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Abstract—Despite the popularity of deep neural networks in
various domains, the extraction of digital terrain models (DTMs)
from airborne laser scanning (ALS) point clouds is still challenging.
This might be due to the lack of the dedicated large-scale annotated
dataset and the data-structure discrepancy between point clouds
and DTMs. To promote data-driven DTM extraction, this article
collects from open sources a large-scale dataset of ALS point
clouds and corresponding DTMs with various urban, forested,
and mountainous scenes. A baseline method is proposed as the
first attempt to train a deep neural network to extract DTMs
directly from ALS point clouds via rasterization techniques, coined
DeepTerRa. Extensive studies with well-established methods are
performed to benchmark the dataset and analyze the challenges
in learning to extract DTM from point clouds. The experimental
results show the interest of the agnostic data-driven approach,
with submetric error level compared to methods designed for
DTM extraction. The data and source code are available online
at https://lhoangan.github.io/deepterra/ for reproducibility and
further similar research.

Index Terms—Airborne laser scanning (ALS) point cloud,
dataset, deep networks, digital terrain model (DTM), generative
adversarial network (GAN), rasterization.

I. INTRODUCTION

D IGITAL terrain models (DTMs), two-dimensional (2-D)
representations of bare-Earth surface elevation, are criti-

cal for geographical and environmental studies, such as flood
modeling [1]–[3], aboveground biomass estimation [4], infras-
tructure planning [5], etc. Being a subset of digital elevation
models, DTMs are usually distinguished from its relative, digital
surface models (DSMs), by the exclusion of objects (houses,
vegetation, etc.) and representing only the bare ground surface
underlying the objects.
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DTM extraction can be achieved from satellite or aerial im-
ages [6], [7], DSMs [8], or point clouds [9], [10]. Among the pos-
sibilities, airborne laser scanning (ALS) point clouds with rich
geometry information (c.f. images) and high precision due to the
penetration capability through vegetation (c.f. photogrammetry)
have gained attention in the recent decades. Several studies were
proposed on ALS point clouds, while datasets were introduced to
accommodate data-driven deep learning-based research, notably
for point cloud segmentation [11]–[14].

Deep learning methods, which learn to identify salient pat-
terns from high volume of data, have proven to be more effective
over well-engineered features for several computer vision and
machine learning problems [15]–[17]. For DTM extraction, dif-
ferent convolutional neural network (CNN)-based methods have
been proposed for point cloud ground filtering [14], [18], [19],
one of the two elemental steps, while the elevation interpolation
problem is left open.

One hindrance for data-driven DTM extraction is the lack of
dedicated large-scale datasets. While ground filtering can be for-
mulated as a semantic segmentation problem, where one class is
ground and the rest are nonground, creating ground truth DTMs
require specialized knowledge and tools. To encourage deep
learning-based research in this important field, we introduce a
large-scale dataset of ALS point clouds and reference DTMs
collected from open data sources (see Fig. 1). Several well-
established methods are compared for benchmarking purposes.

Another challenge to be tackled is the discrepancy of inputs
and outputs representations. 3-D ALS point clouds inherently
lack topological information that 2-D image-like DTMs em-
brace. In this article, we propose using rasterization techniques to
bridge the representation gap, which has proven to largely retain
point cloud information [20]. As such, point cloud-based DTM
extraction can be formulated as an image-to-image translation
problem [21], and thus off-the-shelf computer vision methods
can be applied. As rasterization is the idea behind rendering
networks, e.g., RenderNet [22], it could be extended to an
end-to-end solution.

To this end, we endeavor to predict DTM in a unified deep
learning framework by concurrently tackle both the elemental
problems: 1) ground filtering; and 2) elevation interpolation.
The proposed baseline employs an off-the-shelf architecture and
generative adversarial network (GAN) [23] to predict DTM from
point cloud-based multichannel rasters. The experimental results
show that simple employment of computer vision techniques
approaches well-established methods specifically designed for
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Fig. 1. (Top) DeepTerRa dataset with aerial laser scanning points clouds. (Bottom) Reference DTMs.

DTM extraction. Extensive analyses are performed to identify
the shortcomings and potentials of our data-driven approach for
DTM extraction.

