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Abstract—With the advancement of autonomous driving tech-
nologies, road network data have attracted a lot of attention as a
virtual source of information. Traditional node–arc road networks
are no longer able to match the demands of high-precision location
awareness. Thus, lane-level road networks with more information
have become a research hotspot. Furthermore, street-view pictures
are a popular data source for building a lane-level road network
because they provide a significant quantity of road information.
The current method of constructing lane-level road networks based
on street-view images performs feature extraction in image space
and then projects it into geographic space. Hence, due to perspec-
tive and other rules, there are conflicts and overlaps in the exact
locations after projecting the results of the street-view pictures
from different viewpoints into geographic space. Because, to the
best of the author’s knowledge, there is no process for optimizing
the overall geographic space results, the current study does not
meet the demand for the accurate and comprehensive acquisition
of lane-level road network in complete areas. However, this study
proposed a lane-level road network construction method based on
street-view image data, focusing on aggregating and optimizing
the picture space extraction results in geographic space to improve
the accuracy while aligning the results more consistent with the
vector data requirements of geographic information systems. The
experimental results show that by using street-view picture data,
this technology can establish a submeter lane-level road network,
which can be used for low-cost road data collection and updating.

Index Terms—Data collection, geographic optimization, lane-
level road network, street-view images.

I. INTRODUCTION

GRAPH theory-based node–arc road network data [1] have
enabled many critical applications, including shortest path

planning [2], resource allocation [3], and navigation [4], and they
are an important data source for geographic information systems
(GISs), as well as intelligent transportation systems [5]. Re-
cently, there has been an increase in demand for road information
due to the development of autonomous driving, digital twins, and
virtual scenarios. Using conventional node–arc network data,
which involve abstract expressions of details in the road and ig-
nore elements such as ground markings, it is challenging to meet
the requirements of the aforementioned technology for highly
accurate and detailed road information. Furthermore, lane-level
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road network data add extra road information, such as lane lines
and ground symbols. Thus, lane-level road network data, which
provide more detailed information about roads, have become the
focus of recent studies and are crucial for autonomous driving
and other domains [6]. Street-view photos are rich in semantic
information and offer the advantages of rich data sources and
low acquisition cost, making them ideal for quickly creating
and updating lane-level road networks at a low cost. The recent
methods [7], [8] that are based on street-view photos used image
segmentation to detect relevant elements in the image space.
Although the outputs are projected into geographic space, there
is still a significant gap to becoming a usable lane-level road
network for the following reasons.

1) Previous research did not thoroughly classify the con-
stituent pieces that make up the lane-level road network;
hence, certain elements were left out.

2) The findings were challenging to satisfy the typical vector
format of lane-level road networks because elements were
retrieved using segmentation in the picture space.

3) Because the overall results have not been aggregated
or optimized in geographic space, these methods are
incapable of meeting the accuracy, uniqueness, and
completeness requirements for regional data collection.

Thus, the contributions of this research are the following.
1) The elements that make up the lane-level road network

concerning Chinese national standards were classified, as
well as the proposed corresponding detection and subse-
quent processing procedures for each category.

2) The lane line detention algorithm with the result as the
key point and the object detection algorithm as the image
space element extractor were selected.

3) A set of approaches for optimizing the results in geospatial
space, making the results more accurate and more in line
with the requirements of GIS for data collection were
presented, which can be directly applied to downstream
tasks.

The experimental section of this research shows that the
produced results achieve submeter accuracy and meet the cost
and accuracy requirements for lane-level road network data by
comparing them with manually acquired results in a calibrated
high-resolution orthophoto.

II. RELATED WORK

The reconstruction of ground marks and symbols is a
crucial part of the road network creation process. In this
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research, according to [9], the ground markings and symbols
are divided into longitudinal and transverse markings. Lon-
gitudinal markings run parallel to the road traffic direction,
whereas transverse markings run perpendicular to the road traffic
direction. The symbols and text in this article are included in the
unified transverse markings. Many studies on road network data
have focused on detecting and rebuilding longitudinal markings
while ignoring transverse markings. This study, however, gives a
detailed review of deep learning-based algorithms for detecting
transverse markings in pictures.

