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Precise and Fast Segmentation of Offshore Farms
in High-Resolution SAR Images Based on Model
Fusion and Half-Precision Parallel Inference

Chuang Yu'”, Member, IEEE, Yunpeng Liu

Abstract—In aquaculture, using high-resolution synthetic aper-
ture radar (SAR) images to precisely segment offshore farms is
helpful for reasonable layout planning and statistics of breeding
density. However, conventional segmentation methods tend to have
low accuracy and slow inference speed. Therefore, we propose a
novel, precise, and fast segmentation scheme for offshore farms
in high-resolution SAR images based on model fusion and half-
precision parallel inference. Specifically, we propose several new
high-performance improved UNet++ methods and reasonably
fuse the test results. At the same time, a simulated annealing
strategy and a morphological closing operation are introduced
to improve the segmentation accuracy. In addition, we find that
resizing the images to 256 X 256 pixels is better than 512 X 512 pix-
els for this task, which not only has higher segmentation accu-
racy but can also increase the inference speed by nearly 13%.
Furthermore, a novel half-precision parallel inference strategy is
proposed, which can fully utilize the GPU and increase the inference
speed by 72.6%. Compared with some state-of-the-art methods,
the proposed scheme that merges two improved UNet-+- achieves
superior accuracy with a frequency weighted intersection over
union of 0.9876 and a single image inference time of 0.0218 s on
the high-resolution SAR offshore farm dataset.

Index Terms—Half-precision parallel inference, improved
UNET++, SAR images, segmentation, simulated annealing.

1. INTRODUCTION

YNTHETIC aperture radar (SAR), as an active imaging
S system, has a certain surface penetration capability and
can work in all-weather and day—night conditions. It is widely
used in marine monitoring, resource exploration, mapping,
military, and other fields [1]-[5]. SAR image segmentation
aims to assign a label to each pixel, which is the basis for
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many SAR applications (e.g., crop yield estimation [6] and
change detection [7]). Due to the characteristics of imaging,
SAR images contain a lot of speckle noise. At the same time,
inference speed is another important metric for segmentation
tasks. Therefore, it is challenging to achieve more precise and
faster segmentation of SAR images.

Image segmentation methods can be mainly divided into
nondeep-learning-based methods and deep-learning-based
methods. For nondeep-learning-based methods, considering
the difference between visible images and SAR images,
some excellent methods for visible images [8]-[11] often
cannot be directly applied to SAR images [12], [13]. To
minimize the negative impact of speckle noise on SAR image
segmentation, nondeep-learning-based methods for SAR image
segmentation include level set [14], [15], clustering [16],
[17], graph cuts [18], [19], active contour model [20], [21],
edge-based scheme [22]-[25], region-based scheme [26], [27],
and hybrid scheme [28], [29]. However, the above-mentioned
nondeep-learning-based methods usually lack robustness,
which makes it very easy to have a large number of false
detections and missed detections in complex scenes.

Deep-learning-based methods can not only adapt to different
environments but also have the advantages of high accuracy,
fast inference, and self-learning of parameters. Their powerful
feature extraction ability and good generalization ability have
been verified in many fields [30]-[32]. At the same time, most
deep-learning-based segmentation networks can be directly
transferred to different source image tasks and achieve excellent
results. FCN [33] is one of the earliest deep learning methods
applied in image segmentation and achieves relatively excel-
lent segmentation performance. Later, a large number of deep-
learning-based segmentation networks are successively pro-
posed [34]-[38]. Olaf et al. proposed U-Net [34], which adopts
an encoder—decoder structure and merges the low-level features
(rich detailed information) with the high-level feature map (rich
semantic information) through skip connections. Subsequently,
based on U-Net, LinkNet [35] and UNet++ [36] are proposed.
UNet++ introduces a built-in U-Net collection with variable
depth and redesigns the jumper in U-Net to achieve a better
segmentation effect. To better extract the global context for more
reliable scene recognition, Zhao et al. proposed PSPNet [37]. It
uses pyramid pooling to extract multiscale information and then
aggregates the context of different regions. Based on PSPNet,
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Li et al. further proposed PAN [38], which uses feature pyra-
mid attention to focus on extracting useful features and global
attention upsampling to supplement low-level information with
high-level information. It is undeniable that some recent studies
[39]-[41] have achieved excellent results on the multiclass seg-
mentation task of SAR images. However, considering that the
studied task contains only one class of objects, an overly com-
plex network is not cost-effective. At the same time, the networks
proposed in [34]—-[38], can already achieve high segmentation
accuracy and better scalability for the studied tasks.

