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Contrast-Aware Color Consistency Correction for
Multiple Images

Yinxuan Li , Li Li , Jian Yao , Menghan Xia, and Hanyun Wang

Abstract—Color consistency optimization for multiple images
is a challenging task in remote sensing and computer vision. To
ensure that the visual quality of corrected images is satisfactory,
not only should the color discrepancies between multiple images
be invisible but also the contrast of individual images should be
visually appealing. Most color correction approaches focus on elim-
inating drastic color discrepancies, but ignore the problem of image
contrast enhancement. Some color correction approaches even tend
to degrade the image contrast to ensure that the image tones are
consistent especially when the contrast of input images is low. To
solve this problem, we present a contrast-aware color consistency
correction approach in this article. We attempt to eliminate the
drastic color differences and enhance the contrast of input images
simultaneously. We creatively integrate the problems of color con-
sistency correction and image contrast enhancement into the same
global energy optimization framework, and we also design a special
cost function to minimize the color discrepancies and enhance
the image contrast using the original color information. Thus,
although the contrast of input images is low, our approach can still
generate the corrected images with consistent tones and visually
appealing contrast. At last, we select several challenging datasets
to evaluate our approach. The experimental results visually and
quantitatively demonstrate the effectiveness and superiority of the
proposed contrast-aware color consistency correction approach.
The results also demonstrate that our approach significantly out-
performs the existing approaches, especially when the contrast of
the input images is low.

Index Terms—Color consistency, color correction, image
contrast, image mosaicking, multiple images.
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I. INTRODUCTION

IN THE process of producing panorama [1], [2], digital
orthophoto map (DOM) [3], and textured three-dimensional

(3-D) model [4]–[6], we usually need to mosaic several images
into a large image as seamlessly as possible. However, there usu-
ally are drastic color discrepancies between input images if they
are captured by different sensors or at different times. The color
inconsistency seriously degrades the visual quality of composite
image and textured 3-D model. To solve this problem, we usually
apply the image blending [7]–[9] methods to smooth the color
differences between adjacent images. However, image blending
can only eliminate the local and small color discrepancies, and
it may fail when the color differences are global and drastic.
Thus, it is necessary to perform color consistency correction
for multiple images to ensure that the drastic and global color
discrepancies have been eliminated before image mosaicking
and texture mapping. Otherwise, the color artifacts will appear
on the composite image and textured 3-D model. In this article,
we focus on color consistency correction for multiview image
mosaicking. It should be noted that the proposed approach can
be used for another applications, too.

In recent years, many advanced color consistency correction
approaches in the fields of remote sensing [10] and computer vi-
sion [11] have been proposed to eliminate drastic color discrep-
ancies. Most of these approaches focus on how to extract the ro-
bust color correspondences and how to design the optimal color
model and energy function. In most cases, existing approaches
can effectively correct color differences and obtain corrected
images with global consistent tones. However, their correcting
results may not be visually pleasing. Because sometimes the
contrast of the corrected images is low, which significantly
degrades the visual quality. To visually illustrate this issue, we
present an example in Fig. 1. The color discrepancies between
input images are large and the contrast of each individual image
is low, as shown in Fig. 1(a). We present the corrected images
generated by two existing approaches [12], [13] in Fig. 1(b) and
(c), respectively. Although the images presented in Fig. 1(b) and
(c) have consistent global tones, the composite images are still
unpleasant because the contrast of corrected images is still low.
The scores of color distance (CD) and measure of enhancement
(EME) presented in Fig. 1 also support the above conclusion.
The definitions of CD and EME can be found in Section V-A.

However, most existing approaches focus on eliminating dras-
tic color discrepancies, and ignore the issue of image contrast en-
hancement in their framework. In general, the color consistency
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Fig. 1. Visual illustration of our work. The input images are presented in (a).
Color correction results generated by Yu et al.’s approach [12], Xia et al.’s
approach [13] and our contrast-aware approach are presented in (b)–(d), respec-
tively. (a) Input images. (b) Yu et al.’s approach (CD = 15.53, EME = 5.13)
(CD = 7.10, EME = 4.80). (c) Xia et al.’s approach. (d) Our proposed approach
(CD = 4.34,EME = 4.90) (CD = 4.05, EME = 14.88).

term used in the existing methods [1], [12]–[14] is defined as the
sum of color distances between images. Since blurred images
usually lead to small color distances, the color consistency term
tends to degrade the image contrast and generate blurred images.
For two images, some advanced color transfer approaches [15]–
[17] are proposed to preserve the original image details and
transfer the color of target image into the reference image
simultaneously. These approaches work well for two images,
but they are difficult to be used in the case of multiple images.
For multiple images, Li et al. [3] and Xia et al. [13] proposed
to design a gradient term so as to preserve the original image
details. But the gradient term cannot guarantee high visual
quality of corrected images when original images are of low
visual quality. To ensure visual quality of corrected images
given low quality original images, Xia et al. [13] additionally
designed a dynamic range term. But the designed dynamic
range term only attempts to stretch color distribution ranges of
corrected images based on that of original images. Most of the
information contained in color distribution is ignored. So the
ability of [13] to enhance image contrast is still insufficient, the
visual quality of the corrected images may still be unpleasant, as
shown in Fig. 1(c). In addition, Shen et al. [4] and Li et al. [18]
proposed to perform image enhancement as preprocessing and
postprocessing of global color correction, respectively. Since the
enhancement is done after/before global color correction, global
color optimization and high image quality cannot be achieved
simultaneously. Postprocessing may corrupt global color con-
sistency, while preprocessing cannot guarantee image quality
after global color correction. Until now, it is still challenging to
automatically generate the corrected images with both consistent
tones and visually appealing contrast.