A. Road Network Generation

In this study, road network generation methods were catego-
rized according to the data source types as follows:

1) trajectory data-based methods;
2) remote sensing image-based methods;
3) point cloud data-based methods;
4) street-view image-based methods.
1) Trajectory Data-Based Methods: These methods use

mainly trajectory data of various types of vehicles to generate
a road network. The advantage of these methods is that the tra-
jectory data contain many road geometric features, and the road
network structure can be recovered quickly [10]–[15]. Although
Uduwaragoda et al. [16] and Zhang et al. [17] attempted to
establish a lane-level road network by extracting lane centerlines
using trajectory data, a large amount of semantic information,
such as lane type, could not be recovered efficiently using this
method.

2) Remote Sensing Image-Based Methods: These methods
primarily use feature extraction algorithms extracting ground
makers from remote sensing photos and constructing road net-
works [18]–[21]. With the development of deep learning, an
increasing number of scholars are trying to use deep learning
for landmark extraction. Henry et al. [22] wanted to use a con-
volutional neural network to extract and rebuild a road network.
Hong et al. [23] presented a general multimodal deep learning
framework for the fusion of different deep learning classification
outcomes, which captured more spatial information for better
accuracy. Zhang et al. [24] extracted and improved a road
network using generative adversarial neural networks. More
complex methods have recently been used in road extraction.
Thus, Hong et al. [25] proposed miniGCNs in road extraction,
which fuses GCN and CNN, and the extraction accuracy ex-
ceeded single-CNN or -GCN models. Furthermore, the structure
of the transformer was utilized for road extraction to mine and
represent the sequence attributes of spectral [26]. Remote sens-
ing image-based methods have a wide range of application areas
and great extraction accuracy. However, to extract lane-level
road networks, these approaches require more data sources.
Weather conditions frequently disrupt remote sensing images,
thus resulting in the unavailability of crucial ground-marking
attributes. In cities with dense tree cover, such as the central city
of Nanjing, severe tree shading leads to poor results when these
methods are employed.

3) Point Cloud-Data-Based Methods: This approach is
based on point cloud data, and it has two basic processing

methods: 1) After the intensity is projected to a 2-D plane,
feature engineering [27] or deep learning [28] was used to
extract the landmarks and then build the road networks. 2) Lane
extraction was performed in 3-D point cloud space based on
geometric features of lane markings and ground symbols [29].
The benefits of point cloud-data-based methods are their high
geometric accuracy, but laser point cloud equipment is expen-
sive. Moreover, light detection and ranging is very sensitive to
noise and occlusion, so it is not accessible in data acquisition.

4) Street-View Image-Based Methods: 1) Feature engineer-
ing methods: These methods extract relevant aspects of ground
lane lines and symbols for identification and reconstruction
using various computer vision operators [30]–[33]. 2) Deep
learning-based methods: Recently, these methods have achieved
higher accuracy in lane detection. The main methods are 1©
semantic segmentation, 2© row classification, and 3© anchor-
based detection. 1© The semantic segmentation method classi-
fies all the pixel points in an image and clusters and extracts
the contours of the pixels that correspond to road markings to
obtain the marking outlines. The benefit of this method is that it
realizes higher accuracy than feature engineering methods [7],
[8]. Nonetheless, many operations must be conducted due to the
enormous amount of operational data, and the time efficiency
is lowered because of the necessity to categorize the kind of
each pixel point in the image. The landmark pixel classification
results require additional processing, such as removing outlier
points and generating pixel outlines. 2© The geometric qualities
of the marking lines are used to classify the rows. According to
the row direction, the image is divided into equal distances; in
each row, the columns that correspond to the marking lines are
identified; marking line units are formed, and the coordinates of
the marking line image after postprocessing are acquired [34],
[35]. The advantage of this type of method is its high speed,
but it is relatively weak in terms of accuracy. 3© Inspired by
region proposal networks (RPNs) [36], Li et al. [37] suggested an
anchor point-based lane detection method. The method creates
the lane lines as rays whose starting points are at the three
boundaries (left, bottom, and right) offers 15 directions at the
starting point and has numerous horizontal deviation points
(offsets) on each candidate line for fitting the actual lane lines.
The procedure achieves state-of-the-art accuracy performance
on public datasets. Tabellini enhanced the model with an atten-
tion module and proposed LaneATT to give it a stronger global
information perception capability, which can overcome marking
lines occlusion and absence [38].

B. Object Detection

Because the development of deep neural network technology
has improved accuracy recently, this study presents a litera-
ture review on object detection in deep learning. Deep neural
network-based object detection methods are divided into two
main categories: 1) anchor-based and 2) anchor-free approaches.

