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Urban Surface Water Mapping from VHR Images
Based on Superpixel Segmentation

and Target Detection
Qingwei Liu, Yugang Tian , Lihao Zhang, and Bo Chen

Abstract—Surface water is a fundamental resource in urban
environments. Monitoring the spatio-temporal distribution of
urban surface water from remotely sensed images is crucial
for urban planning and management. Unfortunately, due to the
limitation of spatial resolution, the method based on low/medium
resolution images is difficult to extract small water bodies accu-
rately. Recently, very high resolution (VHR) images have shown
considerable potential for urban compositions mapping. However,
fewer spectral bands, shadows, and high spectral heterogeneity
of VHR images hinder the application of traditional methods. In
this article, we proposed an urban surface water mapping method
called sparse superpixel-based water extraction (SSWE) from VHR
images. The method includes three steps: clustering water bodies
into sparse targets at the object level by an improved scale-adaptive
simple non-iterative clustering (SA-SNIC) superpixel segmenta-
tion; generating new bands with additional spectral, spatial, and
derived features, to increase the dimensions of original data and
enhance the separability between water bodies and background
covers; and constructing a positive-negative constrained energy
minimization multitarget sparse detector to highlight the water
bodies while suppressing shadows. The proposed method was
applied to GF-2 multispectral images of four cities in China. The
results showed that SSWE achieved the highest accuracy compared
with other methods, with an average OA of 98.91% and an average
kappa coefficient of 0.942. Furthermore, the separability analysis
also indicated that SSWE could effectively distinguish urban water
bodies from shadows and other land covers. Stable results can be
acquired by the suggested parameters and thresholds of SSWE.

Index Terms—Sparse target detection, superpixel segmentation,
urban surface water mapping, very high resolution (VHR) images.

I. INTRODUCTION

A S ONE of the significant components of terrestrial water
storage, surface water maintains diverse and complex so-

cieties and ecological systems [1]–[3]. Urban surface water is a
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vital indicator for flood monitoring [4], [5], urban hydrological
evaluation [6]–[8], and urban heat island effect assessment [9],
[10] and plays a significant role in urban planning. Given the
background that the rapid urbanization process has caused dy-
namic changes in water bodies, it is of great significance to obtain
the water body information and its spatio-temporal distribution
quickly and accurately [11], [12].

Remote sensing technology has been widely applied for water
bodies extraction in the past few decades. In general, these
methods can be roughly grouped into three categories.

A. Spectral Mixture Analysis (SMA)

The methods in this class are dedicated to solving the spec-
tral mixing effect of mixed land-water pixels [13]–[16], which
assume that the spectrum of mixed pixels is composed of linear
or nonlinear combinations of the spectrum of typical endmem-
bers [8]. These methods are generally performed in two steps:
endmember selection and abundance estimation, among which
choosing appropriate endmembers is the critical challenge for
large-area mapping [17], [18].

B. Classification

They include the unsupervised and the supervised classifi-
cation, such as k-means [19], [20], support vector machine
(SVM) [21], [22], decision tree [23], random forest [24], and
deep learning [25], [26], etc. These classifiers are data-driven,
and they learn and analyze the spectral and spatial features
from different categories. Unsupervised classifiers used to be
hindered by poor classification accuracy of complex optical
images, while the performance of supervised classifiers depends
on prior knowledge and training samples [27].

C. Index-based

These methods tend to highlight the characteristics that water
can absorb most of the incident energy at near-infrared (NIR)
and middle-infrared (MIR) wavelengths to construct a series
of water indices [14]. Among them, the well-known normal-
ized difference water index (NDWI) was first built with the
reflectance of green and NIR bands [28]. And the modified
NDWI (MNDWI) is constructed by replacing the NIR with
the MIR band to suppress the signal in the built-up area [29].
Furthermore, the automated water extraction index (AWEI) is
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designed as a linear combination of multiple bands to improve
the accuracy of water extraction under the urban scenes over
shadow and low albedo surfaces [30]. Excellent performance
and simple implementation make the water index widely used,
but the instability is reflected in the fluctuation of the binarization
threshold when facing different backgrounds [21], [31], [32].

Although the methods mentioned above have been widely
applied in natural regions for surface water extraction, most
of them are only applicable to medium/low resolution satel-
lites and broad-band multispectral sensors. Unlike rural scenes,
the composition of artificial material in urban areas is more
complex, which means higher requirements for the training
samples for knowledge-based methods [11]. Moreover, the small
water bodies with diverse morphologies often lead to under-
estimation [33]. The very high resolution (VHR) images have
more detailed spatial information than the medium/low ones,
which could serve as important data sources for accurate urban
surface water extraction [25]. But as far as we know, few studies
focus on urban surface water extraction using VHR images
because it faces many new challenges: most VHR images such
as IKONOS; QuickBird; Pleiades; Kompsat; and GaoFen-2
(GF-2), only have visible and NIR bands, limited spectral bands
make some water indices inapplicable, such as MNDWI and
AWEI, for lacking the SWIR band [21]. Shadows and low albedo
surfaces with similar spectral features to water bodies are more
conspicuous in VHR images, and low spectral separability may
lead to overestimation of urban water bodies [34]. The high
spectral heterogeneity of VHR images leads to the increase in
intraclass spectral variance and the decrease in inter-class spec-
tral separability, resulting in “salt and pepper” noises in water
mapping [16], [35]. Overall, the above conventional methods
using the medium/low images are not suitable for urban surface
water extraction from VHR ones.

To address these issues, some researchers have designed rule-
based methods to suppress the false alarms of building shadows
based on the morphological features [morphological shadow
index (MSI)] [36], texture features [gray-level co-occurrence
matrix (GLCM)] [37], and the spatial adjacency between shad-
ows and buildings [21]. Huang et al. [12] identified water types
by extracting texture and geometrical features at the object level,
and they found that the misclassified shadow at the pixel level
can be correctly classified based on object characteristics. It has
been suggested to use the object-based image analysis (OBIA)
technique for VHR images, while subpixel/pixel-based classi-
fication methods are more suitable for medium/low-resolution
images [38]. As a fundamental step of OBIA, segmentation aims
to group pixels into homogenous objects to replace pixels as the
basic analysis units [39], [40]. Thus, noisy pixels with mutation
signals will be covered by objects, and more importantly, the
additional spectral, textural, and geometrical features can be
calculated for classification decisions at the object level. These
newly added features can make up for the insufficient spectral
bands and enhance the separability between water and back-
grounds. However, the segmentation scale needs to be adjusted
manually according to the spatial resolution and scene complex-
ity in most OBIA methods, which will exert great influence on
the computational efficiency and extraction accuracy [41].