For the deep-learning-based segmentation methods, an
excellent feature extraction network can better extract the
features of the target and effectively suppress the interference
of the background [42]. In the early days, Simonyan et al.
proposed VGG19 [43]. However, the network requires a large
amount of calculation. Therefore, Szegedy et al. proposed
Inception v1 [44], which uses the inception structure, pointwise
convolutional, and mean pooling to reduce the calculation.
Then, they subsequently proposed Inception v2 [45], Inception
v3 [45], Inception v4 [46], and Inception-ResNet [46]. To
improve the performance of Inception v3, Chollet et al
proposed Xception [47]. The network adopts a depthwise
separable convolution, which improves the effectiveness of
the model without increasing the network complexity. To
solve the phenomenon of gradient disappearance or explosion
caused by the superposition of network layers, He et al.
proposed the ResNet [48]. Subsequently, Jie et al. introduced
the attention mechanism into ResNet and proposed SE-Net
[49]. In addition, Tan et al. proposed EfficientNet [50], which
proposes a multidimensional hybrid model scaling method.
Radosavovic et al. proposed RegNet [51], which combines the
advantages of neural architecture search with manual design.

For SAR image segmentation, nondeep-learning-based meth-
ods often heavily rely on handcrafted features. However, due to
the speckle noise in SAR images, it is difficult to extract the
desired handcrafted features. Considering the strong learning
ability of the deep learning segmentation method and the im-
portance of the feature extraction network, we explore some
new high-performance improved networks by combining mul-
tiple segmentation methods with different feature extraction
networks. Subsequently, the test results of several excellent
improved networks are reasonably fused to achieve more precise
segmentation. At the same time, considering that the model
easily falls into the local optimum and the result has the phe-
nomenon of missing segmentation in some small regions, we
introduce a simulated annealing strategy and a morphological
closing operation to improve the segmentation accuracy. In
addition, considering that the image source studied is SAR
and the research object is the offshore farms distributed in
blocks, we consider that a reasonable downsampling operation
can eliminate the noise of the SAR images while losing little
target information. It not only relatively increases the receptive
field of the network but also increases the inference speed of
the network. Therefore, we propose to resize the images to
256 x 256 pixels instead of the general 512 x 512 pixels. Fur-
thermore, considering that inference speed is another important
metric for segmentation tasks, we consider that the commonly
used single-image testing method wastes many GPU resources.
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To fully utilize the GPU, we propose a novel half-precision
parallel inference strategy, which can achieve a huge increase
in inference speed while maintaining accuracy. It has excellent
practical application value. It is worth noting that the proposed
scheme is applied to the “2021 Gaofen Challenge on Automated
High-Resolution Earth Observation Image Interpretation” com-
petition and achieves excellent results. In summary, we propose a
precise and fast segmentation scheme for offshore farms in high-
resolution SAR images based on model fusion and half-precision
parallel inference, which has excellent performance and appli-
cation prospects. The contributions of this article are as follows.

1) We propose several new high-performance improved
UNet++ methods and reasonably fuse the test results to
improve segmentation accuracy.

2) A novel half-precision parallel inference strategy is pro-
posed, which can fully utilize the GPU and achieve a huge
increase in inference speed.

3) We find that it is better to resize the images to 256 x 256
pixels instead of the general 512 x 512 pixels for the
studied task, which has higher segmentation accuracy and
faster inference speed.

4) A simulated annealing strategy and a morphological
closing operation are introduced to improve segmentation
accuracy.

The rest of this article is arranged as follows. In Section II, the
proposed scheme and each component module are introduced
in detail. Section III introduces the dataset and experimental
settings, verifies the improvement of the proposed scheme by
comparative experiments, and analyzes the results of the exper-
iment. Finally, Section IV concludes this article.

II. METHOD

A. Proposed Scheme

As shown in Fig. 1, the proposed scheme can be divided into
model training and model application. In the model training part,
first, the training samples are uniformly resized to 256 x 256
pixels and data augmentation operations are performed. While
meeting the input size of the model, it expands the training
set and enhances the robustness of the generated model [52].
Then, the preprocessed images are input into the improved
UNet++ methods for training. The simulated annealing strategy
is adopted in network training to constrain updating the learning
rate. Finally, the validation set is used to select the best models
generated by different methods. In the model application part,
first, the test samples are resized to 256 x 256 pixels. Second,
the test samples are made into a sample set in batches, which
are sequentially input into the trained models. It is worth noting
that both the produced sample set and the trained models have
undergone half-precision data format conversion. Then, the test
results generated by different models are merged, and the size
of the image is restored to the original image. Finally, the
morphological closing operation is adopted, and the required
binary segmentation images are output.

