
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022 4559

Use of LSTM for Sinkhole-Related Anomaly
Detection and Classification of InSAR Deformation

Time Series
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Abstract—Sinkholes exhibit precursory deformation patterns.
Such deformation patterns can be studied using InSAR time-series
analysis over constantly coherent scatterrers (CCS). In the past
we identified Heaviside and Breakpoint changes as two important
forms of anomalous behavior. It is challenging to efficiently detect
and classify these sudden step and sudden velocity changes in defor-
mation time series, especially in the presence of tens of thousands
CCS. To address this challenge, we propose to classify these forms of
anomalous behavior with a deep learning-based supervised time se-
ries classification. In this study, we used a two-layered bidirectional
long short term memory (LSTM) classification model for this pur-
pose. The classified deformation classes were analyzed as well in the
context of scattering mechanisms. We implemented this model on a
sinkhole affected region spanning∼63 × 44 km2 in Ireland, using
104 Sentinel-1 A SAR images acquired between 2015 and 2018.
Our results show that the CCS with a linear trend can be correctly
classified with a maximum accuracy of ∼99%, whereas for the
CCS categorized as anomalous Heaviside and Breakpoint changes
the accuracy drops to a maximum of 62%. Multithreshold-based
filtering of samples increased the classification accuracy by as much
as 50%. We conclude that the method that we propose is effective in
detecting anomalous deformation changes. Future research should
investigate how it can be applied to other hazard-related detection
and classification problems.

Index Terms—Anomaly detection, breakpoint, heaviside, long
short term memory (LSTM), sinkholes, time-series classification,
time-series InSAR.

I. INTRODUCTION

LAND subsidence is steadily becoming a major issue in
urban and rural areas [1]. Sinkholes, which are character-

ized by sudden depressions over the ground, are causing major
damages to life and property [2]. Therefore, it is important to
monitor sinkhole prone areas and detect deformation behaviors
which resemble sinkhole-related precursory deformations. Sink-
hole prone areas can be monitored by observing spatio–temporal
deformation patterns of ground surface, which sometimes show
signs of anomalous activity, e.g., cavity migration occurring
underneath the ground [3]. Such deformation patterns can be
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estimated using time-series interferometric synthetic aperture
radar (TSInSAR) [4]–[6] with millimeter-level precision. TSIn-
SAR is applied to estimate deformation time series over con-
stantly coherent scatterrers (CCS) [7], e.g., persistent scatterers
(PS) [4], or distributed scatterers [8], [9]. Some of the appli-
cations of TSInSAR include monitoring of urban infrastruc-
ture [10]–[12], dam infrastructure [13], [14], geohazards, such
as volcanoes [15], [16] and sinkholes [17], [18]. TSInSAR is by
now well established method to study spatio–temporal ground
deformation patterns.

The mechanics of ground movement can be studied either
spatially, temporally, or jointly in space and time. In this study,
we are concerned with modeling the temporal dynamics of defor-
mation time series. The deformations are correlated both in time
and space. This allows us to study correlation between deforma-
tions event in time at the same location, or at locations spatially
distant to each other. Therefore, there are common and distinct
trends present in the deformation behavior of scatterers located at
separate locations. The reasons for the shared behaviors could be
related to the shared geological conditions or common land use
types on the top surface, leading to common radar scattering
mechanisms (SM). For instance, building corners, lamp posts,
and other urban land features cause dihederal scattering, where
most of the signal, especially in copolarization mode (HH and
VV) is scattered back to the SAR sensor. Vegetation is mostly
responsible for volume scattering, where radar waves encounter
multipath reflections, and also depolarize the wave. Hence, they
register high response in the cross polarization mode (VH and
HV). Scatterers, such as water bodies and roads cause very low
scattering and, therefore, also register very low signal in the
both co-pol and cross-pol channels of SAR data. The reason
for common deformation behavior could also be mutual inter-
action with hydrological phenomena, such as groundwater level
variation [19].

