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Abstract—Infrared small target superresolution (SR) aims to
recover a reliable and detailed high-resolution image with high-
contrast targets from its low-resolution counterparts. Since the
infrared small target lacks color and fine structure information,
it is significant to exploit the supplementary information among
sequence images to enhance the target. In this article, we propose
the first infrared small target SR method named local motion and
contrast prior driven deep network (MoCoPnet) to integrate the
domain knowledge of the infrared small target into deep network,
which can mitigate the intrinsic feature scarcity of infrared small
targets. Specifically, motivated by the local motion prior in the
spatio-temporal dimension, we propose a local spatio-temporal
attention module to perform implicit frame alignment and incor-
porate the local spatio-temporal information to enhance the local
features (especially for small targets). Motivated by the local con-
trast prior in the spatial dimension, we propose a central difference
residual group to incorporate the central difference convolution
into the feature extraction backbone, which can achieve center-
oriented gradient-aware feature extraction to further improve the
target contrast. Extensive experiments have demonstrated that
our method can recover accurate spatial dependence and improve
the target contrast. Comparative results show that the MoCoPnet
can outperform the state-of-the-art video SR and single image SR
methods in terms of both SR performance and target enhance-
ment. Based on the SR results, we further investigate the influence
of SR on infrared small target detection and the experimental
results demonstrate that the MoCoPnet promotes the detection
performance.

Index Terms—Attention, central difference convolution (CD-
Conv), infrared small target superresolution (SR).

I. INTRODUCTION

INFRARED imaging system is all-weather in day and night
and has high penetrability, sensitivity, and concealment. In-

frared imaging system is widely used in security monitoring,
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remote sensing investigation, aerospace offense-defense, and
other military mission. Recently, low-resolution (LR) infrared
images cannot meet the high requirements of practical military
mission. Therefore, it is necessary to improve the resolution of
infrared images. A straightforward way to obtain high-resolution
(HR) infrared images is to increase the size of infrared sensor
arrays. However, due to the technical limitations of sensors and
the high cost of large infrared sensor arrays, it is necessary and
important to develop practical, low cost, and highly reliable in-
frared image superresolution (SR) algorithms. Note that, modern
autonomous driving technology requires the infrared imaging
system to detect the target in a fairly long distance. Therefore,
the target only occupies a very small proportion of the whole
image, and is susceptible to noise and clutters. In this article, we
mainly focus on infrared small target SR task and investigate its
influence on infrared small target detection.

The special imaging mechanism and military application of
the infrared imaging system put forward the following require-
ments for infrared small target SR.

1) High fidelity of superresolved images. Noise and false
contours should be avoided as much as possible.

2) High contrast of superresolved targets. The target contrast
in the superresolved images should be strengthened to
boost the subsequent tasks.

3) High robustness to complex scenes and noise. Small ob-
jects are sometimes submerged in clutter, and thus, of low
local contrast to the background. SR algorithms should be
robust to various complex scenes and imaging noise.

4) High generalization to insufficient datasets. The lack of
infrared image datasets requires that SR algorithms should
achieve stable results with a relative small dataset.

The motivations of our method come from data analysis, and
can be summarized as follows.

1) The target occupies a small proportion of the whole in-
frared image (generally less than 0.12% [1]) and lacks
color and fine structure information (e.g., contour, shape,
and texture). Few information is available for SR within
a single image. Therefore, we perform SR on image
sequences to use the supplementary information among
the temporal dimension to improve the SR performance
and the target contrast.

2) Due to the long distance between the target and the imag-
ing system, the mobility of the targets on the imaging
plane is limited, leading to small motion of the target
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between neighborhood frames (i.e., local motion prior [2],
[3] in spatio-temporal dimension). Therefore, we design a
local spatio-temporal attention (LSTA) module to perform
implicit frame alignment and exploit the supplementary
information in the local spatio-temporal neighborhood to
enhance the local features (especially for small targets).

3) Compared with the background clutter, the contrast and
gradient between the target and the background in the local
neighborhood are high in all directions (i.e., local contrast
prior [4], [5] in spatial dimension). Therefore, we design
a center difference residual group (CD-RG) to achieve
center-oriented gradient-aware feature extraction, which
can encode the local contrast prior to further improve the
target contrast.

Based on the aforementioned observations, we propose a local
motion and contrast prior driven deep network (MoCoPnet)
for infrared small target SR. The main contributions can be
summarized as follows.

1) We propose the first infrared small target SR method
named MoCoPnet and summarize the definition and re-
quirements of this task. The proposed modules (i.e., CD-
RG and LSTA module) of the MoCoPnet integrate the do-
main knowledge (i.e., local contrast prior and local motion
prior) of infrared small targets into deep networks, which
can mitigate the intrinsic feature scarcity of data-driven
approaches [5].

2) The experimental results demonstrate that the MoCoPnet
can achieve state-of-the-art SR performance and effec-
tively improve the target contrast.

3) Based on the SR results, we further investigate the influ-
ence of SR on infrared small target detection. The exper-
imental results show that the MoCoPnet can promote the
detection performance to achieve a high signal-to-noise
ratio gain (SNRG), signal-to-clutter ratio gain (SCRG),
contrast gain (CG) scores, and improved receiver operat-
ing characteristic curve (ROC) results.

II. RELATED WORK

A. Single Image SR

Image SR is an inherently ill-posed optimization problem and
has been investigated for decades. In literature, researchers have
proposed a variety of classic single image SR (SISR) methods,
including prediction-based methods [6], [7], edge-based meth-
ods [8], [9], statistics-based methods [10], [11], patch-based
methods [9], [12], and sparse representation methods [13], [14].
However, most of the aforementioned traditional methods use
handicraft features to reconstruct HR images, which cannot
formulate the complex SR process, and thus, limits the SR
performance. Recently, due to the powerful feature represen-
tation capability, convolutional neural networks (CNNs) have
been widely used in single image SR task and achieve the state-
of-the-art performance [15], [16]. Dong et al. [17] proposed
the pioneering CNN-based work SRCNN to recover an HR
image from its LR counterpart. Kim et al. [18] deepened the
network to 20 convolutional layers (i.e., VDSR) and achieved
improved SR performance by increasing model complexity.