B. Improved UNet++ Methods

Due to the limited feature extraction ability of the original
UNet++ network, we replace the encoding part of UNet++
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Fig. 1. Overall scheme.

Backbone

Fig. 2. Network structure of the improved UNet++ method. The parallelo-
gram part is the improvement, which replaces the output of the encoding part
of the original UNet++ with the five-stage feature maps output by different
high-performance backbones.

with some excellent feature extraction networks (backbones)
[36], [53]. As shown in Fig. 2, we combine some high-
performance backbones (SE-Net [49], Effientnet [50], Reg-
Net [51], ResNet50 [48], ResNetl01 [48], Xception [47],
Inception-ResNet [46], and Inception v4 [46]) as the encoding
part of UNet++.

Inspired by the feature pyramid network (FPN), which
extracts multiscale feature maps [54], the encoding part

Train samples Input
Resize(256) Test samples
Data augmentation Resize(256)
Simulated | ©nstraint | rmproved UNet++ . __ Format ..
el P methods Images in batch [ Half-precision
Val Samples Sel\f[;?ieoln Trained models Trained models Col;(i:l;;n Half-precision
\ Model T”‘“‘“‘y Half-precision parallel
Model fusion inference
Resize(original)
Morphological
processing
Output
\ Model Applicatioy

of UNet++ extracts and outputs five-stage feature maps
similar to other high-performance backbones. Therefore,
we consider replacing the encoding part of UNet+-+ with
some high-performance backbones. Then, multiple improved
UNet++ methods with higher performance are constructed. At
the same time, our proposed networks are based on UNet++-.
UNet++ is an improvement based on U-Net, which is widely
used for its excellent performance on segmentation tasks.
UNet++ introduces a built-in variable depth U-Net [34]
collection and redesigns the jumper in U-Net. The structure can
obtain better segmentation performance for objects of different
sizes while realizing flexible feature fusion. In addition, training
variable depth U-Net sets embedded in the UNet++- architecture
can stimulate collaborative learning between U-Nets.

C. Model Fusion

Since using a single network model for segmentation will
cause missed detection and false detection, we propose a model
fusion strategy. Different network models extract different fea-
tures from the same image, and their segmentation effects on
the same region vary [55]. Therefore, fusing the segmentation
results of two or more network models can reduce false seg-
mentation. As shown in Fig. 3, since each pixel value of the
output image is a probability value belonging to the target, the
final segmentation result needs to be binarized. By observing
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Fig. 3. Fusion of the two models. “Mean” denotes averaging the correspond-

ing point values of the input image. “Binarization (0.5)” denotes binarization
processing with 0.5 as the threshold.
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Fig.4. Curve of the learning rate when using the simulated annealing strategy.

the output of the two single models, false segmentation occurs.
The result of model fusion is consistent with the true label.

D. Simulated Annealing Strategy

The deep learning method easily falls into a local optimum
during network training. Optimization methods, such as Mo-
mentum [56], Adagrad [57], and Adam [58], can make the
adjustment of internal parameters more reasonable, reduce the
occurrence of overfitting, and minimize the loss function. How-
ever, the problem cannot be completely solved if only opti-
mization methods are used. Therefore, we introduce a simulated
annealing strategy [53], [59].

From Fig. 4, on the one hand, the change trend of the learning
rate is corrugated using the simulated annealing strategy. When
the network weight falls into the local optimum, the initial
learning rate makes the network weight update step larger, which
helps to jump out of the local optimum. On the other hand,
every two epochs of the initial learning rate interval increase by
multiples, which provides a sufficient number of iterations for
the weight to converge to the global optimum.

E. Morphological Closing Operation

To further realize the refined segmentation of test samples,
we perform a morphological closing operation on the image
after segmentation and binarization processing [60], [61]. As

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

P §
hd

Fig.5. Binary images after segmentation. The white areas are the target areas,
and the black areas in the red frames are the missed detection areas.

Dilate Erode

Fig. 6.  Morphological closing operation.

shown in Fig. 5, there are holes in some target areas of the
segmented binary images. We consider that the phenomenon is
caused by the large amount of noise in the SAR images and the
inconspicuous features. The boundary information of the target
area is obvious, but the characteristics of the internal area and
the background area are highly similar.