To simultaneously enhance the contrast of individual im-
ages and eliminate the color discrepancies, we propose a novel
contrast-aware color consistency correction approach. Instead

of performing image contrast enhancement and color consis-
tency correction step by step, we creatively integrate these two
problems into the same energy optimization framework. So we
can simultaneously optimize these two problems together. We
also design a special cost function that considers both color
consistency term and image contrast term. Thus, we can gen-
erate the corrected images with consistent tones and visually
appealing image contrast, as shown in Fig. 1(d). In our contrast
term, we adaptively use the color information of input images
to guide the process of image contrast enhancement. Inspired
by the histogram equalization approach [19], we attempt to gen-
erate the corrected images with uniform histogram. However,
the problems of overenhancement and underenhancement may
appear if there are peaks and valleys in the original color his-
togram [20]–[24]. To alleviate these two problems, we propose to
construct the color histogram using the contextual and gradient
information of each pixel. In our proposed contrast-aware color
correction approach, instead of preserving the image contrast
of original images, we propose to enhance the image contrast.
Thus, even if the contrast of original images is low, we can still
generate the composite image with high quality.

II. RELATED WORKS

To solve the problem of color consistency correction, many
approaches have been proposed in remote sensing [10] and
computer vision [11] fields. Here, we divide these approaches
into two categories: 1) path propagation-based and 2) global
optimization-based approaches.

The intuitive method is to repeatedly correct the color
differences for two images using the existing color transfer
approaches. We name this kind of approaches as the path
propagation-based approaches [25]–[27]. In general, they first
manually or automatically select one or several images as the
reference, then repeatedly transfer the colors of the rest of images
into the reference along the transferring path. The path of each
image usually is determined using a shortest path algorithm.
Pan et al. [25] proposed a network-based color correction ap-
proach for multiple aerial image mosaicking. This method first
finds the optimal transferring path for each target image from the
graph constructed using the area Voronoi diagrams with overlap.
Then, it transfers the color of each target image into the reference
using the optimal transferring path. Xie et al. [27] proposed to
select an image subset instead of one image from the weighted
image graph as the reference images. The initial solution was
obtained by transferring the colors of remaining images into
the reference using a histogram matching method. They further
improved the initial solution by optimizing a global energy
function. The key advantage of the path propagation-based
approaches is that they can fully use the current advanced color
transfer approaches [15], [16], [28], [29] to correct the color
differences between two adjacent images. However, there are
two essential disadvantages in these approaches. The first one is
that these approaches usually need to select one or several images
from the input images as the reference. However, the automatic
selection of the reference is still an open issue. The second one
is that it is difficult to avoid the appearance of accumulated
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errors, especially when the number of input images is large.
Thus, these approaches work well for several images, but may
generate inconsistent tones for a large set of images.

The global optimization-based approaches can effectively
solve these two disadvantages. Instead of correcting the input im-
ages individually, they attempt to correct all images at the same
time. In their approaches, they formulate the color consistency
correction problem as an energy function optimization problem.
They attempt to solve the color model parameters of all images
globally and simultaneously. In general, we can divide the
global optimization-based approach into two stages. First, the
color model is designed to approximate the color discrepancies
between input images. The commonly used color models include
the linear model [1], [4], [12], [30], [31], gamma model [32],
[33] and more flexible models like piecewise spline [13], [34]
and combination model [3]. Second, an energy function is
designed to globally solve the parameters of the applied color
models for all images. The first global color correction approach
is presented in [1]. They applied the linear model to correct
the global color differences between panoramic images. Xiong
and Pulli [32] presented a simple and effective luminance and
color correction approach for panorama mosaicking on mobile
phones. For luminance and color components, they applied the
gamma and linear models to correct the luminance and color
differences, respectively. The coefficients of the models are
calculated using a global optimization process. Park et al. [33]
proposed a robust low-rank matrix factorization approach to
estimate the parameters of gamma models for input images.
Liu et al. [14] proposed a robust color consistency optimization
approach for multiple satellite images. In this method, inliers
of color correspondences are applied to estimate the parameters
of linear models. However, these approaches may fail to correct
local color differences. To solve this problem, Yu et al. [12]
proposed to eliminate the color differences globally and locally.
This approach first eliminates the global color differences using
the linear color model, then the remaining local color differences
are smoothed using their proposed local optimization method.
Zhang et al. [35] applied different linear models to approximate
the color differences for different object categories. Similarly,
they further applied a local edge optimization to smooth the
artifacts along the category boundaries. Actually, the local op-
timization applied in [12] and [35] is a postprocessing and can
be regarded as the variant of image blending approach.

In most cases, existing global optimization-based methods
can automatically generate the corrected images with consistent
tones. However, the visual quality of the corrected images may
be still low because the image quality preservation is not con-
sidered in their energy function. To solve this problem, Shen
et al. [4] proposed to enhance the contrast of the corrected
images by linearly stretching the intensities of the corrected
images. However, the linear contrast stretching applied in their
approach is actually a postprocessing, which is not optimal. Xia
et al. [13] designed the gradient and contrast terms to avoid
the loss of original image details and penalize the dynamic
range, respectively. To preserve the gradient information of input
images, Li et al. [3] directly constrained that the gain of linear
color models are equal to 1. However, their ability to enhance

Fig. 2. Results generated by (a) image enhancement + color correction and
(b) color correction + image enhancement. The red box highlights the color
differences. (a) Image enhancement + Color correction (CD = 2.25, EME =
11.80). (b) Color correction + Image enhancement (CD= 13.70, EME= 16.38).

the image contrast is still low, the corrected images may be still
unpleasant especially when the contrast of input images is low.
In addition, the original color information also has not been
considered in their quality terms.

III. MOTIVATION OF OUR WORK

Given a set of input images I = {Ii}Ni=1, the goal of color
consistency correction approaches is to generate the visually
pleasant corrected images. The global tones of corrected images
should be consistent and the contrast of individual images should
be visually appealing. However, it is usually a tradeoff between
color consistency optimization and image contrast enhancement.