Moreover, various increasingly deep and complex architectures
(e.g., residual networks [19], recursive networks [20]–[23],
densely connected networks [24]–[26], and attention-based net-
works [15], [27]) have also been applied to SISR for performance
improvement. Other than tackling image average distortion by
norm loss, generative adversarial image SR networks [28],
[29] employed the perceptual loss for perceptual quality
improvement.

B. Video SR

Existing video SR methods commonly follow a three-step
pipeline, including feature extraction, motion compensation,
and reconstruction [30]. Traditional video SR methods [31],
[32] employ handcrafted models to estimate motion, noise,
and blur kernel and reconstruct HR video sequences. Recent
deep learning-based video SR methods are better in exploiting
spatio-temporal information by its powerful feature represen-
tation capability and can achieve the state-of-the-art perfor-
mance. Liao et al. [33] proposed the pioneering CNN-based
video SR method to perform motion compensation by op-
tical flow, and then, ensembled the compensated drafts via
CNN. Afterwards, a series of optical flow-based video SR
algorithms [34], [35] emerged to explicitly perform motion
estimation and frame alignment, resulting in vague and dupli-
cation [36]. To avoid the aforementioned problem, deformable
convolution [37], [38] has been employed to perform motion
compensation explicitly in a unified step [39], [40] through extra
offsets. Apart from these explicit motion compensation meth-
ods, implicit approaches (e.g., 3-D convolution networks [41],
[42], recursive networks [43], [44], and nonlocal networks [40],
[45]) have also been applied to video SR for performance
improvement.

C. Infrared Image SR

With the increased demands of high-resolution infrared im-
ages, some researchers perform image SR on infrared im-
ages. Traditional methods [46] consider SR as sparse signal
reconstruction in compressive sensing. Based on the previous
studies, Zhang et al. [47] combined compressive sensing and
deep learning to achieve an improved SR performance with low
computational cost. Han et al. [48] proposed to employ CNNs to
recover high-frequency components with upscaled LR images
to generate the SR results. He et al. [49] proposed a cascaded
deep network with multiple receptive fields for large scale factor
(×8) infrared image SR. Liu et al. [50] proposed to use a
generative adversarial network and perceptual loss to reconstruct
the texture details of infrared images. Chen et al. [51] employed
an iterative error reconstruction mechanism to perform SR in a
coarse-to-fine manner. Huang et al. [52] proposed a progressive
SR generative adversarial network and employed the multistage
transfer learning strategy to improve the SR performance from
small samples. Prajapati et al. [53] proposed a channel splitting-
based CNN to eliminate the redundant features for efficient
inference. Yang et al. [54] proposed a visible-assisted training
strategy to promote details preservation.
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Fig. 1. Proposed architecture of the MoCoPnet. (a) Overall framework. (b) CD-RG, and (b1) and (b2) its submodules central difference dense block (CD-RDB)
and CD-Conv, respectively. (c) LSTA module with kernel size 3 and dilation rate 1.

D. Attention Mechanism

Since the importance of each spatial location and channel is
not uniform, Hu et al. [55] proposed SeNet for classification,
which consists of selection units to control the switch of passed
data. Zhang et al. [15] proposed a channel attention mechanism
to calculate the importance along the channel dimension for
channel selection. Anwar et al. [56] proposed feature attention
to urge the network to pay more attention to the high-frequency
region. Dai et al. [27] proposed second-order attention to adap-
tively readjust features for powerful feature correlation learning.
Wang et al. [57] explored the sparsity in SR task and proposed
sparse masks for efficient inference. The spatial mask and
channel mask calculate the importance along both the spatial
dimension and the channel dimension to prune the redundant
computations. The aforementioned studies only consider the
global importance on spatial and channel dimension. Since small
targets only occupy a small portion in the whole image and have
a high contrast with the local neighborhood, we design a local at-
tention mechanism that can better characterize the small targets.

E. Sequence Image Infrared Small Target Detection

Sequence image infrared small target detection is significant
for long-range precision strikes, aerospace offensive-defensive
countermeasures, and remote sensing intelligence reconnais-
sance. According to whether the sequential information is used,
sequence image infrared small target detection methods can be
divided into two categories: detect before track (DBT) methods
and track before detect (TBD) methods. Based on the results of

single image infrared small target detection [5], [58]–[61], DBT
methods employed the motion trajectory of targets through se-
quence image projection to eliminate the false targets and reduce
the false alarm rate. DBT methods have a low computational cost
and are easy to implement. However, the performance drops
rapidly with a low SNR. TBD methods [62]–[64] commonly
follow a three-step pipeline, including background suppression,
region of interest extraction, and target detection. TBD methods
are robust to images with a low SNR but have a high compu-
tational cost, which cannot meet the requirements of real-time
detection. It is challenging to achieve a high detection rate and
low false alarm rate in real time due to the lack of target infor-
mation, the complex background noise, the insufficient public
datasets, and the explosion of data amount and the computational
cost. Therefore, it is necessary to recover reliable image details
and enhance the contrast between target and background for
detection.

III. METHODOLOGY

In this section, we introduce our method in details. Specif-
ically, Section III-A introduces the overall framework of our
network. Sections III-B and III-C introduce the two modules that
integrate local contrast prior and local motion prior of infrared
small target into deep networks.

A. Overall Framework

The overall framework of our MoCoPnet is shown in Fig. 1.
Specifically, an image sequence with five frames LRt+i (i =
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Fig. 2. Differences between (a) DLCM (see [5]) and (b) CD-Conv (see [65]
and [66]). (a) Dilated local contrast measure (DLCM). (b) Central difference
convolution (CD-Conv).