An easily overlooked point is that water bodies have the
characteristics of strong homogeneity and connectivity than
most land covers. In terms of the segmentation strategy, more
attention should be paid to the boundary adherence of the target
of interest rather than the background covers. Superpixels, as a
state-of-the-art segmentation paradigm, have been increasingly
employed in the field of remote sensing for target detection,
including high resolution images [42], hyperspectral images
[43], and SAR images [44]. They segment images into mean-
ingful atomic regions between pixel and object scales, which
represent the image more abstractly than pixels. Superpixel-
based segmentation is favored for its better compactness, faster
speed, and fewer parameters than OBIA methods [45]. However,
the superpixel algorithms adopt an over-segmentation strategy,
which ignores the difference in the original scale of different
land covers. Some researchers proposed to merge the superpixels
into objects after the over-segmentation [44], [46], [47], but
this actually increased the complexity of superpixel algorithms.
To solve this problem, we propose a superpixel algorithm for
multiscale segmentation without merging, which can adaptively
adjust the segmentation scale according to the homogeneity of
objects, so the object integrity of homogeneous objects such as
water bodies can be maximally preserved, while complex objects
like artificial covers are divided into pieces. Consequently, water
bodies become sparsely distributed objects with a low probabil-
ity after segmentation, which can be extracted more accurately
by sparse target detectors.

The constrained energy minimization (CEM) algorithm is
wildly used for the detection of sparse targets with a small
size or low probability distribution in hyperspectral data [48].
Geng et al. pointed out that it is possible to apply CEM in the
multispectral image by adding linearly irrelevant bands [49].
CEM is increasingly utilized for target detection in multispectral
images, particularly for sparse mineral occurrence mapping
[50], [51]. However, for large targets like water bodies, CEM
will result in severe overestimation and omission errors [52].
To remedy this drawback, Ji et al. [52] proposed orthogonal
subspace projection weighted CEM (OWCEM) to decrease the
high contribution of water body pixels in the output energy
of CEM by multiplying each pixel by a correlation weight
coefficient. Yang et al. [53] also considered the relatively large
proportion of water bodies, and regarded the noise instead of
water as the target, as noise is sparsely distributed in water
maps, which can be detected by CEM, and water bodies are
therefore created by removing the detected noise from AWEI
results. The above two kinds of schemes turn the problem of
water bodies extraction into the sparse target detection, and this
goal can also be achieved from the perspective of segmentation.
Nevertheless, CEM and OWCEM are only single target detectors
without eliminating undesired targets. Although the additional
spectral bands are introduced in their studies, they both neglect
rich spatial information, and the challenge from urban building
shadows still remains.

In this article, we developed a novel urban surface water
mapping framework for VHR images called sparse superpixel-
based water extraction (SSWE). The main idea includes
as follows.
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Fig. 1. Four study areas. (a) Xiong’an. (b) Wuxi. (c) Wuhan. (d) Ningbo. The images are shown with a pseudocolor, and the yellow rectangular regions in each
image are selected for separability analysis.

1) We first improved the superpixel algorithm according
to the characteristics of water bodies to obtain the
scale-adaptive segmentation results, where water bodies
maintain the integrity of objects and become sparsely
distributed in object-level statistics without complex
parameters and calculations.

2) Spatial-spectral information of VHR images, such as
NDWI, MSI, and homogeneity, etc., were fully exploited
to discriminate water against backgrounds and offer train-
ing samples for the next step.

3) A multitarget detector called positive-negative CEM
(PNCEM) was designed to extract sparsely distributed
water bodies, which can pass the positive targets while
eliminating the negative targets.

The rest of this article is organized as follows. Section II
displays four experimental areas and VHR satellite data.
Section III introduces the detailed steps of the proposed SSWE
and accuracy evaluation indices. Section IV describes specific
results of water extraction, including accuracy analysis and
separability analysis. Further, the parameters, input features,
and thresholds of SSWE are discussed in Section V. Finally,
Section VI concludes this article.

II. STUDY AREA AND DATA

A. Study Area

Four cities (Xiong’an, Wuxi, Wuhan, and Ningbo) with dif-
ferent surface water abundances in China are selected to test
the proposed SSWE method (see Fig. 1). Xiong’an (38° 58′N,

116°3′E) has more water resources than most of the other
northern cities in China due to its proximity to Baiyang-
dian Lake. Wuxi (31°31′N, 120°23′E) orients in the north of
Taihu Lake, and many canals are running through the city.
Wuhan (30° 33′N, 114°17′E) is located in the middle and lower
reaches of the Yangtze River and is known as the “city with
hundreds of lakes”. Ningbo (29° 35′N, 121°28′E), a coastal city
in eastern China with high mountain ridges, has rich mountain
shadows. Table I gives the details of the study areas. The main
water types refer to rivers, lakes, ponds, and canals with complex
features involving water quality and geometrical shapes. The
main noise types include building and mountain shadows, dark
roads, and low albedo surfaces. Different types of water and
noise in each city bring challenges to water detection.