1) Anchor-Based Approaches: Anchor-based approaches
are subdivided into two categories: 1) two-stage and 2) one-stage
approaches. The two-stage approaches use a backbone network
and then extract feature maps and subsequently provide region
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proposals for target objects. Anchors with different aspect ratios
are used afterward for object boundary regression. Finally, these
methods use a classification network to determine the proposal’s
class [36], [39], [40]. The methods have a high accuracy rate but a
vast number of generated proposals leads to many computational
parameters and high time consumption. One-stage approaches:
These approaches gather an object’s boundary and category
results directly through a single neural network [41]–[43]. They
are fast but at the expense of accuracy.

2) Anchor-Free Approaches: Although the anchor-based ap-
proaches provide significant improvements in accuracy, a huge
number of anchors lead to high memory and time consumption,
as well as poor generalization ability, and the aspect ratios of
anchors usually must be designed for different tasks. Recently,
many researchers have conducted target detection by detecting
critical locations [44]–[46]. This method does not require a large
number of anchor calculations; the speed of operation is much
enhanced, but the accuracy is not significantly better than that
of anchor-based detection methods.

C. Summary of Study Status

This study concludes that deep learning-based detection meth-
ods may effectively detect transverse and longitudinal markings
in picture space after synthesizing the aforesaid method. Consid-
ering that this study focuses on data collection for lane-level road
networks, it is also important to perform optimization operations
such as aggregation and filtering of image space results from
various perspectives in geospatial space to ensure the integrity
and correctness of the lane data for the entire road.

III. METHODOLOGY

This study uses street-view images as the main data, which
contain many elements for constructing lane-level road net-
works. It is important to classify these elements before intro-
ducing the research methods. This study refers to [9], which
divides markings into two categories: 1) longitudinal markings,
that is, markings that are set along the direction of road traffic;
and 2) transverse markings, that is, markings that are set across
the direction of road traffic. Showing arrows, text, and so forth,
are considered transverse markings in this research.

Fig. 1 is a flowchart of the methodology used in this study.
This study includes three main sections.

1) Element extraction in the image space: Lane-level road
network elements, which are primarily longitudinal and
transverse markings, are extracted from street-view pho-
tos, including geometric and semantic information.

2) Projection from the image space to geographic space: The
detected elements in the photo space are projected into
geospatial space.

3) Optimization in geographic space: Street-view photos
from different viewpoints in the image space are seen with
a large quantity of information, which is projected directly
into the geographic space with conflicts, overlaps, and so
forth.

This research tends to create an accurate, full regional vector
lane-level road network; as a result, this section proposes a series

Fig. 1. Methodology flowchart.

of optimization solutions to address the above problems while
enhancing the data correctness and ensuring the data integrity
of the whole street. This study thus focuses on geospatial opti-
mization methods.

A. Element Extraction in the Image Space

1) Longitudinal Marking Extraction: Traditional feature en-
gineering methods are less resilient and cannot recognize lane
lines well in the face of complex driving scenarios when
choosing detection methods. Thus, this study selected the deep
learning-based longitudinal lane detection algorithm LaneAtt
[38] to extract geometric information in the image space. The
algorithm’s output is shown in Fig. 2, in which different colors
are used to differentiate between the lanes.

The result is a list of KeyPoint coordinates that identify the
various markings, presented as points in Fig. 2. The resulting
output is then universally defined for subsequent work. The line
segments of the main points adjacent to the same marking line are
called sections, and the whole lane line is called the image-level
lane line.
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Fig. 2. Visualization of output results (left); schematic diagram of output
results (right).

Fig. 3. Buffer visualization (left); schematic diagram of the buffer (right).

TABLE I
CLASSIFICATION TYPES

To construct a more detailed lane-level road network, after
obtaining the geometric information, we wanted to further obtain
the semantic attribute information of the longitudinal markings,
including the color and type of each marking. However, the de-
tection result is a line made up of many key points without width,
which makes it challenging to obtain the above information.
Therefore, in this study, a buffer is built with the section as the
smallest unit, and the visual result is as Fig. 3.

The picture in each buffer range is classified to obtain the
attribute information of the whole line. This research classifies
the picture in the section buffer to get the line types, and the
classification types are listed in Table I.