[−2, 2]) is first sent to a convolutional layer to generate the initial
featuresF t+i

0 (i = [−2, 2]), which are then sent to the CD-RG to
achieve center-oriented gradient-aware feature extraction. Then,
each neighborhood feature F t+i

CD−RG (i = −2,−1, 1, 2) is paired
with the reference featureF t

CD−RG and sent to two LSTA modules
to achieve motion compensation and enhance the local features.
Next, the reference feature F t

CD−RG is concated with two com-
pensated neighborhood frames F t+k

LSTA2, F
t−k
LSTA2 (k = 1, 2), and

then, sent to a residual group (RG) and a convolution layer for
coarse fusion. Afterwards, the two fused features are concate-
nated and sent to an RG and a convolution for fine fusion. Then,
the fused feature is processed by an RG, a subpixel layer and
a convolutional layer for SR reconstruction and upsampling.
Finally, the SR reference frame is obtained by adding the bicu-
bicly upsampled LR reference frame to accelerate the training
convergence. Note that, the number of the input frames is set
to 7 in this article and the process is the same as in Fig. 1(a).
We use the mean square error (MSE) between the SR reference
frame and the groundtruth reference frame as the loss function
of our network.

B. Central Difference Residual Group (CD-RG)

The CD-RG incorporates central difference convolution (CD-
Conv [65], [66]) into RG (see [15] and [26]) to achieve the
center-oriented gradient-aware feature extraction, which can
utilize the spatial local salient prior to strengthen the contrast
of the small targets. Note that, we employ RG as the backbone
of our MoCoPnet for the following reasons: RG can generate
features with large receptive field and dense sampling rate, which
promotes the information exploitation. The reuse of hierarchical
features not only improves the SR performance [67] but also
maintains the information of small targets [1], [61], [68].

The architecture of the CD-RG is shown in Fig. 1(b). The
input feature F t+i

0 is first fed to D central difference residual
dense blocks (CD-RDB) [26] to extract hierarchical features.
Then, the hierarchical features are concatenated and fed to a
1 × 1 convolutional layer to generate output feature F t+i

CD−RG.

Fig. 3. Illustration of the LSTA module with difference kernel size of kern and
dilation rate of dila. (a) Reference frame and pixel (x0, y0) is highlighted by
a red box. (b)–(f) Corresponding neighborhood pixels centered in (x0, y0) and
are highlighted by blue boxes. (a) Reference frame. (b) STLA(kern=3, dila =
1). (c) STLA(kern = 3, dila = 2). (d) STLA(kern = 3, dila = 4). (e) STLA(kern
= 5, dila = 1/2). (f) STLA(kern = 9, dila = 1/4).

As is shown in Fig. 1(b1), 1 CD-Conv and K − 1 Convs with
a growth rate of G are used within each CD-RDB to achieve
a dense feature representation. The architecture of CD-Conv is
shown in Fig. 1(b2). CD-Conv aggregates the center-oriented
gradient information, which echoes the spatial local saliency
prior of infrared small target. As shown in Fig. 2, different
from handcrafted dilated local contrast measure (DLCM [5]),
which can only reserve the contrast information in one direction,
CD-Conv is a learnable measure and can improve the contrast
of small target while maintaining the background information.
In conclusion, CD-Conv is more in line with the task of in-
frared small target SR (i.e., recovering reliable and detailed
high-resolution image with high-contrast target). DLCM and
CD-Conv can be formulated as f(x, y) and g(x, y) as follows:

f(x, y) = min
(i,j)∈Ω+

{(Sx,y−Sx−i,y−j) (Sx,y−Sx+i,y+j)} (1)

g(x, y) =
∑

(i,j)∈Ω
ωi,j (Sx+i,y+j − θSx,y) (2)

where Sx,y represents the value of a specific location (x, y) in
the feature map, and (i, j) ∈ Ω+ = (d, d), (d, 0), (d,−d), (0, d)
is the direction index. ωi,j is a learnable weight to continuously
optimize the local contrast measure and θ ∈ [0, 1] is a hyper-
parameter to balance the contribution between gradient-level
detailed information and intensity-level semantic information.
Note that, θ is set to 0.7 [65] in this article.

C. LSTA Module

The LSTA module calculates the local response between the
neighborhood frame and the reference frame and uses the local
spatio-temporal information to enhance the local features of
the reference frames. The inputs of LSTA are the reference
frame and one neighborhood frame. For a sequence with seven
frames, the operation need to be repeated six times. The ar-
chitecture of LSTA is shown in Fig. 1(c). The red reference
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feature F t
CD−RG ∈ RH×W×C and the blue neighborhood feature

F t−1
CD−RG ∈ RH×W×C are first fed to 1 × 1 convolutional layers

conv_q and conv_k for dimension compression to generate
F0, F1 ∈ RH×W×C/cr, where cr is the compression ratio and
is set to 8 in this article. The process can be formulated as

F0 = Hconv_q
(
F t

CD−RG

)

F1 = Hconv_k
(
F t−1

CD−RG

)
(3)

where Hconv_k and Hconv_q represent 1 × 1 convolutions. Then,
we calculate the response between each location p0 inF0 and the
corresponding neighborhood (centered in p0) inF1. Afterwards,
the response is summed and softmax along the channel dimen-
sion to generate the attention map M . The process is defined
as

M(pn) = softmax

⎛
⎝

C/rd∑
k=1

F0(p0, k) · F1(pn, k)

⎞
⎠ (4)

where pn represents the nth value of the local neighborhood
centered in p0 with kernel size of kern and dilation rate of dila.
The purple 3 × 3 grid in Fig. 1(c) is the local attention feature
map with parameter (kern = 3, dila = 1). Note that, as shown
in Fig. 3(c) and (d), dila can be integer larger than 1 to enlarge
the receptive filed without additional computational cost. As
shown in Fig. 3(e) and (f), dila can also be fractional to capture
the subpixel motion between frames and we employ bilinear
interpolation to generate the exact corresponding values.

Finally, dot production is performed between the local neigh-
borhood feature F t−1

CD−RG(pn) centered in p0 and the correspond-
ing attention map M(pn) to generate the value of location p0 in
the output feature F t−1

LSTA(p0). The process is formulated as

F t−1
LSTA(p0) =

∑
∀pn∈G

F t−1
CD−RG(pn) ·M(pn). (5)

LSTA first calculates the response between the reference
frame and its adjacent frames to generate the attention map, and
then, calculates a weighted summation of these frames using the
generated attention maps. In this way, the neighborhood frames
can be implicitly aligned and the complementary temporal in-
formation can be incorporated to enhance the features of small
targets.