To generate the images with consistent tones and visually
appealing contrast, Shen et al. [4] proposed to perform image
enhancement and color correction step by step. However, this
kind of methods may generate unpleasant results. In Fig. 2, we
present an example. In Fig. 2(a), we enhance the contrast of input
images using our proposed improved histogram equalization
method at first. Then, the color discrepancies between enhanced
images are eliminated using our color correction approach.
Although the global tones of corrected images are consistent, the
contrast is low. The value of CD is small but the score of EME
is also low. This is because the color consistency term tends to
degrade the image contrast to eliminate the color discrepancies.
In Fig. 2(b), we optimize the color consistency at first, then
enhance the contrast of corrected images. The result is also un-
pleasant because the color differences between corrected images
are visible. The score of EME is significantly improved but the
value ofCD also drastically increases. This is because the image
contrast enhancement method may enlarge the color inconsis-
tency of adjacent images. In addition, the contrast of the leftmost
image is so high that the final result is disharmonious. Thus, it
is more reasonable if we can simultaneously eliminate color
discrepancies and enhance the image contrast. The corrected
results will be pleasant if the image enhancement approach can
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Fig. 3. Overview of our proposed contrast-aware color consistency correction approach.

be integrated into the framework of color consistency correction,
especially when the contrast of input images is low.

The intuitive idea is to linearly enlarge the dynamic range of
original images like the methods presented in [13]. The contrast
of individual images will be enhanced using this method. How-
ever, this method does not fully consider the color distributions
of input images. Histogram equalization approaches make full
use of color distribution to enhance image. They believe the
contrast of images will be enhanced if the color histograms
of images are uniform. Inspired by this, we design a contrast
term to encourage the generation of the corrected image with a
uniform histogram. However, the problem of overenhancement
or underenhancement may appear if there are prominent peaks
or valleys in the histogram. The human visual system is very
sensitive to the edge pixels, and is relatively insensitive to the
smooth regions. For better visual quality, the contrast of edge
pixels should be enhanced much more than the pixels in the
smooth areas. Thus, the constructed histogram should consider
the contextual information of each pixel. In addition, to em-
phasize the importance of edge pixels, the gradient information
also should be considered. In our study, to produce appealing
corrected images, we will propose an improved color histogram
construction approach using the contextual and gradient infor-
mation of each pixel.

As we know, the key of global optimization-based ap-
proaches [3], [13] is to estimate the optimal remapping function
for each input image using the extracted color correspondences.
We also observe that the essence of histogram-based image
enhancement approaches [19], [20] is also to find an appropriate
remapping function for each image using the information of
color histogram. Thus, if we can apply the same remapping
function to approximate the color discrepancies and the image
contrast together, we can easily integrate them into the same
global energy optimization framework.

IV. PROPOSED COLOR CONSISTENCY CORRECTION APPROACH

As shown in Fig. 3, the proposed approach has two stages.
First, for each individual image, we propose an improved his-
togram equalization approach to extract the weighted color

histogram using contextual and gradient information. Then, we
integrate the improved histogram equalization approach into the
global color consistency optimization framework. Thus, we can
simultaneously optimize the color consistency and enhance the
image contrast.

A. Proposed Histogram Equalization Approach

In this section, we will introduce an improved histogram
equalization approach. Consider an image I = {I(p)}, where
I(p) is the pixel intensity ofp at location (x, y), and 0 ≤ I(p) ≤
R− 1. R denotes the number of intensity levels. In our study,
we use the YCbCr color space. The contrast enhancement is
only applied in the Y channel. Thus, the value of R is 256 in our
study.

1) Traditional Histogram Equalization: In traditional his-
togram equalization approach, it first constructs the histogram
H = {h(rk)|0 ≤ k ≤ R− 1}, where h(rk) is the number of
pixels with the intensity rk. The probabilistic distribution of an
intensity rk in image I is calculated as

p(rk) = h(rk)

/R−1∑
k=0

h(rk). (1)

Based on the intensity probabilistic distribution, the correspond-
ing cumulative distribution function (CDF) C(rk) is calculated
according to the definition in [19]

C(rk) =

k∑
j=0

p(rj). (2)

Last, the enhanced intensity ek is obtained using the following
transformation:

ek = (R− 1)C(rk). (3)

Namely, the CDF is regarded as the remapping function for im-
age enhancement. However, the problems of overenhancement
and underenhancement may appear if there are prominent peaks
and valleys in the image histogram.

In Fig. 4, we present two visual examples. In the first exam-
ple, the enhanced image generated by the traditional histogram
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Fig. 4. Input images are presented in (a); (b) and (c) are the enhanced images generated by the traditional histogram equalization and our proposed improved
approaches, respectively. For the first image, the overenhancement occurs at the smooth region of the ocean because of a large number of similar intensity pixels. For
the second images, the underenhancement occurs at the region of the river (marked with red dashed ellipses) because the pixel number of corresponding intensity
levels is small. (a) Input images. (b) Traditional histogram equalization. (c) Improved histogram equalization.

equalization is unpleasant, because the problem of overenhance-
ment appears in the region of the ocean, as shown in the first row
of Fig. 4. In addition, for the region of land, the detail of image
is destroyed. In the second row of Fig. 4, we observe that the
problem of underenhancement appears in the enhanced image
generated by the traditional histogram equalization, especially
in the region of the river. The problem of overenhancement also
appears in the region of land.