To reduce the missed detection inside the target area, we
perform a morphological closing operation on the segmented
binary image. Fig. 6 demonstrates the use of a 3 x 3 kernel
function to perform a morphological closing operation. By
performing the morphological dilation operation first and then
the morphological erosion operation, the inner area can be filled.

F. Half-Precision Parallel Inference

The inference speed is another important metric for evaluating
performance. To achieve faster segmentation speed, we propose
a novel half-precision parallel inference strategy. It can fully
improve the utilization rate of the GPU under the premise of
ensuring accuracy. Fig. 7 shows the testimages are first subjected
to batch splice and data format conversion operations to generate
half-precision batch samples. Then, the batch samples are input
into the half-precision model to obtain the batch segmentation
images. Finally, the batch segmentation images are split to
obtain the required binary segmentation images. Using multiple
parallel inferences can make full use of the computing power
of the GPU. At the same time, converting the input images and
the trained models into a half-precision format can reduce the
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Fig. 8.
truth images corresponding to the first row.

consumption of GPU memory, and more images can be tested
per round.

G. Loss Function and Loss Optimization

We combine binary cross-entropy loss with dice loss [62] as
the final loss function, which can promote the rapid convergence
of the model. Its expression is shown as follows:

1 C N 2y D
E(Ya P) = _N Z Z (yn,c 10gpn,c + W) (1)

2 2
c=1n=1 yn,(:pn,c

where p,, . € P and y, . €Y denote the target labels and
predicted probabilities of the cth and nth pixels in the batch
processing, respectively. Y and P denote the ground truth images
and prediction results of the test images, respectively. C and N
denote the number of classes and pixels, respectively.

III. EXPERIMENTS

A. Dataset

The high-resolution SAR offshore farm dataset [63] is derived
from HiSea-1 and Gaofen-3 with a resolution of 1-3 m. The
dataset contains a total of 4000 images with sizes ranging from

Some samples are displayed from the high-resolution SAR offshore farm dataset. The first row is the original images, and the second row is the ground

512 to 2048 pixels, and the size of most samples is 512 x 512
pixels. The scene covers China’s southeast coastal area, and
targets include common large-scale offshore farms. In the local
experiment, we divide the 4000 samples into a training set, a
test set, and a validation set at a ratio of 3:1:1. It is worth noting
that considering that the “2021 Gaofen Challenge on Automated
High-Resolution Earth Observation Image Interpretation” com-
petition provides an additional unobtainable test set for scoring,
we divide these 4000 samples into a training set and a validation
set at a ratio of 4:1 in the competition. It allows the generated
model to learn more samples. Fig. 8 shows part of the sample
images and their true labels. The SAR images contain a large
amount of noise, and the features are not obvious. The dataset
is available online.!

B. Experimental Environment and Parameter Settings

The operating system and GPU are Ubuntul8.04 and RTX
2080Ti 11G, respectively. The epochs and batch sizes are 100
and 8, respectively. The optimizer, learning rate, momentum,
and weight decay are AdamW [64], 0.0003, 0.9, and 0.0005,

![Online]. Available: http:/gaofen-challenge.com/challenge/dataset/3
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Fig. 9. Data augmentation. (a) Original image. (b) Original image rotated
90° counterclockwise. (c) Original image flipped vertically. (d) Original image
flipped horizontally.

respectively. The initial rounds of simulated annealing are 3.
The number of epochs between the two restarts increases by
multiples. It is worth noting that for the model uploaded to the
final competition of the “2021 Gaofen Challenge on Automated
High-Resolution Earth Observation Image Interpretation,” the
GPU used is RTX teslaV100 32G. The epochs and batch sizes
are 200 and 32, respectively.

The optimization of weights in deep learning networks re-
quires a large number of training samples. As shown in Fig. 9,
the distribution of offshore farms is not affected by rotation and
flip transformations. We randomly use rotation transformation
and flip transformation to enhance and expand the training
samples. It can reduce overfitting and improve the robustness
and generalization of the generative models [65].

For the evaluation metric, to better evaluate the performance
of the proposed model and keep it consistent with the “2021
Gaofen Challenge on Automated High-Resolution Earth Obser-
vation Image Interpretation” competition, we adopt frequency
weighted intersection over union (FWIoU) [66].