IV. EXPERIMENTS

In this section, we first introduce the experiment settings, and
then, conduct ablation studies to validate our method. Next,
we compare our network to several state-of-the-art SISR and
video SR methods. Finally, we investigate the influence of SR
on infrared small target detection.

A. Experiment Settings

In this subsection, we sequentially introduce the datasets, the
evaluation metrics, the network parameters, and the training
details.

1) Datasets: Hui et al. [69] developed a dataset for detec-
tion and tracking of dim-small aircraft infrared targets under

Fig. 4. Evaluation metrics. (a) Local background neighborhood. (b) Modified
evaluation metrics in this article.

ground/air background. This dataset contains 22 image se-
quences (totally 16 177 frames) with a resolution of 256 × 256.
Recently, a large-scale high-quality semisynthetic dataset
(named SAITD [70]) has been proposed for small aerial infrared
targets detection. SAITD dataset contains 350 image sequences
with a resolution of 640 × 512 (175 image sequences with
target annotations and 175 without, 150 185 images in total).
The second Anti-UAV Workshop & Challenge (Anti-UAV [71])
releases 250 high-quality infrared video sequences with mul-
tiscale UAV targets. In this article, we employ the 1st − 50th
sequences with target annotations of SAITD as the test datasets
and the remaining 300 sequences as the training datasets. In
addition, we employ Hui and Anti-UAV as the test dataset to
test the robustness of our MoCoPnet to real scenes. In Anti-UAV
dataset, only the sequences with infrared small target [1] (21
sequences in total) are selected as the test set. Note that, we only
use the first 100 images of each sequence for test to balance
computational/time cost and generalization performance.

2) Evaluation Metrics: We employ peak signal-to-noise ra-
tio (PSNR) and structural similarity index (SSIM) to evaluate
the SR performance. In addition, we introduce signal-to-noise
ratio (SNR) and contrast ratio (CR) in the local background
neighborhood [58] of targets to evaluate the performance of
recovering small targets. As shown in Fig. 4(a), the size of the
target area is a× b, and the local background neighborhood is
extended from the target area by d both in width and height. Note
that, the parameters of local background neighborhood (a, b, d)
in HR images are set to (7,7,30), (11,11,50), and (21,21,100)
in SAITD,1 Hui, and Anti-UAV,2 respectively. When 4× SR
is performed on HR images, the parameters (a, b, d) are set
to (29,29,120), (45,45,200), and (85,85,400). When 4× down-
sampling is performed on HR images, the parameters are set to
(3,3,10), (3,3,10), and (5,5,20).

To further evaluate the impact of SR algorithms on infrared
small target detection, we adopt SNRG, background suppres-
sion factor (BSF), SCRG, CG, and ROC for comprehensive
evaluation. Note that, the common detection evaluation metrics
calculate the ratio of the statistics in the local background
neighborhood before and after detection. Since we first super-
resolve the LR image, and then, perform detection, the inputs
of detection algorithms, which are the outputs of different SR
algorithms, are different. Therefore, direct using the common

1The synthetic target size in SAITD is preset to less than 7 × 7.
2The target size is less than 0.12% of the image size [1] (i.e., 256 × 256 in

Hui and 640 × 512 in Anti-UAV).
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detection evaluation metrics cannot evaluate the impact of SR
on detection accurately. To eliminate the influence of different
inputs, we modify the first four metrics to calculate the ratio of
the statistics in the local background neighborhood between the
LR image before SR and the HR target image after detection.
The modified evaluation metrics are shown in Fig. 4(b). We
then introduce the aforementioned evaluation metrics in details.
SNRG is used to measure the SNR improvement of detection
algorithms and is formulated as

fSNRG =
SNRout

SNRin =
(Pt/Pb)

out

(Pt/Pb)in
(6)

where [·]in and [·]out represent the metrics in the local background
neighborhood of the LR images and the HR target images,
respectively. Pt and Pb are the maximum value of the target
area and the background area, respectively. The BSF is used to
measure the background suppression effect and is formulated as

fBSF =
σin
b

σout
b

(7)

where σb is the standard deviation of the background area. The
SCRG is used to measure the SCR improvement of detection
algorithms and is formulated as

fSCRG =
SCGout

SCGin =
|μout

t − μout
b | /σout

b

|μin
t − μin

b | /σin
b

(8)

where μt and μb are the mean value of the target area and
the background area, respectively. CG is used to measure the
improvement of contrast between targets and background and is
formulated as

fCG =
CRout

CRin
=

|μout
t − μout

b |
|μin

t − μin
b |

. (9)

Note that, in order to avoid the value of “Inf” (i.e., the denomina-
tor is zero) and “NAN” (i.e., the numerator and denominator are
both zero), we add ε to each denominator in (6)–(9) to prevent it
from being zero. ε is set to 1e− 10 in this article. ROC is used
to measure the trend between detection probability Pd and false
alarm probability Fa, which are formulated as

Pd =
TD

AT
(10)

Fa =
FD

NP
(11)

where TD and FD are the number of true detection and false
detection. AT and NP are the amount of targets and the number
of image pixels. Note that, the criterion for judging true detec-
tion is that the distance between the detected location and the
groundtruth location is less than threshold τ and τ is set to 10
pixels [70] in this article.

3) Network Parameters: The parameters of CD-RG in the
feature extraction is CD-RG (D = 4, K = 6, and G = 32) and
the parameters of RGs are RG1,2 (D= 1, K = 4, G= 64), RG3
(D = 8, K = 6, G= 32). The parameters of the two LSTAs are
LSTA1 (kern = 3, dila = 3) and LSTA2 (kern = 3, dila = 1).

TABLE I
ABLATION RESULTS OF DLCM, CONV, AND CD-CONV FOR 4×SR ON SAITD,

HUI, AND ANTI-UAV DATASETS

Best results are shown in boldface.