The main contributions of this article are thus as follows.
1) The first large-scale dataset combining ALS point cloud

and bare-Earth elevation (DTM), covering 52 km2 with
several well-established methods for benchmarking.

2) The first attempt, to the best of our knowledge, to for-
mulate the DTM extraction problem in a unified deep
learning framework that could potentially be developed
into an end-to-end solution.

3) A comparative study of different rasterization strategies
for DTM extraction from ALS point clouds.

II. RELATED WORK

A. DTM Extraction

DTM extraction is a long-standing problem in geospatial
processing. It reconstructs from remote sensing data and the
bare-Earth surface underlying objects, or land covers, both natu-
ral (trees, water, etc.) and artificial (buildings, construction, etc.).
The typical process composes of two steps: 1) ground filtering;
and 2) surface interpolation [8], [10]. Ground filtering, or terrain
extraction, identifies the ground portions from among other
entities (water, trees, buildings, etc.) and extracts them from
the input geospatial data. The object-free ground portions then
have their surface completed by interpolation methods, such
as regularized splines [18], elevation gridding [24], or using
affine-kernel embeddings [8].

Due to high topographical variation and complex structures of
terrain types (e.g., flat, valley, hill, and mountainous) and objects
(e.g., vegetation and construction) in geospatial data, efforts have
been focused on exploring ground filtering. One strategy is to
rely on terrain elevation and slope to establish rules that separate
objects from ground [6], [9], [25], [26], under the assumption of
gradual relief and small land covers with respect to land scales.
Classification is performed by thresholding over predefined
values either by chosen manually or from local adaptive filtering
based on terrain slope [25].

Another approach is to approximate the terrain surface and
identify objects using neighboring information. The progressive
morphological filter (PMF) [27] uses sliding windows of
increasing size to filter the points with elevation difference.
Similarly, the simple morphological filter (SMRF) [28] filters the
points with linearly increasing windows and slope thresholding.
Such methods still rely on thresholds selection for the size
of windows and the elevation functions. One threshold-free
alternative, named the skewness balancing method (SBM) [29],
is based on an unsupervised statistical analysis of point
cloud skewness to filter ground points. The most recent cloth
simulation filtering (CSF) [30] is based on cloth simulation to
filter ground points by tuning the resolution of the virtual cloth,
its rigidness, and gravity parameters. Despite being simple and
computationally efficient, choosing optimal threshold remains
the hindrance for this strategy.

To overcome window size sensitivity and reduce parameteri-
zation, Duan et al. [8] exploited DSMs through a combination of
rule-based classification and multiscale morphological analysis,
and defined several different thresholds based on input DSM
statistics. The parameters are said to be robust to various DSM
types with arbitrary quality and not require tuning. Another
DSM-based DTM extraction aims to preserve sharp terrain edges
by using anisotropic filtering [31].

In recent years, the paradigm is shifted towards more of
learning-based methods [6], [14], [18], [19]. Such methods find
their emergence from the breakthroughs of deep networks [15],
[16], [32], [33], which, inspired by human neural systems,
model and learn parametric nonlinear functions defined by
sequentially stacked layers (hence deep network) from massive
amount of data. The CNN has proven to be effective for
various computer vision tasks, achieving state-of-the-art
results from high-level tasks (e.g., classification [15], [33] and
segmentation [16]) to low-level (e.g., optical flow [34] and
surface normal estimation [35]).

Benefiting from the advancement of computer vision, several
research studies have tried to apply deep learning techniques
to DTM-related problems. Gevaert et al. [6] and Tapper [36]
extracted DTMs from satellite imagery using fully convolutional
network [16] and residual network [37] architectures. Ground
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filtering has also received special attention. Ye [10] and Hu
and Yuan [18] extracted ground from ALS point clouds by first
sampling into image patches before performing image-based
classification, while Zhang et al. [19] applied dynamic graph
convolution techniques [38], and worked directly on point clouds
to benefit from the geometric structures.