C. Selection of the Segmentation Method

To achieve precise segmentation of offshore farms in high-
resolution SAR images, we compare some excellent segmen-
tation methods. It is worth noting that to rigorously compare
the performance differences between the methods instead of
the performance improvement brought by the feature extraction
network, we uniformly use EfficientNet to replace the feature
extraction network of various methods (FCN [33], U-Net [34],
LinkNet [35], PSPNet [37], PAN [38], and UNet++4- [36]). All
methods in Table I use the simulated annealing strategy, and
the images are uniformly resized to 256 x 256 pixels for input.
“(EfficientNet)” denotes using EfficientNet to replace the feature
extraction network part of the corresponding method.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE I
PERFORMANCE COMPARISON OF VARIOUS SEGMENTATION METHODS

Methods FWIoU Time on GPU/s
FCN(EfficientNet) [33], [50] 0.9858 0.0446
U-Net(EfficientNet) [34], [50] 0.9834 0.0447
LinkNet(EfficientNet) [35], [50] 0.9847 0.0449
PSPNet(EfficientNet) [37], [50] 0.9799 0.0219
PAN(EfficientNet) [38], [50] 0.9839 0.0451
UNet++(EfficientNet) [36], [50] 0.9861 0.0465
TABLE II
COMPARISON OF THE FWIOU UNDER DIFFERENT METHODS AND LOSS
FUNCTIONS
Methods cross-l;:;fgy loss dice loss COrﬁ)bsisn .
U-Net(EfficientNet) 0.9831 0.9793 0.9834
LinkNet(EfficientNet) 0.9838 0.9811 0.9847
UNet++(EfficientNet) 0.9857 0.9804 0.9861

From Table I, UNet++- achieves the best segmentation accu-
racy with an FWIoU of 0.9861. Compared with PSPNet, PAN,
FPN, U-Net, and LinkNet, UNet++ increases FWIoU by 0.0062
(from 0.979910 0.9861), 0.0022 (from 0.9839 t0 0.9861), 0.0003
(from 0.9858 to 0.9861), 0.0027 (from 0.9834 to 0.9861), and
0.0014 (from 0.9847 to 0.9861), respectively. It is worth noting
that the purpose of our research is to achieve refined segmenta-
tion of offshore farms in high-resolution SAR images. On the
one hand, the FWIoU of most deep learning methods is above
98%, and small improvements in FWIoU will become more
difficult and meaningful. On the other hand, when considering
the actual application for counting the area and density of farms,
the improvement in accuracy will help farmers perform more
refined management and reduce farming accidents. In addition,
for the “2021 Gaofen Challenge on Automated High-Resolution
Earth Observation Image Interpretation” competition, we find
that the distribution of the test set of the competition is not
completely consistent with the local dataset. The experimental
results show that the test set of the competition will amplify the
difference in segmentation accuracy between the methods and
the gap can be as high as 0.03. For single image inference time,
although UNet++-is 0.0246 s more than PSPNet, the accuracy of
PSPNet is significantly lower. Except for PSPNet, the other five
methods have little difference in single image inference time. In
summary, UNet+-+ has relatively optimal performance.

D. Effect Verification of the Loss Function

We consider that combining binary cross-entropy loss with
dice loss as the final loss function has better performance. To
fully verify this hypothesis, we carry out comparative verifica-
tion on LinkNet, U-Net, and UNet+-+. All methods in Table 1T
use the simulated annealing strategy, and the images are uni-
formly resized to 256 x 256 pixels for input.
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TABLE V
COMPARISON OF THE SINGLE IMAGE INFERENCE TIME UNDER DIFFERENT
METHODS AND DIFFERENT RESIZING STRATEGIES

Methods No simulated annealing simulated annealing Methods 512 256
U-Net(EfficientNet) 0.9713 0.9834 U-Net(EfficientNet) 0.0503 0.0447
LinkNet(EfficientNet) 0.9717 0.9847 LinkNet(EfficientNet) 0.0494 0.0449
UNet++(EfficientNet) 0.9719 0.9861 UNet++(EfficientNet) 0.0567 0.0465
TABLE IV TABLE VI

COMPARISON OF THE FWIOU UNDER DIFFERENT METHODS AND DIFFERENT
RESIZING STRATEGIES

Methods 512 256
U-Net(EfficientNet) 0.9828 0.9834
LinkNet(EfficientNet) 0.9840 0.9847
UNet++(EfficientNet) 0.9842 0.9861

The experimental results presented in Table II verify that
combining binary cross-entropy loss with dice loss as the final
loss function has the best performance. At the same time, the
results of binary cross-entropy loss and combined loss are sim-
ilar, and they are both significantly better than dice loss. Taking
UNet++(EfficientNet) as an example, compared with using
dice loss, the FWIoU using combined loss can be improved by
0.0057, which is significantly improved. Since the improvement
of the loss function only affects the network training, it will
not have any impact on the inference speed. Therefore, using
combined loss is an optimal choice.