B. Data

In this article, GaoFen-2 (GF-2) satellite images are selected
as the experimental data. In addition to a panchromatic camera
with 0.8 m nadir resolution, GF-2 is also equipped with two
4 m multispectral scanners (PMS1, PMS2), containing visible
and NIR bands. High positioning accuracy and fast attitude
maneuvering capability effectively enhance the comprehensive
observation effectiveness of GF-2 satellite. The high spatial reso-
lution of GF-2 images makes it possible to extract delicate urban
surface water bodies. GF-2 images can be downloaded from the
China centre for resource satellite data and application.1 All

1[Online]. Available: http://www.cresda.com/EN/

http://www.cresda.com/EN/
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TABLE I
DETAILS OF THE STUDY AREAS

Study area Water types Main noise Image date Water coverage Image size

Xiong'an
Paddy field, Eutrophic ponds, 

Narrow turbid rivers, Lakes
Building shadows 10.00% 4500×4500

Wuxi
Clear lakes, Narrow eutrophic rivers, 

Clear canals, Turbid canals
Building shadows 12.45% 4500×4500

Wuhan

Narrow turbid rivers, Clear rivers, 

Clear lakes, Narrow eutrophic rivers, 

Eutrophic lakes, Eutrophic Ponds

Dark roads

Building shadows

Low albedo features

22.33% 4500×4500

Ningbo
Narrow clear rivers, Harbors, Clear 

Ponds, Reservoirs, Sea

Mountain shadows

Building shadows
4.63% 4500×4500

January 1, 2020

November 4, 2014

September 1, 2016

march 1, 2017

Fig. 2. Manually delineated reference water maps.

data we used in this article are level 1A products with complete
radiometric calibration and geometric correction information.

Reference water maps are used to evaluate the accuracy of
water extraction. Considering that the resolution of 0.8 m can
clearly distinguish the boundary of the water body, the fusion
image of GF-2 panchromatic and multispectral bands is used to
assist in manually delineating water bodies (see Fig. 2).

C. Image Preprocessing

Before detecting water bodies, GF-2 images (level 1A) are
preprocessed by ENVI 5.3, which contains orthorectification, ra-
diometric calibration, atmospheric correction, and image fusion.
Orthorectification is applied firstly to eliminate the deformation
caused by terrain. Then, radiation calibration and atmospheric
correction are performed to obtain the reflectance of ground
objects. The Gram–Schmidt pan-sharpening algorithm in ENVI
5.3 was used to generate new fusion images.

III. METHOD

It is difficult to extract urban water bodies from medium/low
resolution images for their diverse shapes, complex composi-
tions, and narrow areas. Fortunately, the VHR images make it
possible to map urban surface water accurately. However, the
limited spectral bands, confusing shadows, and high hetero-

geneity of VHR images are newly prominent factors for water
mapping. In this article, SSWE is proposed to suppress the noise
caused by spectral heterogeneity under complex urban environ-
ments. First, the original superpixel algorithm is improved to
satisfy the object-level segmentation results, which combines the
advantages of superpixel segmentation and OBIA and ensures
the integrity and the sparse distribution of the water bodies with
stable parameters. Second, the additional spectral, spatial, and
derived features, such as NDWI, MSI, and GLCM, are added
to the original data as new bands to increase the separability of
water bodies and other land covers, then water bodies become
multi-vector sparse targets at the object level. Third, in order to
overcome the extreme overestimation caused by shadows and
low albedo objects, the PNCEM algorithm is designed with the
input of the positive samples of water bodies and the negative
samples of shadows. Finally, the OTSU [54] and empirical
threshold are suggested in different scenes, and water bodies can
be obtained by binary classification. The flowchart of SSWE is
shown in Fig. 3.

A. Scale-Adaptive Simple Non-Iterative Clustering

Superpixel segmentation is an oversegmentation algorithm
where superpixels are approximately equal in size and more
diminutive than objects [55]. Currently, the simple linear
iterative clustering (SLIC) algorithm performs well in the
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Fig. 3. Workflow of SSWE. Thr stands for threshold.

comprehensive evaluation of state-of-the-art superpixel algo-
rithms [56]. And simple non-iterative clustering (SNIC) is an
improved version of SLIC, which is superior to the latest tech-
nology in terms of segmentation quality and speed [57]. In order
to preserve the complete boundary adherence of small objects,
SNIC must increase the distribution density of initial seeds,
which will lead to more detailed segmentation and more complex
calculations. Furthermore, the result of oversegmentation often
needs to be merged as an object, and the calculation burden will
be doubled. To solve this problem, the improved scale-adaptive
SNIC (SA-SNIC) is proposed to acquire compact boundaries
without adding additional computational burden.

First, according to the standard SNIC algorithm, the five-
dimensional normalized distance dj,k with spatial position x =

[x, y]T and spectral position in CIELAB color c = [l, a, b]T in
(1) is applied to measure the affinity of the pixel to the centroid
of the superpixel

dj,k =

√
||xj − xk||22

s
+

||cj − ck||22
m

(1)

where [xj , cj ] is the feature vectors of the jth candidate pixel,
and [xk, ck] is the centroid of the kth superpixel. The spatial nor-
malizing factor s is the area of the jth cluster. The compactness

factor m is set automatically or by users [57], which balances
the compactness and boundary adherence of superpixels.

The core of the SNIC algorithm is the priority queue. In each
iteration, the element with minimum di,ki

is popped from the
priority queue, and the candidate pixel is labeled to the closest
superpixel, then unlabeled neighborhoods of the candidate pixel
are pushed into the priority queue. Therefore, the di,ki

of all
elements becomes very large when the iteration times reach a
certain number. Those candidate pixels are usually close to the
edge of the object or some noise. If they are assigned as the labels
of the nearest superpixels, the segmentation result will show a
large object-level consistency error (OCE) and poor boundary
adhesion [58]. In order to obtain homogeneous and complete
clusters, we first reset the popped pixel with a distance beyond
the constraint threshold Thrdis to a new seed. Then, the distance
from the unlabeled neighbors to the centroid of the new cluster is
recalculated, which will be less than the distance to the original
cluster centroid. Finally, a new superpixel will be generated in
the local area. The flowchart of improved SA-SNIC is shown in
Fig. 4, and the main steps are as follows.

1) Initial seeds are evenly distributed on the input image [see
Fig. 4(a)]. They are sequentially assigned with different
labels of superpixels, see in Fig. 4(b), different colors
represent different superpixels. Then elements are con-
structed and pushed into the priority queue, which contains
four factors: spatial position, spectral values, the label
of the superpixel, and the distance to the centroid of the
superpixel.

2) Top-most element with the smallest value of di,k is popped
from the priority queue. Fig. 4(c) intuitively shows the
process, the pixel most similar to the neighboring super-
pixel is tagged with the same label as the superpixel, and
the superpixel will be updated after adding pixels. If the
4 or 8 neighbors of the pixel have not been labeled, then
new elements will be created and pushed into the right
place of the priority queue.