Example images are presented in Fig. 4.
In this study, the ResNeXt model [47] was utilized as a clas-

sifier to improve higher classification accuracy. Because of the
residual structure of the ResNet [48] model, the ResNeXt model
offers a more powerful feature extraction capacity. The addition

Fig. 4. Images in the buffer. (a) Yellow-real-double. (b) Yellow-real.
(c) Yellow-broken-double. (d) Yellow-broken.

Fig. 5. Visualization of classification results.

of cardinality enhances the model accuracy under approximately
the same number of operations. Fig. 5 depicts a visualization of
the section classification results, where the while-real class is
rendered in white and the background class is rendered in black.

2) Transverse Marking Extraction: Transverse markings are
subdivided into the following:

1) line elements, such as crosswalk lines, vehicle stop lines,
and deceleration markings;

2) symbol elements, such as arrows, deceleration mound
markings, crosswalk preview lines, and deceleration yield
lines;

3) text elements, such as road speed limit characters, special
lane characters, and no U-turn messages.

The above elements are clearly defined in terms of shape, size,
and orientation in [9], and each element of a transverse marking
is treated as a separate type in target detection, and there are
a total of 45 classes. The location and type of each object of
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Fig. 6. Visualization of the transverse marking object detection results.

interest in the image space can be properly obtained using the
detection algorithm. It is possible to obtain the geometric and
semantic properties of the transverse markings.

This study used the object detection algorithm cascade
R-CNN [49] as the transverse marking detector for the following
reasons: The quality of the proposals generated by the RPN
is weak, and the positive and negative judgment frequently
relies on proposals and a single threshold (e.g., 0.5) for the
intersection-over-union (IoU) ratio of the ground truth; thus,
the subsequent output tends to produce noisy bounding boxes.
To overcome this problem, cascade R-CNN uses a multistage
proposal resampling at each stage, which increases the IoU
values of the obtained proposals stage, lowering the noise dis-
cussed above, and finally, further improving the object detection
accuracy. Cascade R-CNN achieves the highest accuracy on the
public dataset. Because of the need for a high accuracy object
detector when creating the road network in this research, this
model was used. The image coordinates of the bounding box
for each transverse marking are retrieved following detection
by the cascade R-CNN target detector. The results of transverse
marking object detection are presented in Fig. 6.

B. Projection From the Image Space to the Geographic Space

The preceding work primarily explains the acquisition of
geometric and semantic information about longitudinal and
transverse markings in the image space. The construction of
road networks must take place in a specific geographic location.
Thus, this section focuses on projecting the above results from
the image space to the geographic location.

A panoramic image with a width W and height H was cap-
tured. The IMU+GNSS combination was used to record the
pose and position information when this image is captured. Any
point in the picture can be noted as P(col, row), where col is the
column number and row is the row number. The object t denoted
by point P is the observation object (Object, Obj). The camera is
fixed to form a strong body above the vehicle in this study. The
ground on which the car travels is presumed to be horizontal,
and the phase plane is perpendicular to the ground. It can be
noted abstractly, as shown in Fig. 7.

The camera optical center is represented as O, the height of
O from the ground is Ho, the angle between the vertical ground
line of O and the observation object is θ, and the distance from

Fig. 7. Depth of the view diagram.

Fig. 8. Establishment of the camera coordinate system.

the observation object to the optical center is denoted to be the
depth.

The following formula calculates the depth Dp at point P:

Dp = D(col,row) =
Ho

cos (θ)
=

Ho

cos
(
π
2 +

(
H
2 − row

) · 180
H

) .
(1)

A camera coordinate system was built for the panorama,
which is a right-handed system Fig. 8 shows the diagram.⎡

⎣xi
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The following formulas are used to calculate prow and hcol:
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⎤
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⎡
⎣ 0
D(col,row)

0

⎤
⎦+ T.

(6)

Inspired by Tsai and Chang [50], this article uses (6) to
project any point P in the image into the geographic space.
WhereR(roll, heading,pitch) is the external reference matrix, which
is composed of the positional data obtained from the IMU;
R(col,row)is the rotation matrix from any point P to the camera
optical center; and T represents the world coordinates of the
camera, which are obtained by the global satellite navigation
system (GNSS).
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Fig. 9. Geospatial optimization flowchart.

Fig. 10. Projection results of longitudinal markings for three consecutive
street-view images.