On the other hand, Ayhan et al. [39], Kwan et al. [40],
and Crema et al. [41] assumed the availability of land cover
classes, i.e., from ground filtering, and compared various image
inpainting methods, among which are the GAN-based [42], in
completing the DTMs. GAN [23] employ adversarial losses,
usually presented as a zero-sum game between two networks:
1) generators; and 2) discriminators, in which one’s gain is
the other’s loss, to improve quality of generated samples. The
framework plays as the basis for a wide range of application,
such as image-to-image translation [21], image inpainting [42],
or downstream tasks, as DTM extraction from RGB images [40],
[43]. Different from our approach, these methods either assume
imagery inputs or only focus on a single step in DTM extraction.
Our method may share similar traits to an inpainting method
for GAN-based constructing DTMs, the main differences are
the use of rasterization to accentuate various point cloud fea-
tures and indirect use of semantic information to examine its
benefit. To the best of our knowledge, there is hardly any deep
learning-based method that attempts to extract DTM from ALS
point clouds data directly. This could be due to the discrepancy
between topologically unordered point cloud inputs and the
well-organized image-like DTMs, which is one of the targets
this article seeks to tackle.

B. Datasets

Another explanation for the limited deep learning-based DTM
extraction from ALS point clouds is the current shortage of ded-
icated large-scale labeled datasets. Despite the effectiveness and
popularity of deep learning techniques, large-scale datasets play
a critical role in their success. Existing datasets with ALS point
clouds include Filtertest1, ISPRS2012 [44], DublinCity [11],
LASDU [13], and DALES [12]. However, they are all designed
for urban semantic segmentation tasks (with the exception of
Filtertest, which is small reference data for ground filtering),
thus not equipped with DTM data (see Table I).

ALS point cloud datasets for deep learning-based ground
filtering were used in [18] and [19], yet the data are either
not publicly released or limited to single scene types. The most
recent OpenGF dataset [14], collected from open data sources,
also targets land-level ground filtering only and does not include
elevation information. Other related work includes [45] and [46],
which model large-scale urban scenes from MVS Meshes.

In this work, we collect and introduce a large-scale dataset,
coined DeepTerRa, including ALS point clouds (1659 M points,
covering 52 km2) with semantics and reference DTM data.
To assist ongoing research, part of the dataset is augmenting
the DALES [12] dataset with elevation data, while the rest are
from different regions. To the best of our knowledge, this is the
currently first and largest dataset with ALS point clouds with

1[Online]. Available: https://www.itc.nl/isprs/wgIII-3/filtertest

TABLE I
COMPARISON OF THE DATASET PROPOSED IN THIS ARTICLE AND EXISTING

ONES REPORTED THE LITERATURE. KEY FEATURES OF OUR DATASET INCLUDE

REFERENCE DTM INFORMATION FOR ALS POINT CLOUDS WITH LARGER

COVERAGE AND HIGHER NUMBER OF POINTS

corresponding DTM data, to encourage deep learning research
in DTM extraction and remote sensing.

III. DEEPTERRA

In this section, we detail the deep learning-based approach
for extracting DTM from ALS point clouds. To bridge the
topological gap between unordered point cloud inputs and
image-like DTM targets, we employ and elevate the rasterization
technique to extract information from point clouds. The rasters
then serve as inputs to a CNN-based generator, which is trained
with an adversarial loss (discriminator) and outputs a DTM. The
pipeline overview is shown in Fig. 3.

A. Rasterization

The ALS mechanism allows capturing high scene details by
projecting laser beams on a scene and recording the returning
beams. Due to the penetration ability of laser, a single emitting
beam may result in several returns, or echoes, especially in
vegetation areas, by interacting with different objects along the
height, such as foliage, leaves, branches, ground, etc. Each echo
registers a point p = {(x, y, z, I, e, . . .)} with spatial coordi-
nates x, y, and z of the interacted surface, intensity I , echo
number e, etc.

Rasterization arranges an unordered set of points P = {pk}
recorded by ALS in a regular 2-D grid or raster. The raster size is
determined by the spatial extension of the points on the ground
plane (xy-plane) and the size of each cell into which the points
are quantized. Each grid cell, or raster pixel, defines a vertical
column in the 3-D space, which can be further quantized into
cubic cells or voxels. In this article, a fixed size of 25-cm cubed
voxels is used.