3) When the di,k of the top-most element ei is greater than
the threshold Thrdis, element ei will be reset as a new seed
[see in Fig. 4(e)–(f)]. The distance of unlabeled neighbors
of ei to the centroid of the new cluster is recalculated and
constructed as a new element and pushed into the right
place of the priority queue.

4) Iterate steps (2) to (3) until the priority queue is emptied.
After that, the segmentation result is shown in Fig. 4(g).

5) The superpixel with a size less than the constraint thresh-
old Thrsize is labeled as background, as shown in the black
patches in Fig. 4(h). Finally, the SA-SNIC segmentation
algorithm is completed.

With the execution of SA-SNIC, labels are assigned at the
head of the priority queue while new candidates are filled at
the tail. When the queue is empty, all the pixels of the whole
image are divided into different superpixels. Meanwhile, some
noise may be reset as new seeds too, and many small superpixels
are generated at the end of the clustering procedure. Combin-
ing small superpixels can reduce the workload of subsequent
processing. After the operation is complete, all pixels are larger
than the Thrsize, which is set by users.
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Fig. 4. Flowchart of the SA-SNIC segmentation. (a) Simplified input image and Pw represents the proportion of water in each pixel. (b)–(h) Intermediate results
of the segmentation process, where different colors indicate different labels after segmentation, and black represents the background.

SA-SNIC has four input parameters: the initial number of
superpixel seeds, compactness factor, and two newly introduced
parameters: the distance threshold Thrdis and the size threshold
Thrsize. Since new seeds will be generated in the algorithm, the
final number of superpixels obtained by segmentation will no
longer be determined by the number of initial seeds but by Thrdis

and Thrsize. In practice, Thrsize depends on the minimum size
of the detected target, so Thrdis is the primary influence factor
of SA-SNIC. These parameters are discussed in more detail in
section V-A.

B. Band Expansion

Effective use of the rich spatial information of VHR images
is an effective way to make up for their insufficient spectral
information, which can help distinguish shadows and water bod-
ies. Thus, spatial information should be fully exploited in urban
surface water mapping. Considering that the water and shadow
show a strong contrast from other land covers in NDWI, MSI,
and GLCM, these features can be combined as new bands to
increase class separability between water bodies and other noise.
Meanwhile, more bands can help improve the performance of
CEM [49].

1) Normalized Difference Water Index: NDWI has been
widely used for water bodies extraction since it was proposed by
McFeeters [28]. Its formula can be expressed as (2), and many
studies have shown that NDWI can perform stably in various
satellite images [59]

NDWI =
ρGreen − ρNIR

ρGreen + ρNIR
(2)

where ρGreen and ρNIR donate the reflectance of the green and
NIR bands.

2) Morphological Shadow Index: MSI is an automatic
shadow detector constructed by a sequence of morphologi-
cal operators describing the spectral-spatial characteristics of
shadows. The calculation equation of MSI is

MSI =

∑
d,s DMPBTH (d, s)

D × S
(3)

where d and s indicate the direction and length of the structural
element, D and S are the total numbers of directions and scales,
and DMPBTH(d, s) indicates the differential morphological
profiles of black top-hat (BTH), which can highlight the dark
structures within different directions and scales. In the urban
scene, shadow usually presents sharp local contrast with adjacent
buildings, which results in high MSI feature values in shadow
areas [12], [60].

3) Gray-Level Co-Occurrence Matrix: GLCM is designed
to describe texture features by considering spatial correlation
statistic information at the gray level. Most water bodies show
strong homogeneity, which is quite different from other back-
ground covers, including shadows. Therefore, we mainly con-
sider the homogeneity, entropy, and angular second moment
(ASM) features derived from GLCM.

In this article, a total of nine feature bands, including the
original four spectral bands, NDWI, MSI, and three parts of
GLCM, are used in SSWE. Each feature is normalized to [0, 1]
to avoid weight imbalance. As shown in the subscene example
in Fig. 5, NDWI [see Fig. 5(b)] and MSI [see Fig. 5(c)] can
highlight the water and shadow, respectively. Homogeneity,
entropy, and ASM feature present high contrast between water
bodies and other background covers. Fig. 6 shows exhaustive
distributions of different land covers in additional bands. There
is a partial overlap of water and other surface covers in each
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Fig. 5. Subscene example in Wuhan shows the differences in each feature between water and other background covers. (a) True-color image. (b) and (c) NDWI
and MSI feature images. (d), (e), and (f) Homogeneity, entropy, and ASM features derived from GLCM.

Fig. 6. Distributions of various features of different land cover types in Fig. 5 subscene. Each box plot uses horizontal lines to explain the location of the upper
quartiles, median and lower quartiles, while two whiskers are the maximum and minimum values. The green triangle is the mean value of the data.

band, which indicates that the complete water body cannot be
extracted only by a single band.

C. PNCEM

Sparse target detection algorithms are often applied in
hyperspectral imagery, such as orthogonal subspace projection
(OSP) [61], CEM [62], and matched filter (MF) [63]. The OSP
algorithm requires complete knowledge of the image, including
targets and background, which may be unrealistic in practice.
CEM algorithm is a linear filter to minimize the output energy of
the image. It focuses only on the desired target and has a better
performance than OSP in eliminating unknown signals and
suppressing noise [64]. MF detector has similar mathematical
expressions as CEM, which needs the data to be centralized

first. Adding linearly irrelevant bands has been proved to be
beneficial to improve the performance of the CEM algo-
rithm [49], which makes it possible for CEM to detect sparse tar-
gets on multispectral images. Nevertheless, CEM is a single tar-
get detection algorithm without the undesired target eliminated,
which may cause extreme misclassification in urban surface
water mapping. Despite introducing additional bands, shadows
and other low albedo objects are still the main interferers. In or-
der to resolve this dilemma, we design a multiple-target detector
PNCEM, which can highlight the water bodies while suppress-
ing the shadows. The main idea of PNCEM is described as
follows.

