data. In fact, convolution is
used for extracting a feature of data by using an arbitrary filter
[58], [59]. Typically, after each convolutional layer, a pooling
layer is added, which summarizes the features generated in the
previous layer and lying within the region covered by the filter,
thus, reducing the number of parameters and dimensionality of
CNNs [34]. In a standard CNN, the final layer is the FC layer that
classifies the features extracted from the last layer into different
classes. The structure of the CNN model utilized in this article
is presented in Table II.

C. Feature Fusion

There are three well-known and practical strategies, namely
additive, elementwise multiplicative, and concatenation, which
are used in DL and data processing to combine and fuse the
output of different models. For the investigations at hand, as the
last step of the Wet-GC architecture, the concatenation strategy
is used to fuse/merge the outputs of the mini-GCN and CNN

TABLE III
GENERAL OVERVIEW OF THE PROPOSED FRAMEWORK

FOR WETLAND CLASSIFICATION

branches to yield a final classification map. In fact, the final
output of the proposed framework before entering the classifier
is calculated though

H
(�+1)
Total =

[
H

(�)
miniGCNs, H

(�)
CNNs

]
. (13)

In order to yield the final output of the Wet-GC network, a FC
layer and then a Softmax classifier are applied to the concate-
nated data. The general overview of the proposed framework for
wetland classification is presented in Table III.

IV. RESULTS

A. Study Site

Mapping wetlands via RS in Canada is a well-studied topic
[19]. The province of Newfoundland is an island located on
the eastern-most coast of Canada, and wetlands are a dominant
feature of its landscape [3]. In this article, the case study is
conducted over part of the Avalon area located in the eastern
portion of the province [see Fig. 2(a)].

B. Datasets

1) Field Data: The wetland ground-truth (GT) data that
provides the basis for the multiyear reference dataset used in
this article was obtained via field campaigns conducted in the
summers of 2015 to 2020, initially carried out for use in a project
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Fig. 2. (a) Location of the study site is in Newfoundland province, Canada. (b) Grayscale VH band illustration of S1 imagery. (c) RGB illustration of S2 imagery.

to develop RS methods for mapping wetlands in Newfoundland
and Labrador [3], [60].

2) Sentinel-1 Imagery: The S1 SAR data originated from
the Level-1 ground range detected (GRD) interferometric wide
swath product as ingested in the cloud-based geospatial pro-
cessing platform Google Earth Engine (GEE) [61]. This GRD
product consisted of S1 radar observations projected onto a
regular 10-m grid [62]. The S1 images taken from Jun. 1–Oct. 30,
2020, were selected for this article, and the median reflectance
values of the collections were calculated. The primary features
recorded by S1 over the case study are the VV and VH polarized
backscatter values (in dB). However, the Span and Ratio features
(see the formulas in Table IV) were also calculated and stacked
to S1 data. A grayscale VH band illustration of S1 imagery from
the study area is depicted in Fig. 2(b).

3) Sentinel-2 Imagery: The S2 data are provided in GEE as a
Level-1C product representing Top-of-Atmosphere reflectance
[63]. A composite based on the median reflectance values of the
images taken from Jun. 1–Oct. 30, 2020, with a cloud cover of
less than 10% was created. In this article, four bands of S2 image,
namely the near-infrared (NIR), red, green, and blue bands, were
selected and utilized. These bands have unique characteristics to
delineate and discriminate wetland classes. Since water strongly
absorbs NIR light, this band was chosen because of its usefulness

TABLE IV
BANDS/FEATURES EXTRACTED FROM S1 AND S2 IMAGERY IN THIS ARTICLE

σ0
XX andσ0

XY denote co- and cross-polarized sigma nought in the logarithmic scale (dB).

in distinguishing water content from various land cover types.
The Red band has the potential to delineate wetland classes be-
cause of its ability to detect chlorophyll absorption in vegetation.
Meanwhile, the blue band can reflect the differences between
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Fig. 3. Snapshot of (a) a portion of the study area in which the reference
training samples were selected. (b) Reference wetland and nonwetland data
collected in the study area.

soil and vegetation. The green band can act as a valuable input
for vegetation extraction as well as being used in a variety of
vegetation indices. Excluding the green band may cause some
indistinguishably in land covers (e.g., in our case, marsh, and
water classes). Moreover, we tried to use only the S2 bands with
10-m spatial resolution (see Table IV). An RGB illustration of
S2 imagery from the study area is depicted in Fig. 2(c).

As mentioned earlier, one of the key goals in this article is to
develop a novel framework for wetland classification with lim-
ited training samples, and this explains the decision to combine
GCNs and CNNs. To this end, instead of utilizing all GT data,
the training samples are selected just from a portion of the whole
study area, as depicted in Fig. 3(a). Note that the chosen area
consists of reference data for all kinds of wetland and no-wetland
classes mentioned in this article [see Fig. 3(b)]. In addition, the
selected GT dataset was randomly split into training and testing
samples with a ratio of 10% to 90%, further reducing the training

TABLE V
NUMBER OF SELECTED TRAINING, VALIDATION, AND TESTING PIXELS OF

WETLAND CLASSES IN THE STUDY AREA

dataset. The number of training, validation, and testing samples
for each category is listed in Table V. Moreover, the number of
pixels for the final classification accuracy assessment (number
of pixels in test labels) is added to Table V. Note that test labels
listed in the last column of this Table were selected from the
entire region of the study area to illustrate the generalization
capability of the proposed model.