Depending on the spatial resolution and scene structures, each
pixel or voxel may contain zero, one, or several points. Different
rasterization strategies apply different methods to make use of
the multiple point information. We propose to derive several
rasters to extract most of the information contained in the ALS
data (see Fig. 2). In particular, two levels of rasterization are
considered: 1) voxel level, treating all points in a cubic cell at a
time; and 2) pixel level, the whole vertical column altogether.

Depending on information being rasterized, the resulted
rasters can be categorized into two groups: 1) elevation raster;
and 2) statistic raster.

https://www.itc.nl/isprs/wgIII-3/filtertest


LÊ et al.: LEARNING DIGITAL TERRAIN MODELS FROM POINT CLOUDS: ALS2DTM DATASET AND RASTERIZATION-BASED GAN 4983

Fig. 2. Visualization of different rasters used in this article for an exemplar of Dayton annotated LiDAR Earth scan (DALES) (top) and New Brunswick (NB)
(bottom) with nadir-view point cloud (first column) and reference DTM (second column). Voxel-top is commonly known as DSM.

Fig. 3. Pipeline overview. An ALS point cloud is rasterized with multiple strategies, the resulted rasters are concatenated and fed to a deep neural network to
generate DTMs. L1 and adversarial losses are used to train the network. Repeated blocks are color-coded. The U-Net generator is shown in a recursive manner
with the recursive blocks in blue and terminating (base) block in green. Each block with a U-shape connection contains the same structure and number of layers.
The only difference is the number of convolutional layers indicated by k (best viewed in color).

1) Elevation Rasters: The vertical coordinate z of the points
are rasterized. The following three strategies are proposed.

a) Pixel-mean, which registers the mean of all points in a
vertical column.

b) Voxel-top storing the mean of the upper points.
c) Voxel-bottom for the lower points.
As such, the elevation rasters contain particularly the el-

evation information of a point cloud, which can be used to
infer DTM. In fact, the voxel-top rasters are also known as
DSMs.

2) Statistic Rasters: The statistic rasters do not specify eleva-
tion, but the statistics of the scene structures hinting the object
types and elevation. In this article, we propose the following
three raster types, all at pixel-level.

a) The density raster provides the number of points at each
pixel, which is useful to assess pixel-wise reliability when
processing other rasters.

b) The standard deviation (stdev) raster describes the varia-
tion of the voxels’ mean elevation in each column.

c) The echoes raster gives the mode of the echo numbers or
the most frequent echo number in a column, showing how
laser beams interact with the objects encountered at each
location.

As such, the raster signifies the object types, e.g., high
numbers or multiple echoes, usually indicate the presence of
vegetation.

As such, each raster is a single-channel image-like object rep-
resenting different aspects and spatial information of the point
cloud at each pixel. Hence, different from typical usage of DSM
or RGB images for DTM extraction, we do not limit the usage to
just one type of rasters at a time. To make the best use of various
information, the generated rasters are concatenated along the
depth channel before being fed to the network. Analyses on the
rasters’ contributions are presented in Section V.

B. GAN-Based DTM Generation

The DTM generation is formulated as an image-to-image
translation problem [21]. The pairs (r, t) of generated rasters
and corresponding reference DTMs are used to train a GAN.
As this article does not contribute to the GAN architecture,
but rather on the usage of rasterization for DTM extraction, we
briefly describe the architecture, and refer interested readers to
the original work for more details.

The network includes a generator G, which tries to produce,
from the input rasters r, a DTM G(r) as close as possible to
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Fig. 4. DALES dataset alignment. Visualization of ground elevation difference (in meters) between voxel-bottom raster and provided DTM without and with offset
correction; and visualization of root mean square errors (RMSEs) for different offsets during a grid search with minimum value at (3, 5). (a) Without correction.
(b) Greedy grid offset search. (c) With correction.

the reference one t and a discriminator D, which is trained to
distinguish a generated DTM G(r) from the real one t. The
detailed architecture of each network is shown in Fig. 3.