Assuming {r1, r2, · · · , rN} is a multispectral image with the
total number of pixels N. Each pixel ri = (ri1, ri2, · · · , riL)T
is a vector with L bands, 1 < i < N . Suppose d is the target
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spectral signature to be detected with known prior information.
It is under the condition of satisfying the following constraints

dTw =

L∑
l=1

dlwl = 1 (4)

where w = (w1, w2, . . . , wL)
T is the L-dimension column vec-

tor consisting of filtering coefficient {w1, w2, . . . , wL}. Assume
yi is the output of the FIR filter of ri

yi =

L∑
l=1

wlril = wT ri = rTi w (5)

then, for all inputs {r1, r2, . . . , rN}, the average energy output
by the filter is

E =
1

N

N∑
i = 1

y2i =
1

N

N∑
i = 1

(
rTi W

)T (
rTi W

)

= wT

(
1

N

N∑
i=1

rir
T
i

)
w = wTRw (6)

where R = 1
N

∑N
i=1 rir

T
i is an autocorrelation matrix with

L × L dimensions, CEM is defined as an optimization problem:
min {E} = min{wTRw} subject to dTw = 1.

According to the Lagrange multiplier method, the solution to
the linear constrained optimization mentioned above is called
the CEM detector, the filtering coefficient is wCEM

wCEM =
R−1d

dTR−1d
. (7)

The positive samples d={d1, d2, . . . , dp} denote the desired-
targets signature, while the negative samples u = {u1, u2, . . . ,
up} denote the undesired-targets signature, and they can be
obtained automatically by NDWI and MSI in Section III-B.
Then, the PNCEM detector is defined by

wPNCEM =
1

p

(
p∑

i=1

R−1di
dTi R

−1di
−

p∑
i=1

R−1ui

uT
i R

−1ui

)
. (8)

Multiple samples for each type of target make PNCEM robust
to noise, while the performance of CEM is sensitive to the prior
knowledge of the single desired target signature [65]. And due
to the value of the superpixel being averaged by all the pixel
values contained, PNCEM based on superpixel becomes more
robust.

D. Threshold Determination

The determination of the optimal threshold is a crucial factor
for water bodies extraction from the gray-scale image. The
greater the separability of water and background, the more
stable the binarization threshold. However, a fixed threshold is
difficult to be applied to all environments, which may result in
the overestimation or underestimation of water bodies. In this
article, the adaptive threshold OTSU is adopted to extract water
bodies automatically.

In general, OTSU can achieve good performance when the
percentages of target and background are balanced, but the

Fig. 7. Histogram of PNCEM in the poor-water patch.

Fig. 8. Distribution of PNCEM values for different land covers.

problem will stand out in the special case that the proportion
of water is much lower than the background [66]. When this
happens, the histogram of PNCEM will be concentrated in a
peaked distribution around 0, while the PNCEM values of water
bodies are close to 1 (see Fig. 7). In that case, the efficiency
of binary threshold OTSU will be limited with poor accuracy.
Therefore, it is necessary to estimate the prior information on
the proportion of water bodies. As shown in Fig. 8, the PNCEM
values of various types of water bodies are greater than 0.5, while
other land covers are near 0, especially the shadow is suppressed
to be less than 0. All patches can be divided into rich/poor-water
patches by calculating the percentage of pixels with a value
greater than 0.5. If the percentage is higher than 5%, which
is referred to the condition in [67], the OTSU is adopted as an
optimal threshold for the rich-water patch. Otherwise, it means
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TABLE II
CLASSES OF TRAINING SAMPLES FOR SUPPORT VECTOR MACHINE

that the proportion of water in the background is extremely
uneven, and the empirical threshold of [0.5, 0.6] is suggested
for the poor-water patch.

E. Accuracy Assessment

1) Extraction Accuracy: To evaluate the performance of
SSWE, we compared the water bodies detection results with
NDWI, SVM, and OWCEM [52]. Constant threshold zero and
adaptive threshold OTSU are commonly used in NDWI [28],
[35], [68], and we chose the one with higher accuracy in each
study area. SVM has a high generalization performance and
requires few training samples. The training samples of SVM
were acquired by manually delineating the region of interest,
including vegetation, soil, built-up, water, and shadow categories
(see Table II). In this article, to avoid the influence caused
by different input channels, the same nine spectral and spatial
bands were utilized in OWCEM. OWCEM is a single desired
target detector that only one target signature can be input, so we
manually selected the most representative water sample in each
study area for OWCEM. However, an appropriate threshold or
threshold range is not suggested in OWCEM, so the optimum
threshold with a balance between producer’s accuracy (PA) and
user’s accuracy (UA) is adopted in this article. PA represents
the probability of water ground truth reference being correctly
classified, while UA represents the proportion of the categories
classified as water that are correctly classified. Besides another
two indicators of overall accuracy (OA) and the kappa coefficient
are also introduced to describe the extraction accuracy

PA =
TP

TP + FN
(9)

UA =
TP

TP + FP
(10)

OA =
TP + TN

T
(11)

Kappa =
T × (TP + TN)−∑

T × T −∑ (12)

where
∑

= (TP +FP )× (TP +FN)+ (FN +TN)×
(FP+TN), and true positive (TP), false negative (FP), false
positive (FN), and true negative (TN) are the statistics of the
confusion matrix, which represent correctly detected, missing
detected, false detected water pixels, and correctly detected
nonwater pixels.

2) Separability Analysis: PNCEM is designed to highlight
the difference between water and other urban surface covers,
especially since the shadow is often confused with water. The

threshold segmentation method relies on the separability be-
tween water and nonwater, while high separability results in
accurate water mapping with a stable and suitable threshold.
In this article, multiple targets CEM (MTCEM) [69], adaptive
cosine estimator (ACE) [70], target-constrained interference-
minimized filter (TCIMF) [71], OWCEM, multiple-targets in-
equality CEM (MTICEM) [69], and NDWI were selected for
comparative analysis. It is worth noting that both ACE and
OWCEM are single desired target detectors that only one target
signature can be input, while MTCEM and MTICEM consider
multiple target features in their filter design, and TCIMF can
suppress the undesired targets. This comparative analysis was
carried out at subscenes of each area in Fig. 1. The validation
sets were obtained by randomly selecting pure samples from
four experimental areas. Finally, we collected 2803 samples
(water:928, shadow:759, others:1116) in Xiong’an, 4921 sam-
ples (water:1452, shadow:1892, others:1577) in Wuxi, 20109
samples (water:7316, shadow:7039, others:5754) in Wuhan,
and 5405 samples (water:1668, shadow:1837, others:1900) in
Ningbo.