2) Improved Histogram Equalization: To alleviate these
problems, we present an improved histogram equalization ap-
proach using the contextual and gradient information. For each
pixel p = (x, y), a w × w window is constructed at first. Let
Nw×w(p) denote all pixels in the window of pixel p. The mean
distance m(p) between the pixel p and the neighboring pixel q
is calculated as

m(p) =
∑

q∈Nw×w(p)

(I(p)− I(q))
/|Nw×w(p) | (4)

where |Nw×w(p)| denotes the number of pixels in the region
Nw×w(p). The neighborhood similarity s(p) is defined as

s(p) = 1− exp

(
−m(p)2

σ

)
(5)

where σ is the standard deviation. For the pixel p located at the
smooth region, the value of s(p) will be very small especially
when m(p) < σ. In addition, we also observe that the gradient
magnitude of the smooth region is small, and the edge pixels
have large gradient. Thus, to further increase the proportion of
edge pixels, we define the gradient term g(p) as

g(p) = 1− exp

(
−G(p)2

σ

)
(6)

where G(p) is the gradient magnitude of p. For the edge
pixels with large gradient, the value of g(p) will also be large.
Here, we find that there is a parameter σ need to be set empiri-
cally. As we know, the Gaussian function penalty a lot if m(p)
and G(p) are smaller than σ. In most cases, the values of m(p)
and G(p) are smaller than 10 in the smooth region. Thus, we
set σ = 10 in our study, and it works well in most cases.

Based on the defined s(p) and g(p), we will redefine the
image histogram H. For each intensity rk, the bin h(rk) is
calculated as

h(rk) =
∑
p∈I

η (rk, I(p)) (s(p) + g(p)) (7)

where η(rk, I(p)) is a binary logic function. η(rk, I(p)) = 1
if rk = I(p), otherwise η(rk, I(p)) = 0. Next, the probability
distribution and CDF are calculated as the traditional histogram
equalization does. In our improved histogram-based image en-
hancement approach, the contextual and gradient information
have been considered. The proportion of the pixels in smooth
regions will be suppressed, and the proportion of edge pixels
will be increased. Thus, we can effectively avoid the appearance
of artifacts caused by overenhancement and underenhancement.
The enhanced images generated by our improved histogram-
based approach are shown in Fig. 4(c). Obviously, the results
generated by the improved approach are significantly better than
the results of the traditional histogram equalization approach.

In Fig. 5, we visually present the intensity histograms con-
structed by the traditional and our proposed improved histogram
equalization approaches. For the first image, in the traditional
intensity histogram, the peak (marked by the red box) occurs at
the intensity levels corresponding to the region of ocean. This is
because the ocean region is smooth and the area is large. Thus,
the intensity levels of the ocean region will be overstretched
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Fig. 5. Y channels of images and the corresponding traditional and improved
intensity histograms.

according to (3), and the overenhancement occurs. However, in
our improved intensity histogram (the red one), we successfully
suppress the proportion of the ocean region as our expect. In
addition, in our improved intensity histogram, we also improve
the proportion of the land region (marked by the black box).
Thus, we avoid destroying the image detail of the land region.
For the second image, we observe that the proposed approach
successfully suppress the peak (marked by the red box) of the
traditional intensity histogram. Thus, we avoid the problem of
overenhancement that occurs at the land region. In addition, we
also observe that the proportion of the river region (marked by
the black box) increases in the improved intensity histogram
as our expect. Thus, the proposed approach can alleviate the
problem of underenhancement that occurs at the river region.

B. Contrast-Aware Color Correction

In Fig. 2, we illustrate that the final corrected and enhanced
images are not optimal if the image enhancement and color
correction are performed step by step. In this section, we will
introduce how to integrate these two problems into the same
energy optimization framework.

1) Color Remapping Function: In essence, both color cor-
rection and image enhancement attempt to find an optimal color
remapping function for each image. In the histogram-based
image enhancement approaches, they regard the CDF as the
transformation function. Although the CDF curve is flexible
enough, it is nonparametric. It is difficult to globally solve the
nonparametric color remapping functions for multiple images.
Thus, we propose to apply the quadratic spline curve [13], [34]
to approximate the color discrepancies and the image contrast
enhancement. This curve is flexible enough and can be parame-
terized with several anchor points. Let M denote the number of
anchors. We set M = 6 according to the suggestion presented
in [13].

Let {(vk, ṽk)}Mk=1 denote the anchors of quadratic spline
curve. {vk}Mk=1 are the evenly fixed horizontal coordinates.
The horizontal coordinates indicate the intensity value of input
image. {ṽk}Mk=1 are the vertical coordinates which control the
final shape of the remapping curve. For each input image Ii, the
color remapping function can be expressed as fi = {ṽik}Mk=1.

The detailed introduction of this color transformation function
can be found in our previous work [13].

2) Model Parameter Optimization: To generate the images
with consistent tones and appealing contrast, we need to estimate
the optimal remapping function fi for each input image. The
global energy function over all images should be designed at
first, and then we need to solve it globally. It should be noted that
the parameters of color transformation models are estimated in
each channel independently. In our study, we apply the YCbCr
color space. For each channel, the energy cost function E is
formulated as

E =
∑

Ii∩Ij �=∅
Ecolor (Ii, Ij)

+

N∑
i=1

(λ1Eregular (Ii) + λ2Econtrast (Ii)) (8)

where Ii and Ij are two overlapped input images. λ1 and λ2

are the factors that balance the influence of regular and contrast
terms. This cost function is simple, it only consists of color,
regular, and contrast terms. For two overlapped images (Ii, Ij),
the color term is defined as

Ecolor (Ii, Ij) =

Kc∑
k=1

||fi
(
cik
)− fj

(
cjk

)
||2 (9)

where (cik, c
j
k) denotes a color correspondence between Ii and

Ij . Kc is the number of color correspondences. fi and fj denote
the color remapping functions of Ii and Ij , respectively. || • ||2
denotes the L2 norm. To extract the color correspondences from
each image pair (Ii, Ij), we first construct the CDFs for two
images in the overlapped regions. Then, the corresponding in-
tensities with the same probability in the two CDFs are regarded
as the color correspondences. The probabilities are evenly fixed
along the vertical axis of CDF. In our study, for each image
pair, the number of color correspondences is 16. Namely, we set
Kc = 16.