Sinkholes may show precursory deformation patterns. Identi-
fication and classification of these deformation patterns could be
a useful way to identify sinkhole-related CCS. Two of the most
reported sinkhole-related precursory deformation patterns are
sudden variations in instantaneous velocity [20] and instanta-
neous acceleration [17]. The former refers to sudden movement
in the ground, but does not affect the average deformation
velocity of the scatterer, and the latter refers to a change in the
average velocity of the scatterer after a certain epoch. These
two deformation behaviors can be modeled using Heaviside
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step functions and multivelocity Breakpoint models [21], re-
spectively. The importance of distinguishing between these de-
formation behaviors has been emphasised by [22].

Modeling schemes, such as multiple hypothesis testing
(MHT) are well established in using regression to model such
patterns. However, a major problem is to classify such pat-
terns, such that the models scale well over large deformation
datasets [23]. Classification of these patterns can be done using
deep-learning methods which have the advantage of transform-
ing time series in a multidimensional feature space where the
samples can be separated using a multidimensional plane ef-
ficiently. These transformations are done using a combination
of nonlinear transformations performed by activation functions,
for e.g., sigmoid [24], hyperbolic tangent [25] used in recurrent
neural networks (RNN).

RNNs are used to encode and learn sequences as trans-
formed vectors. There are two main types of tasks for which
RNNs are useful, first, sequence–sequence mapping, and second
sequence–scalar mapping, e.g., for predicting the next term on a
sequence, i.e., time series forecasting, or sequence classification.
Recently, there has been a surge in deep learning techniques
being used for SAR data analysis [26], [27]. RNN, such as long
short term memory (LSTM) [28] have been used for forecasting
of deformation time series using TSInSAR derived data [29].
Unsupervised classification of InSAR deformation time series
using an LSTM autoencoder model has been attempted by [23].
Furthermore, simulated data has been used to train LSTM net-
works to identify anomalies in InSAR deformation time series
over Italy using Sentinel-1 data [22]. However, supervised clas-
sification of deformation time series data using LSTM models
and real deformation data has not been studied. Furthermore,
the relation between the deformation classes and the SM of the
associated CCS has also not been investigated in the context
of deformation time series classification. Therefore, the main
objective of this study is to classify sinkhole-related deformation
time series using supervised LSTM sequence classification and
real InSAR derived deformation data. The classified deformation
classes are also related to SM classes.

The rest of this article is arranged as follows. Section II
introduces the methods for polarimetric decomposition, training
data extraction, and LSTM modeling. Section III presents the
details of the study area and Sentinel-1 data used. Section IV
presents the results, followed by a discussion in Section V.
Finally, Section VI concludes this article.

II. METHODS

We consider a multitemporal InSAR (MTInSAR) that is
carried out for a stack of SAR images. To detail our methods,
we define a set of CCS points P = P (xi, yi, zi), for i ∈ [1, b],
located in a 3-D coordinate system with coordinates xi, yi,
and zi, and temporal epochs tj for j ∈ [1,m], also referred
to as InSAR epochs. The corresponding deformation time se-
ries is defined as dPt , (t = ∀tj). Here b and m are the total
number of CCS in P and the total number of InSAR epochs,
respectively.

Each CCS point in the CCS setP is associated with a SM class
that belongs to the SM set denoted by S . The SM classification

Fig. 1. Methodological flow diagram.

method is presented in Section II-A. Points in P are associ-
ated to either nonanomalous (linear) or anomalous deformation
classes which are represented by D. The deformation sampling
scheme, interclass sample similarity reduction method, and label
set preparation method is described in Section II-B. The main
LSTM classification model is described in Section II-C. Finally,
Section II-D elaborates the choice of hyperparameters, loss
function, training-testing strategy and the method for accuracy
assessment. These methods are shown in the methodological
flow diagram in Fig. 1 as well.

A. Scattering Mechanism Classification

The geolocation of CCS, particularly PS often coincides
with double-bounce scattering regions, but sometimes CCS
points are also identified over volume and surface scattering
regions [30] over which the deformation estimates may be less
precise. Therefore, it is important to separate deformations on
the basis of SMs. The dominant SM in SAR images can be
identified using polarimetric decomposition of SAR datasets
[31], [32].