Jeffries–Matusita (J–M) distance [72] is calculated to assess
the separability among each urban composition in the above
detectors. The larger the value of J–M distance, the higher the
separability between two classes. In general, the J–M distance
less than 1.00 represents poor separability, while greater than
1.38 indicates high separability. Formulas can be followed as:

JM = 2
(
1− e−B

)
(13)

B =
1

8
(μi − μj)

T

[
(Ci + Cj)

2

]−1

(μi − μj)

+
1

2
ln

⎡
⎣
∣∣∣Ci+Cj

2

∣∣∣√|Ci| |Cj |

⎤
⎦ (14)

where μi and μj are the mean vectors of two classes, and Ci and
Cj are the covariance matrix, |Ci| represents the determination
of the covariance matrix Ci.

IV. EXPERIMENT RESULTS

A. Results of Water Mapping

In the experiment, four research sites are adopted to compar-
atively evaluate the performance of SSWE in different urban
environments, and each GF-2 image is clipped into 3 × 3 even
patches. The results are shown in Fig. 9. For better visual analysis
and interpretation, the final water mappings are classified into
four colors, and small areas in the yellow rectangle are utilized
for detailed observation in Fig. 10.

According to the result, SSWE shows a great superiority over
NDWI, SVM, and OWCEM in each study area. SSWE can
remove the influence of building shadows, particularly in urban
surface water detection. It can nearly extract the entire water
bodies and has the same performance as SVM in a small river
and ponds detection. For different types, such as eutrophic or
turbid water, SSWE exhibits strong robustness due to its multiply
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Fig. 9. Results of water bodies extraction in four study areas. (a) Proposed SSWE. (b) Normalized Difference Water Index. (c) Support vector machine.
(d) Orthogonal subspace projection weighted CEM. The blue represents the correctly detected water pixels (TP), green represents the missing detected water pixels
(FN), red represents the incorrectly detected water pixels (FP), and white is the correctly classified nonwater pixels (TN).

targets and object-level consideration. NDWI achieves signifi-
cantly higher water extraction accuracy on natural surfaces than
in artificial construction land (judging from the classification re-
sult of Ningbo), which is determined by the characteristics of the
NIR band in NDWI. In general, the separability of NDWI results
is poor, which leads to unstable thresholds and a large number
of errors and omissions (judging from the classification result
of Xiong’an and Wuxi). SVM is a kind of supervised classifier
whose classification results are limited by sample selection. In
the results of the SVM approach, only a small amount of water
bodies remains undetected, but many shadows are mistakenly
identified as water, especially in Wuhan and Wuxi. All methods
but OWCEM perform well in large water bodies extraction,
as OWCEM is a single target detector at the pixel level, it is
sensitive to the target signature and cannot detect signatures
similar to the target. Complex urban scenes and limited spectral

characteristics result in the phenomenon of spectral heterogene-
ity being more prominent, which causes extreme commission
and omission errors (in Wuhan, Wuxi, and Ningbo). Especially
for OWCEM, different local desired signatures are selected in
each patch, so there are apparent boundaries in the results of
water mapping (such as Wuhan and Ningbo).

B. Results of Accuracy Analysis

Table III gives the water extraction accuracy of the four ap-
proaches at different experimental sites. We can see that SSWE
exhibits the highest values of OA, UA, and KAPPA in the four
study areas, with an average KAPPA coefficient of 0.942, the
average values of OA (98.91%) and UA (95.05%) indicate a
low probability of incorrect extraction. On the contrary, NDWI
always presents a higher PA value but lower UA value, especially
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Fig. 10. Results of water bodies extraction of local areas in the yellow rectangle regions in Fig. 9.

in Xiong’an [PA (99.00%), UA (49.80%)]. The failure of NDWI
in suppressing shadow noise of built-up areas results in a lot of
false extractions. The performance of SVM is close to that of
SSWE in Ningbo, where water bodies are clear rivers, reservoirs,
and sea. Their Kappa coefficients differ by only 0.004. Although
acceptable results can be achieved, the accuracy of SVM de-
creases in Wuhan and Wuxi with some types of turbid and
eutrophic water, and the Kappa coefficients are 0.898 and 0.914.
The instability of SVM is caused by the instability of manually
selected samples in supervised classification. This phenomenon
also appears in OWCEM and is even worse. OWCEM has the
lowest accuracy among the three experimental areas, with an
average KAPPA coefficient of 0.805, and only achieves good
results in Xiong’an area.

C. Results of Separability Analysis

To demonstrate the advantage of the proposed PNCEM in
distinguishing water bodies from shadows and other background
covers, we have statistically analyzed the results of all detectors.
The histograms of the results of each detector in different
subscenes are plotted in Fig. 11. The J–M distance is used to
measure the separability of water bodies from shadows and other
background covers, as given in Tables IV and V. Considering that
OWCEM is sensitive to the target signature, in this section, all

sparse target detectors, including OWCEM, are at object-level,
while only NDWI is based on pixel-level. All pixels contained
in an object have the same gray value. Therefore, only the
statistical histograms of NDWI have different gray values and
are visually continuous in Fig. 11. The desired samples and
undesired samples for sparse target detectors are automatically
acquired by NDWI and MSI in Section III-C.