1) Generator: It is taken after the off-the-shelf U-Net ar-
chitecture [47], typically for pixel-to-pixel problems. The input
rasters are fed through series of several convolutional layers and
nonlinearity, which reduce the spatial dimensions to learn the
raster features before upsampling to the same dimensions (see
Fig. 3). The generator outputs an estimated DTM of the same
width and height as the input rasters.

The output DTMs are compared to the reference DTMs using
an L1-loss given by

LG = ‖t− G(r)‖1 . (1)

Euclidean losses, such as L1 or L2, are well-known for only
being able to capture low-frequency information and producing
blurry images [21], [48]. On the other hand, the pixel-wise
comparison does not guarantee similar statistics of the generated
image to the ground truth, hence might distorts the ground
surfaces. Thus, an adversarial loss is proposed.

2) Discriminator: This comprises a simple architecture
adapted from [49] with conditional GAN idea from [21] and
patchGAN from [50], which has proven to better capture local
statistics. In the conditional GAN, the discriminator receives a
DTM, generated or ground truth, together with the input rasters
and learns to identify the fake from the real DTMs. The extra
raster inputs allow the discriminator to condition the output
based on each particular input, and hence improves its judging
ability. The patchGAN loss penalizes the discriminator output
at the scales of image patches, thus enforcing local statistical
correctness. The adversarial loss is computed from the discrim-
inator output as follows:

LD = logD(r, t) + log(1−D(r,G(t))). (2)

The final loss is

L = λGLG + λDLD (3)

where λC and λD are the particular weights for each loss, and set
to 100 and 1, respectively, in [21]. The optimization is alternated
between G and D.

TABLE II
OVERVIEW OF ALS POINT CLOUDS IN DALES AND NB SUBSETS. THE POINT

CLOUDS ARE ALSO ACCOMPANIED BY STANDARD LASER-SCANNING FIELDS,
SUCH AS POINT-SOURCE ID, ECHO NUMBERS, SCAN ANGLE RANK, ETC

Fig. 5. Per-tile alignment evaluation. Median RMSEs of NB and DALES
subset, respectively, decrease from 2.53 and 2.13 (before correction, blue boxes)
to 0.52 and 0.59 (after correction, orange boxes), respectively.

IV. DATASET

To accommodate CNN training for DTM generation on ALS
point clouds, we collect from open sources a large-scale dataset
of ALS point clouds with reference DTM correspondences. The
dataset contains two subsets: 1) DALES; and 2) NB. Table II
provides an overview of the data, while general and per-tile
elevation statistics of each subset are shown in Figs. 6 and 7,
respectively.

1) DALES: The DALES dataset was presented to assist on-
going research for ALS point clouds [12]. Here, we augment it
with reference DTM data, collected from the original data source
of the City of Surrey2.

2[Online]. Available: https://data.surrey.ca/dataset/elevation-grid-2018,
Open Government License, City of Surrey.

https://data.surrey.ca/dataset/elevation-grid-2018
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Fig. 6. Elevation histogram for DALES (top) and NB (bottom) subset. The
x-axis depicts elevation and y-axis the number of pixels. NB has a larger elevation
range than DALES due to forested and mountainous regions while maintaining
the similar shape of lower elevations in urban areas.

Fig. 7. Elevation distribution among the tiles of DALES (top) and NB (bottom)
subset. The x-axis depicts the tiles and y-axis elevation. There are more variation
within each tile of DALES, while NB contains higher variation among the tiles.

2) NB: The second subset is collected from the NB region, an
open data collection, which includes LiDAR3 and corresponding
DTM4. To vary the elevation, we sample the data tiles around
the Saint John regions (urban and rural areas) and the Fundy
National Park (forested and mountainous area).

The ALS point clouds are produced using the latest boresight
values from the acquiring sensors (Terrascan for DALES) with
preliminary quality assurance steps taken to ensure data in-
tegrity. Classification is carried out by combination of automatic
and manual processes followed by manual and visual QC pass
inspection. Several iterations are performed for fine-tuning and
separating particular classes. The final bare Earth DTMs are
produced by creating triangular irregular networks (TINs) on
the ground and keypoint classes.