C. Experimental Setup

1) Wetland Classification by Well-Known Models: There are
numerous DL and ML models whose robustness has been estab-
lished in the RS literature. Here, the investigation commences
by applying some of these well-known models to S1 and S2
images. Since two different types of satellite datasets are used
to investigate the proposed Wet-GC model, in order to maintain
the integrity and provide a logical comparison, these datasets are
stacked and utilized for the rest of the algorithms employed here.
For comparison purposes and to evaluate the efficiency of the
Wet-GC, several models, including random forest (RF), support
vector machine (SVM), extreme gradient boosting (XGB), and
ResNet50 [64] were selected as efficient classifiers for wetland
classification, as reported in [29], [34], [65], and [66]. Based
on experience reported in [3] and [67], and trial and error, the
optimum values for the parameters of RF, SVM, and XGB
classifiers are defined and presented in Table VI. All of these
models are trained using the limited training samples as ex-
plained previously.

2) Wetland Classification by Wet-GC: As noted, the primary
purpose of the current research is to develop a novel framework
for jointly using mini-GCN and CNN models based on S1 and S2
imagery. To this end, we combined the mini-GCN with a shallow
CNN, both of which were discussed earlier. The implementa-
tion details of the Wet-GC model are provided in Table VII.
Moreover, an ablation experiment (i.e., the accuracy that can be
achieved with only a single branch of CNN and GCN models)
was also conducted to better understand how each branch of
the proposed method improves the wetland classification. The
result of this scenario shows an improvement in classification
accuracy as compared to several well-known models.
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TABLE VI
IMPLEMENTATION DETAILS FOR RF, SVM, AND XGB CLASSIFIERS

TABLE VII
IMPLEMENTATION DETAILS FOR THE WET-GC MODEL

D. Classification Maps

The classification results of the models implemented here are
shown in Fig. 4. Eight distinct land cover classes are depicted
on these maps, namely, bog, fen, swamp, marsh, water, forest,
pasture, and urban. Furthermore, a zoomed-in representation of
a small portion of the classified maps is included in Fig. 5 to
investigate and highlight the details of the classification results
for different methods.

E. Accuracy Assessment

One of the essential steps in RS applications is to assess the
accuracy of the generated products. To this end, several accuracy
assessment metrics have been proposed in the literature and
applied for different applications. These applications mainly
include classification, change detection, and target detection.
For the purpose at hand, five metrics, including overall accu-
racy (OA), recall (sensitivity), specificity, precision, and the
F-measure, are used. We refer readers for more information of
these metrics to [68]. Moreover, the formulas for the mentioned
metrics are presented in Table VIII in which the components
“TP,” “TN,” “FN,” and “FP” indicate “True Positive,” “True
Negative,” “False Negative,” and “False Positive,” respectively.

The quantitative assessment of the classification results of the
RF, SVM, XGB, ResNet50, and Wet-GC is shown in Table IX.
According to the results, the ResNet50 and XGB models perform
better than RF and SVM models. This conclusion seems logical
because the robustness of ResNet50 and XGB is also highlighted
in comparative evaluation studies, such as appear in [67] and
[66]. Although, given the small number of input features (i.e.,
four features of S1 data and four features of S2 data), it is

TABLE VIII
ACCURACY ASSESSMENT METRICS

expected to achieve low accuracy results for RF and SVM
models; but the developed Wet-GC architecture has a relatively
better performance compared to the other algorithms.

For further comparison, Fig. 6 shows the confusion matri-
ces of the classification maps. The columns of the confusion
matrices denote the classes in the GT data, and the rows
show the classes in the predicted maps. It should be noted
that each element of the confusion matrices is shown as a
percentage calculated from the total number of entries in each
column.

F. Computation Run-Time

In order to compare the classification models in terms of com-
putation load, the approximate run-time required for all methods
investigated in this article was added to Table X. Although the
Wet-GC and ResNet50 models perform well in classification of
wetland areas, they have the defect of taking long time to run.
The time complexity of the Wet-GC model is due to its two
branch architecture and the use of a graph-based structure.

V. DISCUSSION

The quantitative evaluation of results reported in Table IX
and Fig. 6 shows that the ResNet50 and XGB methods could
correctly detect and classify most classes rather than the RF
and SVM. The performance of these models strongly depends
on the number of input features and training samples. While
the ResNet50 and XGB show better performances, the RF and
SVM models failed to provide acceptable results. However, such
models do not engender high expectations when using moderate-
resolution data with fewer features and limited training samples
as input.