It can be seen from the comparative analysis that the JMws and
JMwo values of PNCEM are larger than the other detectors in
Xiong’an and Ningbo. The MTCEM, ACE, TCIMF, OWCEM,
and NDWI can hardly classify the water and shadow, while
their JMws values are less than 1. MTCEM and ACE only
focus on enhancing the desired targets without eliminating these
undesired targets, this drawback is solved in TCIMF by mapping
undesired targets into its null space. However, the performance
of TCIMF will deteriorate sharply when the number of bands
decreases. Consequently, it cannot even classify water and other
background covers in VHR images, where its average JMwo

is 0.58. Noting that all methods, including PNCEM, show a
poor separability between water and shadow in Wuxi, as some
shadows are projected onto the water, which caused some confu-
sion. Although a weighted autocorrelation matrix is introduced
in OWCEM to minimize the output of background energy, it
still ignores the strong similarity of undesirable goals. MTICEM
replaces the equality constraints with inequality constraints to
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Fig. 11. Histograms of values of different detectors for each urban composition (water, shadow, and other background covers) in four subscenes in Fig. 1.
(a) Xiong’an. (b) Wuxi. (c) Wuhan. (d) Ningbo. The seven rows, from top to bottom, are the PNCEM, MTCEM, ACE, TCIMF, OWCEM, MTICEM, and NDWI.

expand the solution space, and the advantages of MTICEM are
significant in the excellent separability between water and other
urban compositions, whose JMws and JMwo values are close
to that of PNCEM. However, it is time-consuming to solve
the newly involved quadratic programming problem [73]. In
summary, these results provide important insights that PNCEM
has high separability and low time complexity, and it can over-
come the limited number of bands of multispectral images. High
separability of PNCEM leads to a stable binarization threshold
and high accuracy results.

V. DISCUSSION

A. Parameters Stability Analysis of SA-SNIC

The segmentation effect of water bodies is crucial to the final
accuracy, so the different input parameters of SA-SNIC should
be discussed first. Considering the various shapes of water

bodies, the minimum value within the range of compactness
factor recommended by SNIC is adopted to obtain better bound-
ary adherence. The Thrsize is set to 50 based on the minimum
size of the detected target. It can be seen from all curves in
Fig. 12 that the number of superpixels increases slowly with the
increase of the initial seeds number, while it decreases with the
increase of the distance threshold Thrdis. In the priority queue of
SA-SNIC, new seeds are pushed after initial seeds are popped,
so the number of superpixels is no longer determined by the
number of initial seeds. However, large water bodies will be
divided into multiple superpixels if the initial seeds are too many,
which goes against the purpose of improving the efficiency of
SNIC. So, it is suggested that the default number of initial
seeds should not be too large. The higher the Thrdis value,
the fewer seeds will be newly generated at the cost of poorer
boundary adherence. Therefore, the performance of SA-SNIC
superpixel segmentation is mainly determined by the Thrdis.
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TABLE III
URBAN SURFACE WATER EXTRACTION ACCURACY RESULTS OF FOUR

ALGORITHMS IN DIFFERENT STUDY AREAS. THE BOLD VALUES ARE THE

MAXIMUM VALUES IN EACH SITE

TABLE IV
JMWS VALUES OF SEVEN DETECTORS IN FOUR EXPERIMENTAL AREAS. JMWS

REPRESENTS THE J–M DISTANCE BETWEEN WATER BODY AND SHADOW. THE

MAXIMUM VALUES OF JMWS IN EACH COLUMN ARE BOLDED

TABLE V
JMWO VALUES OF SEVEN DETECTORS IN FOUR EXPERIMENTAL AREAS. JMWO

REPRESENTS THE J–M DISTANCE BETWEEN THE WATER BODY AND OTHER

SURFACE COVERS. THE MAXIMUM VALUES OF JMWO IN EACH COLUMN

ARE BOLDED

Nevertheless, when the Thrdis is minimal, many new seeds will
be grouped into small superpixels and eventually incorporated
into the background, so the curves of Thr25 and Thr100 are very
close.

As shown in Fig. 13, SSWE has high accuracy within the
range of Thrdis less than 100. Under the condition of minimizing
the space distance, the value of Thrdis is determined by the
CIELAB color space distance. The 100 of Thrdis is corresponds

Fig. 12. Final number of superpixels generated by the different number of
initial seeds and thresholds of distance.

Fig. 13. Kappa coefficients of SSWE in a range of distance thresholds Thrdis
with the initial seed of 50.

to a maximum of 25 gray-scale differences in the NIR band
(8 bytes), which is consistent with the visual difference of the
boundary. When the value of Thrdis is greater than 100, different
land covers can easily be divided into the same superpixel. As
shown in Fig. 14(a), the mixed land and water areas are most
likely to be mixed with water bodies due to their similar spectrum
and adjacent spatial distance. Besides, in the urban area, dark
roads, dark buildings, and other low albedo features can also
be confused with water bodies, resulting in poor performance
of boundary adherence [see the red areas in Fig. 14(b)–(d)].
When the water superpixel contains other background covers,
the average spectrum of the water superpixel differs from that of
the water bodies, which lead to missed detection of water bodies
[see the green areas in Fig. 14(a) and (b)]. The segmentation of
shadow areas also faces the same problem, but its segmentation
results do not interfere with the accuracy of water body extrac-
tion [see Fig. 14(c) and (d)]. In general, when Thrdis is greater
than 100, the higher value of the Thrdis , the worse the accuracy
of SSWE, so the recommended value of Thrdis is around 100.

Fig. 15 shows the comparative segmentation results of two
superpixel methods. The segmented boundary is depicted in
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Fig. 14. Water bodies extraction results with different distance thresholds of Thrdis in subimages.

red lines. It can be seen that superpixels in SNIC exhibit more
compact with the approximate size, while complete water bodies
are segmented into many parts with poor boundary adherence.
But, water bodies in SA-SNIC can retain their integrity within
various scales. Although the high spectral heterogeneity leads
to fragmented segmentation results in urban surface land, it
would not cause the misclassification of water bodies. On the
contrary, the dense distribution of urban surface land makes
water bodies become sparse at the object level, which just meets
the statistical low probability requirements of sparse target de-
tection. In general, SA-SNIC has the following advantages: good
boundary adherence; no need to merge after the segmentation;
and scale-adaptive segmentation. The SA-SNIC segmentation
method can be applied not only to the water body, but also to
other homogeneous features.