Polarimetric decomposition models multipolarimetric SAR
data with respect to various polarization bases, which represent
different scattering behaviors [31]. In our study, Cloude–Pottier
polarimetric decomposition [33] is recommended to extract
polarimetric features because it is effective in decomposing mul-
tipolarimetric data into multiple SMs using the division of the
alpha angle-entropy plane into as many as nine zones [33, Fig. 4].
In addition to the polarimetric features from the Cloude–Pottier
decomposition, the normalized radar cross sections (NRCS) in
VV and VH channels are used for SM classification. We use
sigma-naughts, i.e., σ◦

VV and σ◦
VH as measures of NRCS in VV

and VH channels, respectively. Furthermore, in order to reduce
the speckle noise in the NRCS features, the SAR images are
passed through a multitemporal speckle filter [34]. This filter
method is defined as

Jk(x, y) =
E[Ik]

m1

m1∑

i=1

Ii(x, y)

E[Ii]
(1)
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where Jk(x, y) is the filtered output of SAR image pixel at
position (x, y), using image nr. k (k ∈ [1,m1]), where m1 is
the total number of SAR images. Ii(x, y) represents intensity at
(x, y) of ith image, i ∈ [1,m1]. E[Ik] and E[Ii] represent the
local spatial mean of pixel values within a window centered at
(x, y).

The filtered SAR intensity images are then converted to
sigma-naught images and classified using supervised random
forest algorithm [35], [36]. The training datasets for the four
classes, i.e., double bounce, high volume, low volume, and
surface scatterers are crafted manually. They are referred to as
the SM classes S .

B. Deformation Classification and Sample Set Preparation

The deformation time series (dPt ) can be estimated using
single-master TSInSAR processing. Thereafter, standard thresh-
olds to, e.g., the estimated deformation velocities, ensemble
coherence, estimated height, and spatio–temporal consistency
are applied.

Sample Extraction: The deformation time series is then used
to create a sample set (X), which is mapped to target class vector
Y using a bijective mapping. Typical (linear) and anomalous
deformation time series are recognized from real data using
the overall model test for the linear function. The detection–
identification–adaptation procedure [37] is used to calculate the
test statistic for Heaviside and Breakpoint functions for each
point. Details about test statistic are shown in the Appendix.
The functions for Heaviside (MH ) and Breakpoint anomalies
(MBr) are separately defined as cf. [21]

MH(Δj) = ΔjH(t− τj), j ∈ [1,m− 1] (2)

Mk
Br(vk) = tj · vk, j ∈ [1, m− 2]. (3)

Here, H(t− τj), is the Heaviside step function, centered at τj ,
Δj is the Heaviside step size, vk is the deformation velocity
before and after the Breakpoint epoch, and k is the total number
of breakpoints. For instance, the functions can be defined for
fitting the anomaly at only one epoch, i.e., single Heaviside
and single Breakpoint function. The model is attempted to fit at
all epochs (m) except the extremes, i.e., m− 1 for Heaviside
and m− 2 for Breakpoint function. For a single Breakpoint
model, the deformation time series is divided into two parts with
two different linear velocity parameters, i.e., v1 and v2, at the
breakpoint epoch l. The corresponding single Breakpoint model
can be written as M1

Br = [t1 . . . tl]
T · v1 + [tl+1 . . . tm]T · v2.

The change in the two velocities is estimated by using
θtl = arctan((v1 − v2)/(1 + v1 · v2)), where θtl is the angle
between the lines drawn by v1 and v2 in the deformation-time
space. The test statistic for goodness of fit of functions MH and
MBr at each epoch (tj) is calculated for fitting these functions
for all CCS using (5) in [21].

Filtering of Samples: In order to ensure low interclass similar-
ity (especially between anomalous classes), multiple thresholds
can be used to filter the samples further. The first threshold can
be applied on the test statistic values for Heaviside function
and Breakpoint function. This is done by applying an upper
bound on the test statistic value for the class of interest and
a lower bound on the test statistic value for all other classes.