Fig. 5. Toy example of features generated by (b) RG and (c) CD-RG. Note that,
(a) represents the corresponding frame of the input image sequence. Red and
blue boxes represent target and edge area, and the remaining area is background
area. (a) Images. (b) Features after RG. (c) Features after CD-RG.

4) Training Details: During the training phase, we randomly
extracted seven consecutive frames from an LR video clip,
and randomly cropped a 64 × 64 patch as the input. Mean-
while, its corresponding patch in HR video clip was cropped as
groundtruth. We followed [35] to augment the training data by
random flipping and rotation.

All experiments were implemented on a PC with an Nvidia
RTX 3090 GPU. The networks were optimized using the Adam
method [72] with λ1 = 0.9 and λ2 = 0.999 and the batch size was
set to 12. The learning rate was initially set to 1e− 3 and halved
in 10 K, 20 K, and 60 K iterations. We trained our network from
scratch for 100 K iterations.

B. Ablation Study

In this subsection, we conduct ablation experiments to vali-
date our design choice.

1) Central Difference Residual Group (CD-RG): To demon-
strate the effectiveness of our CD-RG, we replace all the CD-
Convs in CD-RG by Convs (i.e., residual group) and retrain
the network from scratch. The experimental results in Table I
show that CD-RG (i.e., CD-Convs) can introduce 0.12 dB/0.004
gains on PSNR/SSIM and 0.06/0.09 gains on SNR/CR. This
demonstrates that CD-RG can exploit the spatial local contrast
prior to effectively improve the SR performance and the target
contrast.

In addition, we visualize the feature maps generate by residual
group (RG) and CD-RG with a toy example in Fig. 5. Note that,
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the visualization maps are the L2 norm results along the channel
dimension [61], [73] and the red and blue boxes represent target
areas and edge areas, respectively. As is illustrated in Fig. 5(a),
the input frame of the image sequence consists of a target of
size 3 × 3 (i.e., the white cube at the top) and the clutter (i.e.,
the white area at the bottom). It can be observed from Fig. 5(b)
and (c) that the target contrast in the feature map extracted by
CD-RG is higher than that of RG. This demonstrates that CD-RG
can enhance the target contrast (from 7.41 to 13.55). In addition,
CD-RG can also improve the contrast between high-frequency
edges and background (from 6.64 to 13.59). This is because,
CD-RG aggregates the gradient-level information to concentrate
more on the high-frequency edge information, thus improving
the SR performance and target contrast simultaneously.

Moreover, we conduct ablation experiments to replace all
the CD-convs in MoCoPnet by DLCMs. Note that, the training
process of the MoCoPnet with DLCMs is unstable with sudden
loss divergence due to gradient fracture. By contrast, CD-conv
reserves the image feature information to update all pixels, which
ensures the gradient propagation continuity. The ablation results
in Table I show that CD-conv introduces significant performance
gain on PSNR/SSIM (i.e., 1.01/0.039 on average) and further
improve the contrast of small targets (i.e., 0.024/0.022 SNR/CR
gain on average).

2) LSTA Module: In MoCoPnet, two cascaded LSTAs with
parameters LSTA (kern=3, dila=3) and LSTA( kern=3, dila=1)
are used to enhance the spatio-temporal local features of se-
quence images in a coarse-to-fine manner. To validate the ef-
fectiveness of our design choice, we first remove LSTAs in the
MoCoPnet and name the model as LSTA1. In addition, we fur-
ther conduct ablation experiments to investigate the influences of
the parameters, numbers, subpixel information exploitation and
arrangements of LSTAs on the SR performance. Specifically,
we first replace LSTAs in the MoCoPnet by two cascaded
LSTAs with parameters (kern=3, dila=1) and name the model
as LSTA2. Second, we replace LSTAs in the MoCoPnet by an
LSTA with parameter (kern=3, dila=1) and name the model
as LSTA3. Third, we replace LSTAs in the MoCoPnet by an
LSTA with parameter (kern=9, dila=1/4) and name the model
as LSTA4. Fourth, we replace LSTAs in the MoCoPnet by three
parallel LSTAs with parameters (kern=3, dila=1), (kern=3,
dila=3), (kern=3, dila=5) and name the model as LSTA5.

The experimental results of LSTA1−5 are shown in Ta-
ble II. It can be observed that the #Params. and FLOPs of
LSTA1-5 are comparable, which means that LSTA only costs
a small amount of computations. The PSNR/SSIM/SNR/CR
scores of LSTA1 are 0.28 dB/0.008/0.021/0.013 lower than
the MoCoPnet. This demonstrates that LSTA can effectively
use the supplementary temporal information to enhance the
local features, thus improving the SR performance and the
target contrast. The PSNR/SSIM/SNR/CR scores of LSTA2

are 0.03 dB/0.002/0.003/0.003 lower than the MoCoPnet. This
demonstrates that LSTA with larger expansion rate (i.e., dila=3)
for coarse processing promotes our network to better extract and
utilize temporal information. The PSNR/SSIM/SNR/CR scores
of LSTA3 are 0.16 dB/0.004/0.009/0.006 lower than the Mo-
CoPnet and 0.13 dB/0.003/0.006/0.003 lower than LSTA2. This

demonstrates that coarse-to-fine processing benefits SR per-
formance and target enhancement. The PSNR/SSIM/SNR/CR
scores of LSTA4 are slightly higher than LSTA3 for
0.07 dB/0.001/0.003/0.000 but the memory cost of LSTA4

is 2 times than LSTA3 (i.e., 2.46 versus 1.17). This demon-
strates subpixel information exploitation benefits the perfor-
mance of SR and target enhancement but significantly increases
the memory cost. The PSNR/SSIM/SNR/CR scores of LSTA5

are 0.07 dB/0.002/0.005/0.005 lower than the MoCoPnet and
0.09 dB/0.003/0.004/0.001 higher than LSTA3. This demon-
strates that the cascade mode of LSTAs can better exploit in-
terframe information correlation and SR performance and target
enhancement can be further improved by enlarging the receptive
field of LSTAs.