The color consistency term can effectively ensure that the
color discrepancies between adjacent images are minimum.
However, the color term tends to obtain the invalid solution, since
the color discrepancies between multiple images are minimal if
the intensities of all pixels are 0. Thus, to avoid the appearance of
invalid solution, we define the regular term Eregular(Ii) of image
Ii as

Eregular (Ii) =

M∑
k=1

||fi
(
vik
)− vik||2. (10)

The regular term encourages that the corrected image colors
are similar to the original image colors. The valid solution can
be obtained when the energy value of color and regular terms
is minimum. Although the color differences between corrected
images are invisible, the results may still be unpleasant if their
contrast is low, as shown in Fig. 6. The scores of CD and EME
also indicate that the corrected images have small color differ-
ences and low contrast. In addition, the problem of overblurring
may appear. The color and regular terms cannot ensure that the
visual quality of the corrected images is pleasant.
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Fig. 6. Corrected images with the use of color and regular terms. The input and corrected images are presented in (a) and (b), respectively. The contrast of
the input images is low and the color differences are large. Although the corrected images have the same global tones, the contrast is still low. (a) Input images
(CD = 15.53, EME = 5.13). (b) Corrected images (CD = 1.57, EME = 4.58).

Fig. 7. Illustration of the effectiveness of our proposed contrast term. Input images are presented in (a). The corrected results without and with the use of contrast
term are presented in (b) and (c), respectively. (a) Input images (CD = 12.76, EME = 6.20). (b) Without contrast term (CD = 0.95, EME = 5.64). (c) With contrast
term (CD = 1.07, EME = 13.64).

To effectively improve the visual quality of the corrected
images, some previous works [3], [13] apply the gradient or
dynamic range term to avoid destroying the original image
details. However, these approaches may fail if the visual quality
of input images is low. In many cases, the contrast of input
images is relatively low, especially for the satellite images. Thus,
we propose to add the contrast term to enhance the image visual
quality. For each input image Ii, we first construct the CDF using
the image histogram Hi defined in (7). Then, the corresponding
intensities with the evenly fixed probabilities in the CDF are
extracted as the contrast control intensities. Let {bik}Kb

k=1 denote
these control intensities, whereKb denotes the number of control
intensities. Let {pik}Kb

k=1 denote the corresponding probabilities
of control intensities. In our study, we setKb = 16. As described
in Section IV-A, the histogram-based image enhancement ap-
proach tends to generate the image with uniform histogram using
the constructed CDF. For each control intensity bik, the enhanced
intensity b̃ik is calculated as

b̃ik = (R− 1) pik (11)

where R is the total number of intensity levels. In the proposed
contrast term, we attempt to ensure that the corrected image

intensities are uniformly distributed. Thus, we define the contrast
term as

Econtrast (Ii) =

Kb∑
k=1

||fi
(
bik
)− b̃ik||2. (12)

We encourage that the corrected image histograms are uniform,
so the contrast of the corrected images will be enhanced. In
addition, the original image color information is also fused into
our contrast term because it is defined using the color histograms
extracted from the original images. A visual example is shown
in Fig. 7. From Fig. 7, we observe that the color differences
of corrected images presented in Fig. 7(c) are slightly larger
than the images presented in Fig. 7(b). This is because the
contrast term inevitably limits the effectiveness of color consis-
tency term. However, this compromise is worthwhile because
the visual quality of the final corrected images is significantly
improved. The scores of EME also indicate that the contrast
term can significantly enhance the contrast of the input images.
It should be noted that the contrast term is applied to luminance
channel Y only. The Y represents nonchromatic information of
images, and the chromatic information is included in the Cb
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and Cr channels. Thus, we can preserve the original chromatic
information as much as possible.

In addition, we also add the constraint of monotonic increas-
ing for the spline line as our previous work [13] does. Finally,
the color model parameters can be calculated by minimizing the
energy function E. E is a quadratic polynomial, which can be
transformed to the standard form of constrained quadratic pro-
gramming. It can be solved using a convex quadratic program-
ming algorithm. Detailed descriptions of the solving process can
be found in Appendix A.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate the performance of the proposed contrast-aware
color consistency correction approach, we selected four datasets
(Coast, River, Land, and Village) captured by different sensors
to conduct our experiments. It should be noted that the images
included in each dataset have been geometrically aligned before
performing color correction. The Coast, River, and Land datasets
are orthoimages, so the images included in these three datasets
already be aligned into the same coordinate system. For Village
dataset, we directly apply the software PTGui1 to perform ge-
ometrical alignment. The Coast, River, and Land datasets are
multitemporal satellite images. Thus, their contrast is relatively
low and the color differences between the original images are
large. The Village dataset is captured by the unmanned aerial
vehicle (UAV) camera. The Village dataset is a simulated dataset.
In this dataset, the tones of images are manually adjusted to
increase the challenge of color consistency correction. And
the contrast of images are manually turned down to verify the
effectiveness of our contrast-aware color correction approach.

A. Evaluation Metrics

In this study, we select two objective metrics to quantitatively
evaluate the performance of color correction approaches. The
first metric is the color distance (CD) [13]. It is used to calculate
the color differences between corrected images. The other is the
measure of enhancement (EME) [36]. It is applied to evaluate
the contrast of individual images. It should be noted that the CD
is computed in YCbCr color space, and the EME is computed
using luminance component only.

1) Color Distance: For two overlapped images Îi and Îj ,
two color histograms are extracted from the overlapped regions
of two images. Then, the value of this metric is defined as the
distance between these two color histograms. The smaller value
of CD indicates the better color consistency. This metric is
calculated as

CD =
∑

̂Ii∩̂Ij �=∅
wij

ΔH
(
Îij , Îji

)
Nb

(13)

where Îi and Îj are two corrected images with overlap. Îij
represents the region of Îi overlapped with Îj . There is a similar
meaning for Îji. The weight wij is set proportional to the area

1[Online]. Available: https://www.ptgui.com/

of the overlapped region, and
∑

wij = 1. ΔH(•) denotes the
bin-to-bin distance between two color histograms extracted from
Îij and Îji. Nb is the bin number of the histogram.