E. Effect Verification of the Simulated Annealing and Resizing
Strategy

We consider that using a simulated annealing strategy for
updating the learning rate can avoid the model falling into a
local optimum. To fully verify this hypothesis, we carry out
comparative verification on LinkNet, U-Net, and UNet++. In
Table III, the images are uniformly resized to 256 x 256 pixels
for input.

From Table III, compared with not using the simulated an-
nealing strategy, the FWIoU improves by more than 0.01. This
shows that using the simulated annealing strategy for updating
the learning rate can significantly improve the segmentation
accuracy. At the same time, it will not affect the inference speed.

In addition, we consider that the segmentation performance of
uniformly resizing the images to 256 x 256 pixels is better than
that of 512 x 512 pixels. Therefore, we conduct experiments
on LinkNet, U-Net, and UNet++. The experimental results are
shown in Table IV. All methods use the simulated annealing
strategy; “256” and “512” denote that the images are uniformly
resized to 256 x 256 pixels and 512 x 512 pixels for input,
respectively.

From Table IV, compared to uniformly resizing the images
to 512 x512 pixels for training and testing, resizing images
to 256 x256 pixels can improve the FWIoU. We consider that
there are two main reasons. On the one hand, the studied data
are SAR images and the influence of noise is more serious.

PERFORMANCE COMPARISON OF DIFFERENT BACKBONES AS THE FEATURE
EXTRACTION NETWORK OF UNET+ -+

Methods FWIoU Time on GPU/s
UNet++ [36] 0.9819 0.0180
UNet++(ResNet50) [36], [48] 0.9834 0.0238
UNet++(ResNet101) [36], [48] 0.9814 0.0294
UNet++(Xception) [36], [34] 0.9836 0.0202
UNet++(Inception-ResNet) [36], [46] 0.9842 0.0492
UNet++(Inception v4) [36], [46] 0.9841 0.0509
UNet++(RegNet) [36], [51] 0.9836 0.0287
UNet++(SE-Net) [36], [49] 0.9853 0.0425
UNet++(EfficientNet) [36], [50] 0.9861 0.0465

By downsampling the input images, small disturbances, such
as noise, can be reduced. On the other hand, the offshore farm
targets in the images are distributed in blocks. The downsam-
pling operation can make the size of the input images smaller
without losing the target. The network’s receptive field for image
features is relatively enlarged, thereby improving robustness and
generalization.

There will be differences in the inference speed when us-
ing different resizing strategies. We conduct comparative ex-
periments on LinkNet, U-Net, and UNet++4-. From Table V,
compared with resizing the images to 512 x 512 pixels, when
resizing images to 256 x 256 pixels, LinkNet speeds up by 9.1%
(from 0.0494 to 0.0449), U-Net speeds up by 11.1% (from
0.0503 to 0.0447), and UNet++ speeds up by 18.0% (from
0.0567 to 0.0465). In summary, resizing images to 256 x 256
pixels not only achieves better segmentation accuracy but also
increases the inference speed by nearly 13%.

F. Effect Verification of Model Fusion

From the above-mentioned experimental results, compared
with PSPNet, PAN, LinkNet, FPN, and U-Net, UNet-+-+ has
relatively better segmentation performance. However, the seg-
mentation ability of a single model is limited. Therefore, we
propose using model fusion to further improve the segmentation
accuracy. The models that can be fused need to have different
understandings of images. Additionally, to further explore the
performance of different backbones replacing the encoding part
of UNet++, we conduct experiments on different backbones
(ResNet50 [48], ResNetl01 [48], Xception [47], Inception-
ResNet [46], Inception v4 [46], RegNet [51], SE-Net [49],
and EfficientNet [50]). The experimental results are shown in
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TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT COMBINATIONS OF IMPROVED
UNET+-+ MODELS

Time on
Methods FWIoU GPU/s
UNet++(Inception-ResNet)3% 461 0.9842 0.0492
UNet++(SE-Net)B36: 4% 0.9853 0.0425
UNet++(EfficientNet)136: 501 0.9861 0.0465
ion- A (36, 46,
UNet++(Inception: RisJNet and SE-Net) 0.9864 0.0816
UNet++(Inception-ResNet and
EfficientNet)? 501 0.9867 0.0858
UNet++(SE-Net and EfficientNet)36 4501 0.9876 0.0792
UNet++(Inception-ResNet , SE-Net and 0.9876 0.1182

EfficientNet)3 46,49, 501

Table VI. The backbone in parentheses denotes the feature
extraction network of UNet++.