Note that, we visualize the feature maps and attention maps
generated by LSTA3 (i.e., an LSTA with kernel size of 3 and
dilation rate of 1) with a toy example in Fig. 6. Note that,
the visualized feature maps are the L2 norm results along the
channel dimension [61], [73]. As is illustrated in Fig. 6(a1), the
target with size 1 × 1 (i.e., the white cube) is in the middle
of the red reference frame. In Fig. 6(a2), the target is in the
top left of the blue neighborhood frame. The corresponding
features before LSTA are shown in Fig. 6(b1) and (b2). The
aligned feature after LSTA is shown in Fig. 6(b3). It can be
observed that LSTA can effectively perform frame alignment to
achieve motion compensation. In addition, the attention maps
are shown in Fig. 6(c1)–(c9), and the position of each attention
map corresponds to the spatial arrangement in Fig. 3(b). It can be
observed that Fig. 6(c1) has the highest intensity (more than 90%
are 1) and represents the top-left motion, which demonstrates
that LSTA can effectively capture the target motion to perform
frame alignment.

Finally, we replace LSTAs in the MoCoPnet by an optical-
flow module (OFM) and a deformable alignment module
(DAM) to compare our LSTA with the widely used optical
flow and deformable alignment techniques. The experimen-
tal results are listed in Table II. It can be observed that the
PSNR/SSIM/SNR/CR scores of the MoCoPnet with LSTAs
are higher than the MoCoPnet with OFM and DAM for
0.11 dB/0.004/0.015/0.009 and 0.06 dB/0.002/0.005/0.006, re-
spectively. By contrast, the number of parameters and FLOPs of
the MoCoPnet with LSTA modules are lower than the MoCoPnet
with OFM and DAM for 0.11 M/2.70 G and 0.19 M/3.80 G,
respectively. This demonstrates that LSTA is superior in ex-
ploiting the information among frames to improve the SR
performance and the target contrast with lower computational
cost. This is because, on the one hand, LSTA can direct learn
motion compensation by attention mechanism without optical
flow estimation and warping, which results in ambiguous and
duplicate results [36], [77]. On the other hand, compared with
DAM, LSTA can better incorporate the local prior to achieve
improved SR performance and the training process of LSTA is
more stable to converge to a good results.

In addition, we visualize the feature maps generated by OFM,
DAM, and LSTAs with a toy example in Fig. 7. Note that, the
visualization maps are the L2 norm results along the channel di-
mension. As is illustrated in Fig. 7(a), the input image sequence
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TABLE II
ABLATION RESULTS OF THE LSTA MODULE ON THE AVERAGE OF SAITD, HUI,

AND ANTI-UAV DATASETS

Note that, LSTA1 validates the effectiveness of the module and LSTA2-5 investigate
the impact of its parameters, numbers, subpixel information exploitation, and arrange-
ments on the SR performance. OFM and DAM validate the superiority of LSTA
than the optical flow technique and deformable alignment technique. “#Params.”
represents the number of parameters. FLOPs is computed based on HR frames with
a resolution of 256 × 256. Best results are shown in boldface.

Fig. 6. Toy example illustration of feature maps and attention maps generated
by LSTA3. (a1) and (a2) Reference frame and neighborhood frame. (b1) and (b2)
Reference feature and neighborhood feature before LSTA. (b3) Aligned feature
after LSTA. (c1)–(c9) Attention maps of LSTA and the positions correspond
to the spatial arrangement in Fig. 3(b). (a) Images. (b) Features. (c) Attention
maps.

consists of a random consistent movement of a target with size 3
× 3 (i.e., the white cube) in the background (i.e., the black area).
The feature maps before OFM, DAM, and LSTAs are shown in
Fig. 7(b), (d), and (f). It can be observed that the target positions
in the extracted feature maps are close to the blue dots (i.e.,
the groundtruth position of the target in the current feature).
Then, OFM, DAM, and LSTAs perform feature alignment on
the extracted features. As is illustrated in Fig. 7(c), the target
positions in the feature maps generated by OFM are close to
the blue dots. In Fig. 7(e), the blue dots and the red dots (i.e.,
the groundtruth position of the target in the reference feature)
are both highlighted, which demonstrates that DAM does not
perform frame alignment but highlight all the possible positions.
The feature maps generated by LSTA1 (kern=3, dila=3) and
LSTA2 (kern=3, dila=1) are shown in Fig. 7(e) and (f). As
is illustrated in Fig. 7(f), all the target positions in the feature
maps generated by LSTA2 are closer to the red dot than those
of OFM. This demonstrates that LSTA is superior in motion
compensation. Note that, it can be observed from Fig. 7(e) and
(f) that LSTA1 and LSTA2 achieve coarse-to-fine alignment to
highlight the aligned target. This demonstrates the effectiveness
and superiority of our coarse-to-fine alignment strategy.

Fig. 7. Toy example illustration of feature maps generated by OFM, DAM,
and LSTA. Note that, t represents the temporal dimension. The blue dot and the
red dot represent the groundtruth position of the target in the current feature (t ∈
[1, 3] ∪ [5, 7]) and in the reference feature (t = 4). (a) Input image sequence.
(b) Feature maps before OFM. (c) Feature maps after OFM. (d) Feature maps
before DAM. (e) Feature maps after DAM. (f) Feature maps before LSTA. (g)
Feature maps after LSTA1. (h) Feature maps after LSTA2.

C. Comparative Evaluation

In this subsection, we compare our MoCoPnet with one
top-performing single image SR methods RCAN [15], five
video SR methods VSRnet [74], VESPCN [34], SOF-VSR [35],
TDAN [39], and D3Dnet [30], and three infrared image SR
methods IERN [51], PSRGAN [52], and ChaSNet [53]. For fair
comparison, we retrain all the compared methods on infrared
small target dataset [69] and exclude the first and the last two
frames of the video sequences for performance evaluation.