C. Optimizations in the Geographic Space

The acquisition of longitudinal and transverse marks, as well
as the projection of significant points from the image space to the
geographic space, were covered in previous sections. Due to the
error of coordinates and poses obtained from the GNSS and IMU
devices and the influence of camera perspective, there are back-
and-forth conflicts and repetitions at the exact locations; hence,
the geospatial results must be optimized. Fig. 9 thus shows a
flowchart of the optimization process.

1) Longitudinal Marking Postprocessing: Due to the limited
effective area of the image, the longitudinal markers that are
extracted from the continuous image are projected to the geo-
graphic space to express polyline segments, which cannot yet
become lane data in the road network; see Fig. 10 for details.

This is because of the impact of imaging perspective rules and
chance mistakes, such as GNSS signal lag and misalignment
with IMU time. To produce the most basic unit of the lane-
level road network, namely the road-level longitudinal marking,
numerous images, that is, multiple polylines, need to be fitted
into a smooth lane line to produce.

a) Same-lane identification: First, it is necessary to deter-
mine which polylines are longitudinal markings of the same road
level. Following the projection in Section III-B, the image-level
markings corresponding to the same road-level longitudinal
markings are close, whereas the projection results of different
markings are far apart. Therefore, for each image-level-marking
projection result, a smaller buffer is created first as shown in
Fig. 11.

Fig. 11. Longitudinal marking buffer results.

If there is an intersection, buffers of different image-level
longitudinal markings are considered to be the same road-level
longitudinal marking and are given the same ID.

b) Lane direction confirmation: It is necessary to exam-
ine the primary direction of the fitting, that is, whether the
X-coordinate is fitted to the Y-coordinate or the Y-coordinate is
fitted to the X-coordinate. In this study, three adjacent pictures
are used as the minimum unit for direction identification, and
the significant directions of these line segments are used for the
fitting. The formula for calculating the significant directions of
these lines is

Direction =

{
X if |Xstart −Xend| ≥ |Ystart − Yend|
Y if |Xstart −Xend| < |Ystart − Yend| (7)

c) Lane fitting: After the same line confirmation, we in-
stalled the longitudinal markers corresponding to the same road.
For cubic curve lane fitting, this research employed the least-
squares method, with control points being the section endpoints
in the three adjacent pictures, assigned to the same ID in the
previous section:{

X = Rc · Y if Main Direction = X
Y = Rc ·X if Main Direction = Y

(8)

where Rc represent the least squares-derived cubic function
coefficient matrix. Fig. 12 shows the fitting results.

d) Overlap Filtering: Due to repetitive portions of the
same longitudinal markers being shown in adjacent street-view
pictures, different image-level lane lines were fitted together in
the aforementioned section; hence, there is a superposition of
markings at the same location, as detailed in Fig. 13(a).

The result that is closer to the camera has a higher confidence
level, according to the camera imaging standards. Therefore,
when overlap occurs, we choose to keep the result that is closest
to the camera’s optical center. The ultimate result is depicted in
Fig. 14.

2) Transverse Marking Postprocessing: The projection
method in part B was used to project outsourced rectangles
generated from transverse marking detection projected into the
geographic space. There were instances where the results of
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Fig. 12. Fitting results.

Fig. 13. Filtering process. (a) Lane overlap. (b) Layer-by-layer exhibition.
(c) Filtered result.

Fig. 14. Final result.

numerous street-view photos appear to overlap, as shown in
Fig. 15.

The projection method is a more accurate optical center of
the camera. However, because of the high robustness, transverse
markings cut by the imaging range can also be identified. Thus,
Fig. 16 depicts the detection results of two adjacent street-view
images. The image is on the left, whereas the following image
is on the right.

The image width cuts the left turn arrow in half in the right
panel of Fig. 16, and only a portion of it is still recognizable.

Fig. 15. Projection results of transverse markings.

Fig. 16. Transverse marking detection results for two adjacent street-view
images.

We used nonmaximum suppression (NMS) [51] filtering on
the above findings in the geographic space to maintain just the
detection results with the highest confidence. The confidence
of a cut object is often lower than that of the complete object,
so this operation can effectively solve the above problem. The
national standard fully defines the shapes and widths, and as
transverse marking line is abstracted into a point-like element,
for postprocessing.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Area Introduction

The experimental area of this research was in Yincun,
Changzhou City, Jiangsu Province, which is located at the core
of the Yangtze River Delta region. The location was a vocational
education base in Jiangsu Province, a complete road infras-
tructure construction, demonstrating the method’s efficacy. The
experimental area covered a total of 2.619 km2, and the total
length of the road was 19.1 km. The red range in Fig. 17 covers
the experimental area, and the blue lines represent the vehicle
driving track.