From Table VI, the single image inference time of the im-
proved UNet++ methods of the top three segmentation ac-
curacies is relatively high. However, the main purpose of the
model fusion strategy is to improve the segmentation accuracy.
We initially tentatively merge three improved UNet++ meth-
ods (Inception-ResNet, SE-Net, and EfficientNet). To further
explore the combination of the three improved methods, we
conduct experiments on the performance of the different com-
binations. The experimental results are shown in Table VII.

From Table VII, with the fusion of models, the segmentation
accuracies will indeed improve. The segmentation accuracy of
the two improved UNet++ methods (SE-Net and EfficientNet,
0.98756) and the three improved UNet++ methods (Inception-
ResNet, SE-Net, and EfficientNet, 0.98761) are almost equal.
From the single image inference time, it can be found that when
the models are fused, the time is close to the sum of the time of
each model. It is worth noting that from the test results of the
uploaded model in the preliminary stage of the “2021 Gaofen
Challenge on Automated High-Resolution Earth Observation
Image Interpretation” competition, the single model has a low
score. When using two models for fusion, the FWIoU can
increase by 0.01 or more. When more models are fused, the
increase in FWIoU begins to slow down significantly. Therefore,
we decide to adopt two improved UNet++ methods (SE-Netand
EfficientNet) as the preferred fusion scheme.

The balance between the inference speed and the segmenta-
tion accuracy can be based on different application scenarios and
evaluation metrics. For example, for the preliminary stage of the
“2021 Gaofen Challenge on Automated High-Resolution Earth
Observation Image Interpretation” competition, accuracy is used
as the only evaluation metric. At that time, the fusion of multiple
models will have a relatively excellent accuracy improvement
effect. For the final stage of the competition, the inference speed
is another important evaluation metric. It is necessary to make
a reasonable balance between the number of models for fusion
and the inference speed.

To compare the segmentation effects of various schemes
more intuitively, we show the segmentation effects of UNet++-,
UNet++(SE-Net), UNet++(EfficientNet), and UNet+-+(SE-
Net and EfficientNet), as shown in Fig. 10. By observing the
second to fifth rows in Fig. 10, the improved UNet++ has a sig-
nificantly better segmentation effect than the original UNet++-.
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TABLE VIII
IMPACT OF MORPHOLOGICAL CLOSING OPERATIONS WITH DIFFERENT KERNEL
FUNCTION SI1ZES ON SEGMENTATION PERFORMANCE

Methods FWIoU Time on GPU/s
No kernel 0.98761 0.0792
3x3 kernel 0.98764 0.0796
5x5 kernel 0.98762 0.0797
7x7 kernel 0.98754 0.0799

The original UNet++ is more likely to misjudge nontargets
between target regions as targets. By observing the fourth to sixth
rows in Fig. 10, it can be seen that the model fusion scheme does
have a better segmentation effect on the boundary of the target
than a single network. At the same time, by observing the sixth
and seventh columns in Fig. 10, it can be seen that various meth-
ods have better segmentation effects for some simple scenes. In
addition, by observing the eighth column in Fig. 10, it can be
seen that various methods have misjudgments for some complex
scenes. We think the possible reason is the high similarity to the
target.

G. Effect Verification of the Morphological Closing Operation

To further improve the accuracy of segmentation, we in-
troduce a morphological closing operation. Considering that
the edge information of the research target is obvious but the
interior area is similar to the background area, it is prone to
missed detection. At the same time, to study the impact of
different sizes of kernel functions on performance, we perform a
morphological closing operation on the fusion of two improved
UNet++ methods (SE-Net and EfficientNet). The experimental
results are shown in Table VIIIL.

From Table VIII, the morphological closing operation is used,
and the additional time consumed by the operation is almost
negligible. In addition, using a morphological closing operation
with a kernel size of 3 x 3 or 5 x 5 has a slight improvement in
FWIoU, which shows effectiveness. When uploading the model
to the “2021 Gaofen Challenge on Automated High-Resolution
Earth Observation Image Interpretation” competition for testing,
its accuracy can be increased by approximately 0.005, and a good
improvement effect is achieved. The results further illustrate the
effectiveness of the morphological closing operation, and the
proposed scheme has stronger robustness and generalization in
complex scenarios.