1) SR on Synthetic Images: PSNR/SSIM results calculated
on the whole image are listed in Table III. SNR and CR scores
calculated in the local background neighborhood are listed in
the 2nd − 9th columns of Table IV. It can be observed that
the MoCoPnet achieves the highest scores of PSNR, SSIM,
and outperforms most of the compared algorithms on SNR and
CR scores. The aforementioned scores demonstrate that our
network can effectively recover accurate details and improve
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TABLE III
PSNR/SSIM RESULTS AND RUNNING TIME OF DIFFERENT METHODS ACHIEVED BY SAITD [70], HUI [69], AND ANTI-UAV [71] DATASETS

Note that, the running time is the total time tested on 100 consecutive frames with a input resolution of 64 × 64. Best results are shown in boldface.

TABLE IV
SNR AND CR RESULTS OF DIFFERENT METHODS ACHIEVED ON SUPERRESOLVED LR IMAGES (COLUMNS 2ND − 9TH) AND SUPERRESOLVED HR IMAGES

(COLUMNS 10TH − 17TH)

Note that, we add the results of LR and HR as the baseline results and the resolution of LR is four times lower than the listed resolution. Exclude LR and HR, best results are
shown in boldface and second best results are shown in underlined.

Fig. 8. Visual results of different SR methods on LR images for 4× SR.

the target contrast. That is because, LSTA performs implicit
motion compensation and CD-RG incorporates the center-orient
gradient information to effectively improve the SR performance
and the target contrast. Note that, we also analyze the run-
ning time of different methods and the results are shown in
Table III. The running time is the total time tested on 100
consecutive HR frames with a resolution of 256 × 256 and is
averaged over 20 runs. It can be observed that our MoCoPnet

achieves a better SR performance with a reasonable increase in
running time.

Qualitative results are shown in Fig. 8. For the SR per-
formance, it can be observed from the blue zoom in regions
that the MoCoPnet can recover more accurate details (e.g.,
the sharp edges of buildings, and the lighthouse details closer
to groundtruth HR image). For target enhancement, it can be
observed from the red zoom in regions that, in the first row,
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Fig. 9. Visual results of realSR on HR images for 4× SR.

the MoCoPnet can further improve the target contrast, which is
almost invisible in other compared methods. In the second row,
the MoCoPnet is more robust to large motion caused by turntable
collections [69] (e.g., artifacts in the zoom-in region of D3Dnet).
In the third row, the MoCoPnet can effectively improve the target
contrast to be even higher than HR images (i.e., 1.82 versus 1.75).

2) SR on Real Images: SNR and CR scores calculated in the
local background neighborhood of superresolved HR images
are listed in the 10th − 17th columns of Table IV. It can be
observed that the MoCoPnet can achieve the best SNR score
and the second best CR score on the average of test datasets
under real-world degradation. This demonstrates the superiority
of our method in improving the contrast between targets and
background.

Qualitative results are shown in Fig. 9. It can be observed
that the MoCoPnet can recover finer details and achieve a better
visual quality, such as the edges of building and window. In
addition, the MoCoPnet can further improve the intensity and
the contour details of the targets.

D. Effect on Infrared Small Target Detection Algorithm

In this subsection, we select three typical infrared small target
detection algorithms (Top-hat [75], ILCM [76], and IPI [58])
to perform detection on superresolved infrared images. The
parameters of the three infrared small target detection algorithms
are shown in Table V. When 4× SR is performed on HR images,
the size of filters, block, and stride, as well as the true detection
threshold τ are enlarged by four times, respectively. When 4×
downsampling is performed on HR images, the filter sizes of
Top-hat and ILCM are set to 3× 3. The block sizes and the stride
of IPI are set to 15 × 15 and 3. The true detection threshold τ is
set to 3.0. For simplicity, we only use the best two superresolved
results of D3Dnet and MoCoPnet to perform detection. We also

TABLE V
PARAMETER SETTINGS OF TOP-HAT [75], ILCM [76], AND IPI [58] IN HR

IMAGES

“B” represents block size and “S” represents stride.

introduce bicubicly upsampled (Bicubic) images and HR images
as the baseline results.

1) Detection on Synthetic Images: The quantitative detection
results of superresolved LR images are listed in Table VI.
It can be observed that the SNRG, SCRG, and CG of the
superresolved images are generally higher than the Bicubic
images. This demonstrates that SR algorithms can effectively
improve the contrast between the target and the background, thus
promoting the detection performance. It is worth noting that the
SNRG, SCRG, and CG scores of D3Dnet and MoCoPnet can
even surpass those of HR. This is because, SR algorithms can
perform better on the high-frequency small targets than the low-
frequency local background, thus achieving an improved target
contrast than HR images. In addition, Bicubic can achieve the
highest BSF score in most cases. This is because SR algorithms
act on the entire image, which enhances targets and background
simultaneously and detection algorithms have better filtering
performance in smoothly changing background. Note that, BSF
of the MoCoPnet is generally higher than that of D3Dnet. This
is because the MoCoPnet can focus on recovering the local
salient features in the image and further improve the contrast
between targets and background, which benefits the detection
performance.
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TABLE VI
QUANTITATIVE DETECTION RESULTS OF TOPHAT, ILCM, AND IPI ACHIEVED ON SUPERRESOLVED LR IMAGES IN INFRARED SMALL TARGET DATASETS

Best results are shown in boldface and second best results are shown in underlined.

Fig. 10. Qualitative results of superresolved LR image and detection results in SAITD, Hui, and Anti-UAV datasets.

The qualitative results of superresolved LR images and detec-
tion results are shown in Fig. 10. In the LR images, the targets
intensity are very low (e.g., the targets in SAITD and Anti-UAV
are almost invisible). In the superresolved images, the targets
intensity are higher and closer to the HR images. This is because,
SR algorithms can effectively use the spatio-temporal informa-
tion to enhance the target contrast. Note that, our MoCoPnet is
more robust to large motion caused by turntable collections [69]
(i.e., artifacts in the zoom-in region of D3Dnet in Hui dataset). In
addition, the neighborhood noise in HR image are suppressed

by the way of downsampling, and then, SR (e.g., point noise
are not exist in the zoom-in regions of Hui and Anti-UAV
datasets). Then, we perform detection on the superresolved
images. It can be observed in Fig. 10 that all the detection
algorithms have a poor performance on the Bicubic images
(e.g., the target intensity in the target image is very low and
almost invisible in all detection results). This is because, bicubic
interpolation cannot introduce additional information. However,
the targets intensity in the target images of superresolved images
are higher than the Bicubic images. Among the superresolved
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Fig. 11. ROC results of Tophat, ILCM, and IPI achieved on superresolved LR images in SAITD, Hui, and Anti-UAV datasets.

images, the MoCoPnet is superior than D3Dnet in improving
the target contrast due to the center-oriented gradient-aware
feature extraction of CD-RG and the effective spatio-temporal
information exploitation of LSTA.