B. Equipment Introduction

The primary equipment used in this experiment is as follows:
1) a Ladybug5 optical camera, which is mainly used to

capture street-view images;
2) a Novatel 718D GNSS, which is utilized in making records

of optical camera position information;
3) a Honeywell 4930 inertial sensor (IMU), primarily to

record the optical camera position information.
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Fig. 18. Experimental equipment.

Fig. 17. Yincun location in Google Maps.

All of the equipment listed above is attached to the vehicle to
form a hard body. Calibration of the camera, GNSS, and IMU
equipment is done in real-time. Fig. 18. shows our equipment.

C. Experimental Method

1) Experiment Preparation: The experiments in this study
use a vehicle with the aforementioned equipment to drive
through the experimental region, following the blue line in
Fig. 17. The camera position and pose information are recorded
at the time of capture for a total of 2868 street-view photos.

a) Specific parameters: As discussed in Section III-A, if
the buffer is too large, the algorithm’s efficiency will be impaired
while adding extra background information to influence classi-
fication accuracy, whereas if the buffer is too small, it will not
be able to cover the marker lines closer to the camera optical
center. Following repeated experiments, we select a buffer size
of 15 pix. As discussed in Section III-A, the vertical distance
of the camera optical center from the ground (Ho) is 2.65 m
after calibration. We optimized the markings within 15 nm of
the camera in Section III-C. For same-lane identification, we
employ a buffer radius of 0.4 m in Section III-C. Section III-C
uses the NMS algorithm, where the IoU threshold is set to 0.2.

Fig. 19. Manual annotations in orthophotos.

b) Deep learning models: For longitudinal marking de-
tection, we used the LaneAtt algorithm of BackBone for
ResNet122, and the training dataset was the CULane [52].
F1 on the test set was 77.02%. Pytorch was the algorithm’s
implementation platform used.

We employed the ResNeXt152_vd [47] as the classifier for
longitudinal marking attribute categorization. We also used
the ImageNet pretraining model to obtain the pretraining pa-
rameters. Training data were collected from Nanjing, Jiangsu
Province, China. The training set contained a total of 74 267
images; the test set contained 8250 images. As the loss function,
we employed CEloss. On the test set, the model achieved Top1
accuracy of 95% and Top5 accuracy of 99.952%. PaddlePaddle
was the algorithm’s implementation platform used.

The transverse marking detection algorithm was Cascade-
RCNN [49], the backbone is CBResNet with a depth of 200
layers [53], and deformable convolution (DCN V2) was added
to the model [54] to improve the detection accuracy. The training
dataset was gathered in Nanjing and Suzhou, both located in
Jiangsu Province, China. The training set has a total of 13 532
photos, whereas the test set has 1502 images. At the IoU 0.5
level, we used the model with an AP of 74.2% and an AR of
72.3%. The implementation platform of the algorithm used was
PaddlePaddle

c) Validation data introduction: This study employed a
0.1 m resolution orthophoto that was captured by a UAV, and
these data were matched with a ground control point to achieve
centimeter-level accuracy. Manual annotation was used to gather
geometric and semantic attribute information of longitudinal and
transverse markings from orthophotos, where the line type was
collected for longitudinal markings, and the type and boundary
boxes were collected for transverse markings. Fig. 19 shows
several examples of data.

2) Experiment Details:
a) Geometric accuracy estimation of longitudinal mark-

ings: The manual orthophoto acquisition results were used as
the benchmark in this work. A vertical line was created at 1
cm intervals for each hand-gathered longitudinal marker. The
error was the distance between the intersection of the vertical
line and the findings generated in this article and the vertical
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Fig. 20. Error calculation schematic diagram.

Fig. 21. Geometric and semantic error example diagram.

foot. A schematic diagram is presented in Fig. 20. The practical
conditions are shown in Fig. 21.