2) Measure of Enhancement: This metric computes the av-
erage local contrast in an individual image. The higher value
of EME indicates the better contrast. For each corrected image
Îi, we divide it into many small nonoverlapping blocks with the
size of w1 × w2. Let Np denote the number of blocks. The EME
is defined as

EME =
1

Np

Np∑
k=1

20× log

⎛
⎝max

(
Îi,k

)
min

(
Îi,k

)
⎞
⎠ (14)

where Îi,k denotes the kth block of image Îi. max(•) and min(•)
denote the maximum and minimum intensities of the block,
respectively.

B. Parameter Determination

There are two key parameters (λ1 and λ2) that need to be
balanced in our proposed approach. λ1 and λ2 are applied to
balance the influence of regular and contrast terms, respectively.
We select four adjacent images from Coast dataset to visually
and quantitatively illustrate the influence ofλ1 andλ2. We named
the selected dataset as Coast4. The values of CD and EME of
the selected four images are 15.53 and 5.13, respectively.

In Fig. 8, we presented the corrected results with the use
of different λ1. Here, to effectively illustrate the influence of
λ1, we set λ2 to 0. As the value of λ1 increases, the contrast
of the corrected images increases, but the color differences
also increase. This is because the regular term will limit the
flexibility of the applied color transformation model. Since the
color consistency term tends to generate the blurred images,
the contrast of corrected images generated with small λ1 is
low, as shown in Fig. 8(a). However, even if the value of λ1 is
large, the contrast of the corrected images is still lower than the
original images, as shown in Fig. 8(d). Although the smallλ1 will
generate the images with small color differences, the corrected
results may lose the original color information. Thus, to preserve
the original chromatic information as much as possible, we set
λ1 = 0.5 for Cb and Cr channels. For the Y channel, we suggest
to set λ1 as a small value. Although the small λ1 will drastically
degrade the contrast of Y channel, the contrast term presented in
our approach will significantly enhance the image contrast of Y
channel. Thus, in order to eliminate the luminance differences
between images as much as possible, we set λ1 = 0.1 for Y
channel.

In Fig. 9, we presented the corrected results with the use of
different λ2. We fixed λ1 = 0.5 for Cb and Cr channels, and
fixed λ1 = 0.1 for Y channel. Although the small value of λ2

is applied, the contrast of corrected images is still better than
the original contrast, as shown in Fig. 9(a). In addition, the
color differences between corrected images are still very small.
It effectively illustrates that our proposed contrast-aware color
consistency correction approach can eliminate the color discrep-
ancies and enhance the image contrast simultaneously. As the
value of λ2 increases, the image contrast increases drastically,

https://www.ptgui.com/
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Fig. 8. Corrected results of our approach with the use of different balance weight λ1. (a)–(d) are the results generated with the use of different λ1. (a) λ1 = 0.1
(CD = 0.94, EME = 4.37). (b) λ1 = 0.3 (CD = 1.27, EME = 4.52). (c) λ1 = 0.5 (CD = 1.57, EME = 4.58). (d) λ1 = 0.7 (CD = 1.95, EME = 4.67).

Fig. 9. Corrected results of our approach with the use of different balance weight λ2. (a)–(d) are the results generated with the use of different λ2. (a) λ2 = 0.1
(CD = 1.41, EME = 6.99). (b) λ2 = 0.3 (CD = 2.43, EME = 11.51). (c) λ2 = 0.5 (CD = 4.05, EME = 14.88). (d) λ2 = 0.7 (CD = 5.77, EME = 19.18).

but the color differences also increase. This is because the con-
trast term applied in our approach also limits the effectiveness
of color term. We observed that λ2 ∈ [0.3, 0.5] can balance the
color consistency correction and image contrast enhancement
well. Thus, we suggest to set λ2 ∈ [0.3, 0.5]. In our experiments,
we set λ2 = 0.5 in default.

To further clearly illustrate how these two parameters in-
fluence the correction results of the proposed approach, we
presented the curves of CD and EME offered by different λ1

and λ2 in Fig. 10. In this experiment, we also applied the Coast4
dataset. From Fig. 10, we can obtain the similar conclusion with
the qualitative evaluation presented in Figs. 8 and 9.

C. Ablation Study

To illustrate the effectiveness of our proposed contrast term,
we performed an ablation study to illustrate how the proposed

Fig. 10. Curves of CD and EME offered by different (a) λ1 and (b) λ2. The
Coast4 dataset is applied in this experiment. (a) λ1. (b) λ2.

contrast term influences the correction results. We selected
Coast, River, Land, and Village datasets to perform the ablation
study. We reported the quantitative ablation study in Table I.
From Table I, we found that the color differences between
corrected images slightly increase after using the contrast term.
However, the contrast of corrected images is significantly im-
proved with the use of the proposed contrast term.
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Fig. 11. Comparative experiment on Coast dataset. (a) is the input images. (b)–(f) are the color consistency correction results generated by [1], [4], [12], [13]
and our approach, respectively. (a) Input images. (b) Brown and Lowe’s approach [1]. (c) Shen et al.’s approach [4]. (d) Yu et al.’s approach [12]. (e) Xia et al.’s
approach [13]. (f) Our approach.

TABLE I
QUANTITATIVE EVALUATION RESULTS OF OUR APPROACH WITH AND

WITHOUT THE USE OF CONTRAST TERM

D. Comparative Experiments

We selected four existing color correction approaches [1], [4],
[12], [13] to conduct the comparative experiments. In these four
approaches, two approaches [4], [12] have a postprocessing.
Shen et al. [4] proposed to linearly stretch the intensities of
the images after the color consistency correction to enhance
the image contrast. In the comparative experiments, we keep
this postprocessing to emphasize that our contrast-aware color
correction approach can generate the corrected images with
consistent tones and visually appealing contrast. Yu et al. [12]
proposed to perform a local color optimization after global color
correction. However, their local optimization actually is a variant
of image blending approach. It is not fair to other approaches
if the local optimization is applied, because the image blending
is not performed in other approaches. Thus, we abandon this
postprocessing in the next experiments. The Coast, River, Land,

and Village datasets are selected to conduct the comparative
experiments.