B. Contribution Analysis of Channels/features

The results of accuracy analysis show that SSWE can achieve
good performance with the assistance of multiple features.
But sometimes, certain features may not be easily accessible.
Whether SSWE can still maintain good performance under the
condition of missing some features is unclear. Therefore, we did
ablation experiments in this section to evaluate the importance
of each feature. The accuracy results are given in Table VI.
Features are sequentially added as input bands into PNCEM
in the order in which they are generated. In Fig. 16, VIS + NIR
represents original spectral bands in GF-2. NDWI extracting
positive samples is input first.+NDWI indicates NDWI is added
as a new band to the existing bands. Then, MSI needs to be
calculated to get negative samples. +MSI means adding MSI

TABLE VI
ACCURACY FOR DIFFERENT COMBINATIONS OF FEATURES USED BY SSWE IN

EACH STUDY AREA. THE SYMBOL “�” INDICATES THAT THE FEATURE HAS

BEEN ADDED, AND THE BOLD VALUES ARE THE MAXIMUM VALUES

IN EACH SITE

after NDWI has been added, where there are six bands in total.
Finally, +GLCM represents a total of nine feature bands are
added, including three components of the texture feature GLCM:
homogeneity, entropy, and ASM.

As given in Table VI, the impact of each feature on the
classification accuracy is positive, and the accuracy increases



LIU et al.: URBAN SURFACE WATER MAPPING FROM VHR IMAGES BASED ON SUPERPIXEL SEGMENTATION AND TARGET DETECTION 5353

Fig. 15. Segmentation results of different superpixel algorithms. (a) SNIC.
(b) SA-SNIC.

Fig. 16. (a) Filtering results of different combinations of features used by
SSWE in the subscene of Wuhan. (b)–(d) All adding new features based on the
previous step. (a) VIS+NIR. (b) +NDWI. (c) +MSI. (d) +GLCM.

TABLE VII
J–M DISTANCE FOR DIFFERENT COMBINATIONS OF FEATURES BETWEEN

WATER BODIES, SHADOWS, AND OTHER LAND COVERS. THE MAXIMUM

VALUES OF JM IN EACH ROW ARE BOLDED

with the number of added bands. Typically, the effect of each
feature on the accuracy improvement is affected by the surface
coverage of the area. For example, due to the low proportion of
the shadow areas, the accuracy is less improved after adding MSI
in Xiong’an and Ningbo regions, where the kappa coefficient is
improved by 0.007 and 0.004, respectively. The original four
bands have achieved high accuracy in Wuhan and Wuxi regions,
even higher than other methods, so the subsequent addition of
new features does not improve accuracy significantly. Neverthe-
less, it can be seen from Fig. 16(c) and (d) that the suppression
effect on the shadow is very obvious, and shadows gradually
blend into the background after filtering. Especially after the
introduction of MSI, the separability of water and shadow JMws

increased sharply (see Table VII). Meanwhile, shadows start
to mix with other land covers, where the JMso value reaches
0.14. In general, NDWI can highlight water and shadows, MSI
helps to discriminate shadows from other land covers, and water
bodies are different from others due to their unique textural
characteristics. It is worth noting that the added feature must
contribute to distinguishing the target from other land covers
to help improve the performance of SSWE, which is consistent
with Figs. 5 and 6.

C. Threshold Stability Analysis of PNCEM

High separability of water and nonwater in gray-scale
results will reduce the reliance on binarization thresholds. It is
intuitively reflected in that the threshold obtained according to
the separability index is usually close to the optimal threshold.
The parts mentioned above have analyzed the advantages
of SSWE in overall accuracy and separability, and here, we
analyze the stability of the recommended threshold based on
reference maps.

The result of each research site is clipped into 3× 3 patches of
the same size, and patches are numbered 01–09 from left to right
and top to bottom. As shown in Fig. 17, in rich-water patches,
almost all OTSU thresholds obtain high kappa coefficient values
at four sites, and their values are close to the optimal values. The
SSWE remains good performance in a range of thresholds near
the OTSU value, which also confirms the high separability of
the SSWE on the flip side. In poor-water patches, an empirical
threshold is more suitable for water extraction. The positive
samples taken by NDWI can cover most types of the water body,
while some water types have not been exacted in rich-water
patches. So, the average output values of water bodies in poor-
water patches are slightly higher than that of rich-water patches.
The empirical threshold is near 0.5, such as Xiong’an (0.6) and
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Fig. 17. Curve of SSWE accuracy at four experimental areas of the suggested threshold. Each image is clipped into 3 × 3 patches and numbered
01–09.

Wuxi (0.5), while OTSU thresholds in rich-water patches are less
than the empirical threshold. However, the suggested thresholds
do not always perform best, like 08-patch in Xiong’an, the kappa
value of the OTSU threshold is 15% lower than that of the
optimal threshold, which is affected by some mixed farmland
of water and land. Although optimal kappa coefficients of the
poor-water patches (02, 03, 06) in Wuxi are lower than 0.75,
they have little effect on the accuracy of the whole image due to
the small proportion of water bodies.

VI. CONCLUSION

The main purpose of this article is dedicated to solving the
problem of misclassification of urban surface water mapping
from VHR images. Based on the homogeneous characteristic of
water bodies, the main idea of SSWE is to make large-scale water
bodies become sparsely distributed targets at the object level by
scale-adaptive segmentation, and then employ a sparse target
detector to map the water bodies from the complex urban surface.
To achieve this goal, the SNIC algorithm is improved to obtain
object-oriented segmentation results, and band expansion in-
creases the spectral, spatial, and derived information to separate
water bodies from other land covers better. Finally, the PNCEM
is designed to detect the distribution of sparse water objects.
The experimental results indicate that: SSWE can obtain the
highest accuracy of UA, OA, and kappa coefficient than NDWI,
SVM, and OWCEM, while the PA of SSWE is slightly less than
that of NDWI due to the severe overestimation of NDWI. For

separability analysis among water bodies, shadows, and other
land covers, PNCEM is superior to MTCEM, ACE, TCIMF,
OWCEM, and NDWI. In addition, PNCEM is easier to imple-
ment compared with MTICEM. The stability analysis of SSWE
further shows that the input parameters and suggested threshold
are applicable. In general, SSWE exhibits good adaptability in
complex urban scenes even with limited spectral bands, and its
accuracy will increase with the addition of effective features.
In further study, we will search for more unexplored features
of VHR images, and we do believe that the strategy of SSWE
would have great potential to map other compositions with high
homogeneity from VHR images.
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