To evaluate the detection performance comprehensively, we
further calculate the ROC results, which are shown in Fig. 11.
Note that, ROC results on LR and HR image are used as the
baseline results. The targets in HR images have the highest
intensity. Therefore, a high detection probability and low false
alarm probability can be obtained and the detection probability
reaches 1 faster (e.g., the ROC results reach 1 the fast in SAITD
and Hui datasets). Downsampling leads to target intensity re-
duction, thus reducing the detection probability and increasing
the false alarms probability. Bicubic introduces no additional
image prior information, therefore, LR and Bicubic have the
worst detection performance and the ROC results are significant
lower than other algorithms (e.g., the ROC results of LR are
the lowest and those of Bicubic are the second lowest except
the ROC of Tophat in the SAITD dataset). SR algorithms can
introduce prior information to improve the contrast between
targets and background, thus achieving an improved detection

accuracy (e.g., the ROC results of MoCoPnet and D3Dnet are
higher than Bicubic in SAITD and Hui datasets and even higher
than HR in Anti-UAV dataset). Note that, false alarm rates of
LR and Bicubic can only reach a relatively low value. This is
because, IPI achieves detection by sparse and low rank recovery,
which significantly decreases the false alarm rate than Tophat
and ILCM. From another point, IPI suffers a low detection rate
of low contrast targets. Therefore, the ROC curves of Bicubic
and LR images are shorter than those of HR and superresolved
images. The aforementioned experimental results show that SR
algorithms can recover high-contrast targets, thus improving the
detection performance.

2) Detection on Real Images: The quantitative detection
results of superresolved HR images are listed in Table VII. It can
be observed that the detection performance of SR algorithms is
superior to Bicubic. This demonstrates that the MoCoPnet and
D3Dnet can effectively improve the contrast between targets
and background, resulting in performance gain of detection.
Among SR algorithms, due to the superior performance of
SR and target enhancement by our well-designed modules, the
MoCoPnet can achieve the best SNRG, SCRG, and CG scores
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Fig. 12. Qualitative results of superresolved HR image and detection results in SAITD, Hui, and Anti-UAV datasets.

TABLE VII
QUANTITATIVE DETECTION RESULTS OF TOPHAT, ILCM, AND IPI ACHIEVED ON SUPERRESOLVED HR IMAGES IN INFRARED SMALL TARGET DATASETS

Best results are shown in boldface and second best results are shown in underlined.

in most cases. Note that, the SNRG and SCRG scores (achieved
by IPI) of the MoCoPnet in anti-UAV dataset are 7–8 orders
of magnitude lower than those of Bicubic and D3Dnet. First
of all, the MoCoPnet can achieve highest scores of CG. This
demonstrates the target intensity can be effectively and further
enhanced by the MoCoPnet. Then, the differences come from the
performance of background suppression. Since the MoCoPnet
can achieve higher scores of the SR performance than Bicubic
and D3Dnet, the local backgrounds of Bicubic and D3Dnet are
more gentle and detection algorithms can achieve a better sup-
pression performance. IPI is superior in suppressing background
clutter, therefore, sometimes the local backgrounds in the target

image of Bicubic and D3Dnet are zero. Since we add ε to each
denominator in (6)–(9) to prevent it from being zero, SNRG and
SCRG scores can be very large due to completely suppressed
background. In addition, bicubic interpolation suppresses the
high-frequency components to a certain extent, resulting in an
optimal BSF value.

The qualitative results of superresolved HR images and de-
tection results are shown in Fig. 12. It can be observed that the
targets of Bicubic images are blur, while SR can enhance the
intensity of target (e.g., the highlighted and sharpened targets).
After processed by SR algorithms, we then perform detection
on the superresolved images. Note that, SR algorithms can
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Fig. 13. ROC results of Tophat, ILCM, and IPI achieved on superresolved HR images in SAITD, Hui, and Anti-UAV datasets.

Fig. 14. Failure cases caused by (a) repaid moving targets and (b) sudden
changes caused by turnable collection. Red and blue arrows indicate the locations
of the targets. (a) Rapid moving target. (b) Sudden change by turnable collection.

effectively improve the intensity of targets and the contrast
against background, resulting in a better detection performance.

To evaluate the detection performance comprehensively, we
further present the ROC results in Fig. 13. Note that, ROC
results on the HR image are used as the baseline results. It
can be observed that SR algorithms can improve the detection
probability and reduce the false alarm probability in most cases.
Compared with D3Dnet, the MoCoPnet can further improve the

target contrast, thus promoting the detection performance. Note
that, false alarm rates of Bicubic can only reach a relatively low
value. This is because, IPI achieves detection by sparse and low
rank recovery, which significantly decreases the false alarm rate
than Tophat and ILCM. In other words, IPI suffers low detection
rate of low contrast targets.

E. Limitation

The proposed method fails when the image sequence contains
repaid moving targets [see Fig. 14(a)] or sudden changes [see
Fig. 14(b)] caused by turnable collections. As we do not have a
specific design for handling large motion and sudden change, the
motion compensation by LSTAs in these cases can be wrong and
our approach may not be able to effectively recover the targets.
In future work, we aim to improve the robustness of our method
to large motion and sudden change.

V. CONCLUSION

In this article, we propose a local MoCoPnet for infrared small
target SR. Experimental results show that the MoCoPnet can
effectively recover the image details and enhance the contrast
between targets and background. Based on the superresolved
images, we further investigate the effect of SR algorithms on
the detection performance. Experimental results show that the
MoCoPnet can improve the performance of infrared small target
detection.
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