In Fig. 11, we conducted the comparative experiment on
Coast dataset. We observed that the corrected images presented
in Fig. 11(b) still have large global color differences between
adjacent images, especially between the third and the last strips.
Although Yu et al.’s [12] and Xia et al.’s [13] approaches
successfully eliminate the large color differences between ad-
jacent strips, the contrast of the corrected images is low, as
shown in Fig. 11(d) and (e). Thus, the visual quality of their
results is still unpleasant. The contrast of the corrected images
presented in Fig. 11(c) is relatively high. However, there are two
problems in their results. First, the problem of overenhancement
appears in the final images, as shown in Fig. 11(c). The area of
overenhancement is highlighted by the blue ellipse. This area
is so bright that some image details are lost. Second, the color
differences between the third and the last strips are still visible,
as shown in the second enlarged region of Fig. 11(c). In addition,
the contrast of the corrected images presented in Fig. 11(c) is
also lower than that of our proposed approach. For example,
there is a region of mountain in the second enlarged region. The
texture of this region is rich. From the comparison between 11(c)
and 11(f), we observed that the texture of our corrected images is
more clear. Fig. 11(f) presents the corrected images generated by
our proposed approach. The global tones of corrected images are
consistent while the contrast of individual images is appealing.

Then, we tested all approaches on River dataset, as shown
in Fig. 12. Similar to the Coast dataset, it consists of several
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Fig. 12. Comparative experiment on River dataset. The input images are shown in (a). (b)–(f) are the color consistency correction results generated by [1], [4],
[12], [13] and our approach, respectively. (a) Input images. (b) Brown and Lowe’s approach [1]. (c) Shen et al.’s approach [4]. (d) Yu et al.’s approach [12].
(e) Xia et al.’s approach [13]. (f) Our approach.

multitemporal satellite images. The color differences of this
dataset is relatively small. We observed that all approaches can
effectively eliminate the global color differences of the input
images. However, for some local regions, we found that Xia
et al.’s approach [13] and the proposed approach outperform
other approaches. In the first enlarged region, the color differ-
ences of images presented in 12(e) and (f) are smaller than that
of images presented in Fig. 12(b)–(d). Similar with the Coast
dataset, the contrast of the images presented in Fig. 12(b)–(e)
is low. The corrected images of these approaches are blurred in
some areas. Shen et al.’s approach [4] effectively enhances the
contrast of corrected images. However, it still fails to enhance
some local details. In Fig. 12(c), the image region highlighted
by the blue ellipse is still blurred. In contrast, our approach
effectively enhances the local details in this highlighted region,
as shown in the Fig. 12(f).

Next, we evaluated all approaches on Land dataset, as shown
in Fig. 13. From Fig. 13(b)–(d), we observed that the corrected
images still have large local color differences, especially in
the second enlarged region. In addition, the contrast of images
presented in Fig. 13(b) and (d) is low. We also observed that
the corrected images offered by Shen et al.’s approach have the

highest contrast. However, the problem of overenhancement ap-
pears again, as shown in the regions marked by the blue ellipses.
Xia et al.’s approach [13] offers the better color consistency
optimization results, but the contrast of the corrected images is
relatively low. The proposed approach performs well on this
dataset. We effectively eliminate the large color differences
between the input images. Although the image contrast of our
results is not the highest, we successfully avoid the problem of
overenhancement.

Finally, we tested all approaches on Village dataset. Both tone
and contrast of each image in this dataset have been adjusted
manually beforehand to increase the challenge. As a result,
the color discrepancies are large and the contrast is low, as
shown in Fig. 14(a). In addition, the geometrical misalignment
between images is large. From Fig. 14, we observed that our
approach offers the best result, and significantly outperforms
the other approaches in both color consistency and image visual
quality. The corrected images presented in Fig. 14(b) suffer from
severe image blurring and color inconsistency. Although Shen
et al.’s approach [4] generates the images with high contrast,
the color differences of the corrected images are still large. In
addition, the problem of overenhancement appears, as shown in
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Fig. 13. Comparative experiment on Land dataset. The input images are shown in (a). (b)–(f) are the color consistency correction results generated by [1], [4],
[12], [13] and our approach, respectively. (a) Input images. (b) Brown and Lowe’s approach [1]. (c) Shen et al.’s approach [4]. (d) Yu et al.’s approach [12].
(e) Xia et al.’s approach [13]. (f) Our approach.

TABLE II
QUANTITATIVE EVALUATION OF THE DIFFERENT APPROACHES

# Approach 1–4 denote the approaches presented in [1], [4], [12] and [13], respectively. T denotes the computational time, and the unit is seconds.

the second enlarged region. We used the blue ellipse to highlight
the area of overenhancement. The global tones of the corrected
images presented in Fig. 14(d) and (e) are consistent. However,
there still exist some local color differences. In addition, the
contrast of images presented in Fig. 14(d) and (e) is low. The
existing approaches all fail to generate the pleasant results for
this challenging dataset. However, our approach still works well,
as shown in Fig. 14(f).

From the experimental results presented in Fig. 11–14, we ob-
served that the proposed approach works well and outperforms
the existing approaches. However, we also observed that there
still exist small color differences between the images corrected
by the proposed approach. This problem usually appears when
the color differences between the input images are drastic and
complex. The color consistency correction methods only can
eliminate most of color differences, there usually are small
color discrepancies that remained between adjacent images. In

practical applications, the image blending methods [7]–[9] are
usually applied to further smooth such small color differences.