A quality control step is performed to enforce the alignment
between the point cloud rasters and provided DTMs in each

3[Online]. Available: http://geonb.snb.ca/li/, Open Government License, NB.
4[Online]. Available: http://geonb.snb.ca/nbdem/, Open Government Li-

cense, NB.

subset. Due to possible numerical instability or different raster-
izing coordinations, there are small offsets between a point cloud
raster and its corresponding DTM. To quantify, the root mean
square error (RMSE) is computed between a raster and provided
DTM on the ground regions using ground truth semantics.
Fig. 4(a) showcases an example, while Fig. 5 (blue boxes) shows
the distribution of each subset (median values of 2.13 for NB and
2.53 for DALES). To correct the misalignment, a brute-force grid
search is proposed. We search for both vertical and horizontal
corrections in the integer range of [0, 10] and pick the pairs that
minimize the errors.

The error curves for DALES are shown in Fig. 4(b). The local
minimums for NB and DALES are at (1, 0) and (3, 5) with
median RMSE of 0.52 and 0.59, respectively. Fig. 5 shows the
error statistics before and after correction. The corrected DALES
example is shown in Fig. 4(c).

V. EXPERIMENTS

A. Setup

For analysis purposes, unless stated otherwise, the validation
split of each subset is used. Each experiment is performed three
times, and the average of the best results is reported. The RMSE
(in meters) is used for evaluation, lower is better. For reporting
on the test splits, the single best iteration (among the three runs)
from the validation split is used to show generalizability and
avoid overfitting.

The network is trained, validated, and tested separately on
the DALES and NB datasets. As given in Table II, to mitigate
the coverage difference of DALES and NB, the original NB
point clouds are split into four quarters, of which two are chosen
randomly for training, one for validation, and one for testing,
resulting in 84, 42, and 42 input tiles of 500 m2. The DALES
subset contains 29 500-m tiles for training and 11 for testing,
provided by the authors [12]. The voxel size for both sets is
set to 25-cm cubed, resulting in 2000-pixel rasters, which are
downsampled 1:4 before inputting to the network.

In all the experiments, unless stated otherwise, the hyper-
parameters are set following the default set up from [21], i.e.,
λC = 100 and λD = 1, Adam optimizer with momentum param-
eters β1 = 0.5 and β2 = 0.999, and learning rate of 0.0002. The
optimization is alternated between G and D. The networks are
trained on a cluster node with 8-core Intel Xeon E5-2620 @
2.10 GHz, 64 GB RAM, and RTX-2080 Ti/11 GB VRAM.

B. Elevation Rasters as DTM

The pixel-mean, voxel-top, and voxel-bottom rasters particu-
larly provide elevation information; hence can be used directly
as prediction for DTMs. Knowing their performance gives more
insight into the rasterization strategies and the network process-
ing them. In this experiment, we show their performance on both
validation and test splits. The results are given in Table III.

From the definitions, it is trivial that voxel-bottom rasters are
the closest to DTMs, while voxel-top produces the highest errors
and pixel-mean stays in between. The rasters errors also provide
insights of the object types and heights in each set, hinting

http://geonb.snb.ca/li/
http://geonb.snb.ca/nbdem/


4986 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 8. RMSE (in meters) on the test split. The deep learning-based method with elevation and statistics rasters (Elev+Stats) removes most of the objects and
shows better performance on large-scale buildings. The point clouds are shown with semantic labels: ground (blue), buildings (red), and vegetation (green).

TABLE III
RMSE (IN METERS) FOR USING ELEVATION RASTERS DIRECTLY AS

PREDICTED DTM (NO OTHER OPERATIONS ARE PERFORMED) ON VALIDATION

AND TEST SPLIT

the object semantics. As laser beams can penetrate well in
vegetation areas, but are blocked by solid objects, e.g., buildings,
voxel-bottom errors depict the presence of buildings and large
constructions. The results show that there are more and/or higher
buildings in the DALES subset than in NB. On the other hand,
voxel-top rasters pick the highest object points, thus show that
NB might comprise more, and/or higher, trees. They agree with
the fact that the DALES subset is focused on urban areas and NB
contains more forested regions. Such information may be used
to quantitatively identify scene category without the availability
of semantic labels.