Using the method above, a total of 2 099 842 vertical lines
were obtained in the experiment, and the average error distance
was 0.2082 m.

b) Semantic attribute accuracy estimation of longitudinal
markings: In Section IV-C1, the accuracy of the longitudinal
marking semantic attribute classifier is discussed. Because of the
projection, fitting, and filtering steps, the final accuracy needs to
be evaluated in the geospatial space. The procedure is identical
to that used to assess the geometric accuracy of longitudinal
markers. To determine if the attribute information of the crossing
point and the vertical foot is the same, the original form for
computing the error distance is updated. If they are the same,
the attribute is correct, and if they are different, the attribute is
erroneous. The accuracy was computed to be 94.18%.

c) Transverse marking geometry and semantic accuracy
estimation: The geometric results of the transverse markings are
evaluated in this work using the results of manual acquisitions
in the orthophoto as actual values. The orthophoto transverse

marking acquisition results are the smallest outsourcing rect-
angles and are turned into the corresponding center points. We
also convert our results into the center points. The gap between
two center points was considered to be a geometric error. In the
experimental area, there are a total of 169 transverse markers
with an average error calculated to be 0.61 m. To test if the kinds
of two centroids are consistent, a semantic accuracy evaluation
is performed: They are right if they are consistent; otherwise,
they are erroneous. The semantic accuracy was calculated to be
100%.

D. Analysis

1) Accuracy Discussion: First, we discuss the geometric
accuracy: 1) There was a discrepancy between the assumed
conditions and the actual situation: The projection method used
in this study is based on the assumption that the road surface is
always horizontal and the phase plane is always perpendicular
to the ground, but the above conditions are unlikely to be
satisfied during the actual vehicle driving process because the
road surface has high and low undulations, and the vehicle also
has bumps and other conditions. 2) The camera shutter time has
not been synchronized with the IMU and GNSS times. Even
if the Kalman filter interpolation operation is employed in the
preprocessing section, this study may not correctly capture the
camera location or attitude data due to the various periods of
IMU and GNSS. Next, we discuss the semantic accuracy: 1) The
effect of light changes and shading on optical camera imaging:
There are many trees and buildings in the experimental area,
and the shadows have a significant impact on the classification
of the marking attributes. Simultaneously, the region is under
construction. The road surface has become dustier, and some of
the markings have become obscured, affecting the categorization
of the marking kinds on both sides of the road. 2) Geometric
deviations generate the following effects: Although the image
space is correct, the projection into geographic space deviates
from the real place and does not match the orthophoto findings.

2) Parameter Analysis: Because the optical center height
determines the simulated depth of field (Ho), various parameters
such as the optimization range, the buffer size of the longitudinal
marking coincidence confirmation, and the threshold of the
transverse marking filtering algorithm must be selected with the
optical center height in mind. For example, in cases where the
optical center is higher than in this study, the size of the longi-
tudinal marking same line identification buffer may be lowered.

3) Noise and Variability Effects: When projecting image
space findings into geographic space, we assume that the optical
center is always perpendicular to the ground. In real situations,
there are noise and variation disturbances, such as sudden ground
bumps, emergency avoidance, and so forth, which affect the
accuracy of our proposed method. Hong et al. proposed a linear
mixing model to express the above noise and variation effects
and achieved state-of-the-art accuracy performance [55]. In our
practical application, we refer to the aforementioned solution.

4) Method Extensibility: This method works with any device
that can record street-view images, such as a car recorder or
smartphone. Extending the data source to various sorts of devices
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Fig. 22. Facility detection results in street-view images.

can help the road network be updated faster. This technique can
collect ground markings, text, and symbols, but roadside entities
such as utility poles, guardrails, and signage lights can also be
managed by this method. As shown in Fig. 22, it can efficiently
serve urban statistical infrastructure construction and is routinely
checked.

V. CONCLUSION

This study proposed a lane-level road network generation
method that uses street-view images as the main data source
to detect longitudinal and transverse markings in the image
space according to the national standard classification system
and project the image space results into the geographic area.
This study focused on aggregating, fitting, and filtering im-
age space results from different perspectives in the geographic
space, ensuring this method’s completeness accuracy in regional
lane-level road network data collection. In the experimental part
of a 19.1 km road, a longitudinal marking geometric error of
0.2082 m with 94.18% accuracy on semantic attributes and a
transverse marking geometric accuracy error of 0.61 m with or
no inaccuracies in semantic features were obtained. The results
demonstrate that this method can acquire submeter lane data at
a lower cost and can be widely used in road data acquisition,
change detection, and updating. Our subsequent research will
focus on the improvement and enhancement of the longitudinal
marker detection algorithm in image space to further improve the
efficiency by integrating the current detection and classification
algorithms into the same algorithm.
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