Looking at the Wet-GC’s result, we find that the classification
accuracy has increased relatively. Of the classification results,
the Wet-GC method generally produced the highest OA at
88.68%, followed by the ResNet50 at 86.93%, XGB at 86.55%,
RF at 84.88%, and SVM at 82.86%. Though the XGB method
produced recall and F-score close to that of RF, the RF method
had a higher precision (RF precision was 0.6987 compared
to 0.6887 XGB precision). In contrast, the XGB method pro-
duced a higher specificity compared to RF (Table IX, the XGB
specificity was 0.9811, while the RF specificity was 0.9777).
Overall, the highest scores of these parameters belong to the
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Fig. 4. Resulting classification maps for different methods. (a) RF. (b) SVM. (c) XGB. (d) ResNet50. (e) GCN-branch. (f) CNN-branch. (g) Wet-GC.
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Fig. 5. Zoomed-in representation of a small portion of the classification maps obtained by (a) RF, (b) SVM, (c) XGB, (d) ResNet50, (e) GCN-branch, (f)
CNN-branch, and (g) Wet-GC.

TABLE IX
ACCURACY ASSESSMENT INDICES OF EMPLOYED APPROACHES IN THIS ARTICLE

Wet-GC method, and the lowest scores are produced by the SVM
method. The differences between recall, specificity, precision,
and F-score parameters for the proposed method (Wet-GC) and
the maximum accuracy obtained for these parameters among the
other methods (i.e., SVM, RF, XGB, and ResNet50) are about
0.039, 0.003, 0.05, and 0.035, respectively.

The conclusion about the performance of Wet-GC can also
be drawn when comparing the confusion matrices. According
to Fig. 6, wetland classes’ classification has lower accuracy than
nonwetland classes. Notably, all methods successfully classified
over 87% of the nonwetland classes (i.e., water, forest, pas-
ture, and urban). The Wet-GC model was the most successful
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Fig. 6. Confusion matrices summarizing the accuracy of results based on the evaluation of different algorithms. (a) RF. (b) SVM. (c) XGB. (d) ResNet50. (e)
GCN-branch. (f) CNN-branch. (g) Wet-GC. Each entry of the confusion matrices is shown as a percentage calculated from the total number of entries in each
column.

TABLE X
APPROXIMATE EXECUTION TIME OF THE CLASSIFICATION MODELS

approach for classifying the nonwetland classes among all the
methods. However, the wetland classes were also identified
with high accuracies when Wet-GC was applied. In the case of
other methods, some misclassifications in wetland classes look

relatively impressive. For instance, about 33% of bog classes
were misclassified as fen in the RF method, and more than 30%
of fen classes were misclassified as bog in the SVM method.
In addition, in the XGB and ResNet50 models, about 25% and
28% of swamp classes, respectively, were classified correctly.

In distinguishing wetland classes, the Wet-GC method was
also the best one. More than 43% of fen, swamp, and marsh
classes were correctly classified in Wet-GC, and beyond 75% of
bog classes. The efficiency of Wet-GC could be due to CNNs’
nature, which is to extract and add new features for training the
network, combined with the GCNs’ nature, which is to explore
the spatial relations of the pixels (in fact, the wetland classes).
Moreover, all the models use the S1 and S2 images as stacked
data and apply the classification procedure for the data at once. In
contrast, the Wet-GC method deals with each dataset separately
and through two branches, which are inherently designed for
such datasets. In particular, the CNN branch handles the contex-
tual information in S2 multispectral data, while the mini-GCN
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branch takes into account the spatial relationships of pixels in
S1 data.

VI. CONCLUSION

Wetlands are one of the most unique, valuable, and beautiful
ecosystem types on earth and perform a variety of ecological
and socio-economic benefits. However, anthropogenic activi-
ties significantly threaten wetlands’ capacity and their services.
Hence, mapping these productive resources is crucial to monitor
their status (changes and losses). RS-based approaches are time-
and cost-effective solutions and superior to laborious fieldwork
when dealing with large-scale wetland classification. Although
several DL-based models in the literature have achieved out-
standing wetland classification performance, some complex
scene classes are still easily misclassified when only a lim-
ited number of training samples are available. Thus, explor-
ing new models that require fewer training samples remains a
necessity.

This article proposed a novel Wet-GC workflow, which jointly
uses the GCN and CNN models. The proposed approach was
examined using S1 and S2 imagery and revealed promising
results for the classification of wetlands’ scenes with minimal
need for training samples. This article is the first one inves-
tigating the GCN model’s performance for large-scale wetland
classification using the combination of SAR and optical imagery.
The experimental results demonstrate the superiority of the
developed framework over the RF, SVM, XGB, and ResNet50
methods. For future work, incorporating richer multispectral
data and additional SAR data features to improve the Wet-GC
architecture’s efficiency and increase the discriminability of
the wetland categories is suggested. It is also recommended
to employ the proposed method for provincial-scale wetland
classification with a variety of training sample sizes. A new
study could also be conducted to examine the impacts of dif-
ferent ratios of training samples for each class when GCNs are
used.
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