C. Combination of Rasters

In this experiment, the elevation rasters (pixel-mean, voxel-
top, and voxel-bottom) are employed for DTM extraction. Sev-
eral strategies are possible, including using each elevation raster
individually, in combination, together with one or all statistic
rasters (density, stdev, and echoes). The results for different
combination strategies are given in Table IV.

In general, adding all three statistics rasters improves the
network performance by a large margin. Hence, this could be
the go-to solution. Regarding the elevation rasters to be used, the
current results show the dependency to the type of scenes, as NB

TABLE IV
RMSE (IN METERS) OF PREDICTED DTMS FROM RASTERS COMBINATION ON

THE DALES AND NB VALIDATION SETS. THE ELEVATION RASTERS (ROWS,
LAST FOR ALL) ARE CONCATENATED WITH STATISTIC RASTERS (COLUMNS,

FIRST FOR NONE AND LAST FOR ALL). ADDING STATISTIC RASTERS IMPROVES

THE NETWORK PERFORMANCE

contains a dominantly large number of vegetation (mountainous
and forested regions), the voxel-bottom rasters provide a close
representation to DTMs while it is closer to voxel-top rasters
for large constructions in urban areas from the DALES subset.
Thus, the combination of all three elevation rasters dominates in
DALES, while voxel-bottom dominates in NB. The performance
gap is diminished when adding statistics information. For later
experiments, only voxel-top and voxel-bottom are used with
statistics rasters.

D. Loss Coefficients

In this experiment, we show how the losses contribute to the
network performance. We vary the GAN loss coefficient λD with
respect to two values of the L1 loss coefficient λG . As given
in Table VII, although the two coefficients are not completely
linearly correlated, the network performs poorly when there is
no GAN loss contribution λD = 0, showing its necessity.
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TABLE V
RMSE (IN METERS) OF PREDICTED DTMS FROM RASTERS AND SEMANTIC

COMBINATION ON THE DALES AND NB VALIDATION SETS. THE ELEVATIONS

(ROWS) ARE CONCATENATED WITH ONE-CHANNEL (SEM1) OR TWO-CHANNEL

(SEM2) BINARY. VOXEL-BOTTOM COMBINED WITH TWO-CHANNEL SEMANTIC

AND STATISTIC RASTERS SHOWS SUPERIOR PERFORMANCE

E. Semantics

DTM extraction methods generally rely on ground filtering
labels. In this experiment, we explore the effects of semantic
information to the pipeline. To maintain consistency with the
previous setups, we concatenate semantic maps to the rasters
as extra channels and leave the exhaustive study of efficient
usage of semantics for future work. This is a less direct use
of semantic information compared to the more popular way in
which objects’ regions are removed and inpainted [39]–[41].
The semantic maps are generated by rasterizing the mode of
point labels in each vertical column, i.e., each pixel receives the
most frequent label in the vertical column.

The label raster is then binarized as ground/nonground and
converted to one-hot vector format. Although a single-channel
binary image (sem1) is, in principle, sufficient for describing
binary classes, we also include the complementary channel,
making two-channel semantic maps (sem2), for the sake of
comparison. The results are given in Table V.

Adding semantic labels, in general, improves the network
performance. Surprisingly, despite the redundant information,
using two-channel complementary binary labels (+sem2) show
better performance than when using one-channel labels, hinting
how semantic maps should be handled for DTM extraction. This
could be explained that the complementary information might
not be trivial to be derived with the current network capacity,
and show potential improvement when soft-labeling vectors
are used, i.e., when classes are represented by floating point
probabilities instead of binary numbers.