E. Quantitative Evaluation

The quantitative evaluation is also conducted to convinc-
ingly illustrate the superiority of the proposed contrast-aware
approach. We applied the two metrics presented in Section V-A
to quantitatively evaluate the performance of all approaches,
as shown in Table II. The proposed contrast-aware approach
offers the best CD scores for Coast and Land datasets. For
River and Village datasets, theCD score of our approach is only
slightly lower than the score offered by Xia et al.’s approach [13].
However, the EME score of our approach is significantly higher
than the score provided by Xia et al.’s approach [13]. In addition,
we also found that the EME scores offered by the proposed
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Fig. 14. Comparative experiment on Village dataset. The input images are shown in (a). (b)–(f) are the color consistency correction results generated by [1],
[4], [12], [13] and our contrast-aware approach, respectively. (a) Input images. (b) Brown and Lowe’s approach [1]. (c) Shen et al.’s approach [4]. (d) Yu et al.’s
approach [12]. (e) Xia et al.’s approach [13]. (f) Our approach.

contrast-aware approach are significantly higher than other ap-
proaches in Coast, River, and Village datasets. For Land dataset,
Shen et al.’s approach [4] offers the best score of EME. How-
ever, the problem of overenhancement appears in the images
corrected by Shen et al.’s approach, as shown in Fig. 13(c). In
addition, the CD score of our approach is significantly better
than that of Shen et al.’s approach. Considering the CD and
EME metrics together, the proposed contrast-aware approach is
the best among these approaches.

In Table II, we also presented the computational time of
these approaches. We observed that our approach is rela-
tively time-consuming. The computational time of the proposed
contrast-aware approach is longer than that of other approaches
in all datasets. This is because the construction of the color

histogram using the contextual and gradient information is
time-consuming. Although the efficiency of our approach is
lower than the existing approaches, the results generated by our
approach are visually appealing and significantly better than the
current approaches.

VI. CONCLUSION

In this work, we present a novel contrast-aware color consis-
tency correction approach for multiple images. In the proposed
approach, not only can the color differences between input
images be effectively eliminated but also the contrast of input
images can be enhanced. The contributions of our work are
summarized as follows.
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1) We creatively integrate the problems of color consistency
optimization and image contrast enhancement into the
same global energy optimization framework. Thus, we
can generate the corrected images with consistent tones
and visually appealing contrast even the contrast of input
images is low.

2) Instead of directly penalizing the dynamic range of input
images, we apply the original color information extracted
from the color histogram to adaptively define our contrast
term. In addition, to alleviate the problems of over- and
underenhancement, we also propose to construct the color
histogram using the contextual and gradient information.

3) The experimental results on several real and simulated
datasets illustrate the superiority and effectiveness of
our approach, and also illustrate that the proposed ap-
proach significantly outperforms the existing state-of-the-
art color consistency correction approaches.

To the best of our knowledge, it is the first work that attempts to
simultaneously eliminate the drastic color differences between
multiple images and enhance the contrast of individual images
using the original color histogram information. It provides a new
idea to solve the visual quality degradation problem existed in
the current color consistency correction approaches.

APPENDIX A
SOLVING PROCESS OF OUR ENERGY FUNCTION

To solve color parameters for all images, we are supposed to
write (8) in matrix form. To this end, for x falls in the scope of
knots {vip, vip+1, v

i
p+2}, following formulation of spline model

in [13], color remapping fi(x) can be written in matrix form as

fi(x) =
1

2

[
0 · · · 0 t1 t2 t3 0 · · · 0

]
︸ ︷︷ ︸

M

⎡
⎢⎢⎢⎣

ṽi1
ṽi2
...

ṽiM

⎤
⎥⎥⎥⎦ (15)

where t1 = 1− 2t+ t2, t2 = 1 + 2t− t2, and t3 = t2.
{ṽik}Mk=1 are parameters of fi and t can be computed easily by
solving

x =
1

2

[
t1ν

i
p + t2ν

i
p+1 + t3ν

i
p+2

]
. (16)

Let v denote a vector of color parameters for all images

v = [ṽ11 , ṽ
1
2 , . . . , ṽ

1
M , . . . , ṽN1 , ṽN2 , . . . , ṽNM ]� (17)

which contains all the variables to be solved. Then we can write
(15) as

fi(x) =
1

2

[
0 · · · 0 t1 t2 t3 0 · · · 0

]
︸ ︷︷ ︸

M×N

v. (18)

Learning from (18), (9) can be rewritten as

Ecolor(Ii, Ij) = (Ai,jv)
�Ai,jv (19)

where Ai,j is Kc × (M ×N) sparse matrix and each row of
Ai,j relates to one color correspondence between image Ii and

image Ij . Similarily, (10) can be rewritten as

Eregular(Ii) = (Γiv − vi
0)

�(Γiv − vi
0) (20)

since fi(v
i
k) = ṽik, where Γi is (M ×N)× (M ×N) sparse

matrix with only six elements on the diagonal being 1 and vi
0 =

[vi1, . . . , v
i
M ]�. And (12) can be rewritten as

Econtrast(Ii) = (Biv − bi)
�(Biv − bi) (21)

where Bi is Kb × (M ×N) sparse matrix and bi =

[̃bi2, b̃
i
2, . . . , b̃

i
Kb

]�. According to (19)–(21), we, thereby can
derive the matrix form of (8)

E = (Av)�Av + (v − v0)
�(v − v0) + (Bv − b)�(Bv − b)

(22)
where A, B, v0, and b can be obtained by continuously stacking
matrix and vector respectively. Finally, rewriting hard con-
straints imposed on v in [13] as Cv � c, we can obtain con-
strained optimization formulation in matrix form

Minimize 1
2v

�(A�A+ I + B�B)v + (−v0 − B�b)�v
subject to Cv � c

(23)
where I is (M ×N)× (M ×N) identity matrix and terms un-
related to v are omitted. This is a typical quadratic programming
problem which can be solved using QuadProg++2.
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