Fig. 11 shows the segmentation effect of the final scheme,
which combines two improved UNet++ methods (SE-Net and
EfficientNet) and a morphological closing operation with a
3 x 3 kernel. Although SAR images have the characteristics of
multiple noises and inconspicuous features, there is a small part
of false detection areas between two adjacent target areas in
some images. The segmentation boundaries of most images are
relatively accurate. This shows that the overall segmentation
effect of the proposed scheme is very good.

H. Effect Verification of Half-Precision Parallel Inference

The inference speed is one of the important metrics to evaluate
the performance of the proposed scheme. To improve the speed
of inference, in addition to the resizing strategy, we also propose
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P

Fig. 10. Comparison of segmentation effects of various methods. The first row denotes the original images; the second row denotes the ground truth images;
and the third to sixth rows denote the segmentation results of UNet++4-, UNet4+ (SE-Net), UNet++ (EfficientNet), and UNet++ (SE-Net and EfficientNet),
respectively.

Fig. 11. Segmentation effect of the proposed scheme on the test sample.
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comparison of the single image inference times under different data formats.

a novel half-precision parallel inference strategy. As shown in
Fig. 12, we compare the single image inference times of the
different data formats (Float32 and Half) with different numbers
of parallel test images on the improved UNet++- (EfficientNet).

From Fig. 12, both curves decline first and then tend to be
stable, and the blue curve is lower. Compared with a single
image for testing, using full-precision (Float) and half-precision
(Half) parallel inference can increase the speed by up to 53.5%
(from 0.0493 to 0.0229) and 70.7% (from 0.0508 to 0.0149),
respectively. On the one hand, the result shows that the parallel
inference method can significantly reduce the single image
inference time. On the other hand, it verifies that half-precision
has better acceleration performance. When the half-precision
is adopted, the GPU memory space consumed by the mod-
els and images is greatly reduced, which facilitates the rapid
exchange of data. It also explains that when the number of
parallel computing images is 128, the GPU memory will be
insufficient if the “Float32” is used, whereas the half-precision
can be calculated. When the test image is only 1 or 2 each time,
the inference speed using “Float32” is faster than “Half.” We
consider that the utilization rate of GPU in this situation is low,
there is less congestion in data exchange, and the calculation
optimization of GPU for “Float32” is better than that of “Half.”
However, when the number of test images increases each time,
the utilization rate of the GPU gradually increases and the
ratio of data exchange time is relatively higher. Therefore, our
final scheme uses two improved UNet++ methods (SE-Net
and EfficientNet), a simulated annealing strategy, a resizing
strategy, a morphological closing operation, and a half-precision
parallel inference strategy. The experimental results show that
the scheme has an FWIoU of 0.9876 and the single image
inference time is only 0.0218 s. Compared with the scheme
that does not use the half-precision parallel inference strategy,
the speed increases by 72.6% (from 0.0796 to 0.0218). At the
same time, compared with using only one improved UNet++
method (EfficientNet) without half-precision parallel inference
and morphological closing operation, the inference speed of
the proposed final scheme increases by 53% (from 0.0465 to
0.0218).
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IV. CONCLUSION

To achieve precise and fast segmentation of offshore farms
in high-resolution SAR images, we propose a scheme based on
model fusion and half-precision parallel inference. By compar-
ing the performances of multiple excellent deep learning seg-
mentation methods and feature extraction networks, SE-Net and
EfficientNet are used as the feature extraction modules to replace
the encoding part of UNet++-. Then, the results generated by
the improved UNet++ methods are fused, which can achieve
more precise segmentation. To further improve the segmenta-
tion accuracy, we validate the performance of the simulated
annealing strategy and the morphological closing operation and
incorporate them into the proposed scheme. Considering that
the inference speed is another important metric of segmentation
performance, on the one hand, we uniformly resize the images
to 256 x 256 pixels, which can improve the inference speed by
nearly 13%. On the other hand, we propose a novel half-precision
parallel inference strategy that can improve the inference speed
by 72.6%. The experimental results show that the FWIoU and
single image inference times are 0.9876 and 0.0218 s using the
final scheme on the high-resolution SAR offshore farm dataset.
It is worth noting that the proposed final scheme merges two
improved UNet++ models, which can be adjusted reasonably
for different accuracy and inference speed requirements.
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