F. Comparison With State of the Art

To evaluate the data-driven approach, we compare and show
the test results of our best validated iteration and those of the
well-established ground-filtering methods designed for DTM
extraction. Specifically, four baselines are used with default
parameters: 1) PMF [27] (1-m cell, exponential window of
maximum 33 m, distance of 15–250 cm, and slope of 45◦); 2)
SMRF [28] (1-m cell, max window of 18 m, elevation scalar
of 1.25 m, threshold of 0.5 m, and 15% slope tolerance); 3)
SBM [29]; and 4) CSF [27] (cloth resolution of 0.5 m, rigidness
of 3, time step of 0.65, 500 iterations, and slope smoothing post-
processing). The implementations of PMF, SMRF, and SBM are

TABLE VI
RMSE (IN METERS) OF THE PROPOSED DEEP LEARNING-BASED METHOD IN

COMPARISON WITH EXISTING RULE-BASED APPROACHES ON DALES AND NB
TEST SETS

TABLE VII
RMSE (IN METERS) FOR VARIOUS GAN COEFFICIENTS λD WITH RESPECT TO

TWO VALUES OF L1 COEFFICIENTS λG ON THE DALES VALIDATION SET. THE

NETWORK PERFORMS BEST AT (λG , λD) = (100, 1). THE NETWORKS

PERFORM POORLY WHEN THERE IS NO GAN LOSS CONTRIBUTION, I.E.,
λD = 0

from the point data abstraction library5, while CSF is provided
by the original authors6. A TIN is computed using Delaunay
triangulation on the extracted ground points before being ras-
terized to DTMs. The results of rule-based methods provided in
Table VI are also meant for benchmarking our dataset.

As a parameter-free method, SBM relies on strong assump-
tions of flat ground and sacrifices its performance. PMF, SMRF,
and CSF perform similarly well on the NB subset with scattered
small houses and forested regions. While PMF and SMRF suffer
for large buildings and constructions on the DALES subset, CSF
shows more robust results even with fixed default parameters.

For comparison with deep learning-based methods, we use the
best iteration on the validation set from previous experiments.
The deep learning-based methods show more stable similar
results on both DALES and NB subsets. Due to independence
from fixed parameters, deep learning-based methods rely only
on training set variations, thus can, in principle, be improved
when more data are collected.

The image-to-image approach, however, is limited due to the
loss of point cloud geometry of which the rule-based methods are
designed to take advantage. Yet as more information is provided
by the statistical rasters, the agnostic off-the-shelf network’s
performance approaches that of the best rule-based designed
directly for ground filtering.

Qualitative results in Fig. 8 show that a network with inputs of
elevation and statistical rasters are more robust to large objects.
Most of the houses and large buildings that left untouched by
the rule-based methods on the first-two rows are removed by

5[Online]. Available: https://pdal.io/
6[Online]. Available: https://github.com/jianboqi/CSF

https://pdal.io/
https://github.com/jianboqi/CSF
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the network. As the rule-based methods depend greatly of fixed
parameters, they might be effective with objects of certain sizes
(small objects on the third row), but failed in other cases; it is
well-known that the parameters need to be carefully tuned for
separate cases, showing needs for a deep learning-based and
end-to-end solution.

VI. CONCLUSION

This article attempted to unify the DTM extraction process
from ALS point clouds using a deep learning-based method. By
formulating the problem as an image-to-image translation and
using rasterization techniques, off-the-shelf computer vision-
designed architectures can be used to tackle this important
remote sensing task. To stimulate data-driven approaches on this
problem, a large-scale dataset of ALS point clouds and reference
DTMs was also introduced and evaluated.

The proposed method, despite being domain-agnostic,
showed comparable results to task-dedicated methods and per-
formed on par with state-of-the-art baselines. Experiments
showed that the various point cloud-specific qualities can be
gathered by simple rasterization techniques, which have proven
to be helpful for predicting bare-ground elevation.

Among all types of information to be rasterized, semantic
played an important role in extracting DTM due to its ability
in identifying objects. Although, in this article, only one-hot
vectors ground truth labels were used, the same idea could
be applied to softmax smooth predicted labels. Other effective
ways of exploiting semantic information for DTM extraction are
encouraged for future research.

Effective may it be, rasterization, nonetheless, squashes
geometry-rich 3-D point clouds into 2-D representations, hence
can only depict a certain aspects of a point cloud. As such,
this aggressive operation, together with the 2-D image-to-image
translation approach, does not fully exploit the potential of
3-D data. The submetric performance gap with other ground
filters, which rely on point cloud geometry, showed the room
for development of the deep learning-based method for DTM
extraction in future research.
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