For anomalous classes, i.e., Heaviside (DH ) and Breakpoint
(DBr), the top nth percentile (pn) values are chosen, i.e., XC =
{dPt |TC

P ≥ pn(T
C)}. Here, XC are the selected training sam-

ples associated to the class of interest C, C ∈ {DH ,DBr}, TC

is the test statistic for class C for all points, TC
P is the test

statistic for every individual point in the set P , and pn(.) sig-
nifies the application of percentile threshold. This thresholding
scheme is chosen because high test statistic value indicates that
the tested model strongly rejects the default model, i.e., lin-
ear model. Second, a lower bound on the Test statistic values
for classes other than the class of interest is applied. This is
done using a low percentile threshold pn1

at n1th percentile.
Therefore, XC = {dPt |TC∼

P ≤ pn1
(TC∼

)}. Note that the tilde
∼ is the complement operator. Third, further purification of
the samples is done by applying class specific thresholds on
the extent of deformation velocity changes (θ) and jumps (Δ)
for Breakpoint and Heaviside anomalies, respectively. The sam-
ples for class C, XC = {dPt | mod (Δ) ∈ [ΔC

min,Δ
C
max]} and

XC = {dPt | mod (θ) ∈ [θCmin, θ
C
max]}. Here, [ΔC

min,Δ
C
max]

and [θCmin, θ
C
max] are the threshold values for both anomalous

classes on the jump and deformation velocity change, respec-
tively. For Heaviside class, the threshold for jumps are set at a
higher value and that for velocity changes are set at lower values,
and vice versa for the Breakpoint class. The mod (.) function
signifies that the thresholds are applied on the absolute values
of jumps and velocity change angles.

Application of these thresholds is necessary for reducing the
interclass similarity between the deformation classes. Since the
deformation estimates are marred by noise (due to, e.g., atmo-
spheric inhomogeneity and incorrect satellite orbit estimation), it
becomes difficult to identify unique deformation phenomena for
the deformation time series associated to the CCS locations. Our
filtering approach increases the chances for the deep learning
models to identify unique and distinguishable patterns in the
transformed feature space where the samples can be classified
accurately.

After the filtering of samples, the samples are accumulated in
a training sample set X = XCk ; ∀k, k ∈ [1, NC ], where NC is
the total number of classes, and Ck is the kth deformation class.

Label Set Preparation: The classes are defined in two ways,
using 1) only deformation classes (D), and 2) deformation
classes crossed with SM classes (S), i.e., C ∈ S ⊗ D. The
three deformation classes are linear (DLin), Heaviside (DH ),
and Breakpoint (DBr). Therefore, we take a Kronecker product
between the set of SM classes and anomaly classes. The class
labels for class C are represented by the symbol Y C . The labels,
Y = Y Ck ; ∀k, k ∈ [1, NC ], are encoded using the one-hot en-
coding method. The means that the samples have been assigned
hard classification labels.

C. LSTM Model Structure

In traditional RNNs, gates are used to control the influence of
new information on the learnt state of the model. A figure of an
LSTM unit cell can be seen in Fig. 2. ct is the cell state, where
the information from all time epochs are encoded, and serves
as the long term memory for the model, ht is the hidden state,
which is the state made available to the memory. ct−1 and ht−1
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Fig. 2. LSTM unit cell diagram.

represent the cell state and hidden states from the previous
recurrent unit. it is the input gate, which controls the extent
to which new data values are allowed to change the cell state, ft
is the forget gate introduced by [28], which controls how much
of the previous state is transferred onto the next state, ot is the
output gate which controls the part of the learnt state returned by
the model, and c̃t is the prospective new cell state. The subscript
t refers to the temporal epoch corresponding to the input data
dPt . The symbols ⊗ and ⊕ represent pointwise multiplication
and summation, respectively. The yellow boxes represent the
application of sigmoid and hyperbolic tangent functions.

Like in ANNs, the weights associated with the gates are learnt
using back propagation through time (BPTT) [28]. There are
three sets of weights W , U , and B associated to samples (X),
hidden state (ht), and biases, respectively. The three sets of
weights belong to a set of real numbers with dimensions as
follows:

W ∈ RHk×F ;U ∈ RHk×Hk ;B ∈ RHk×1 (4)

where Hk refers to the number of neurons in the kth LSTM
layer, and F refers to the number of features in the input
dataset, which is equal to 1, for the deformation time series,
in our case. Each of the three sets of weights are defined for
four gates, i.e., input: i, forget: f , prospective state: c̃, and
output: o, and (Wi,Wf ,Wc,Wo) ∈ W , (Ui, Uf , Uc, Uo) ∈ U ,
and (Bi, Bf , Bc, Bo) ∈ B.

The samples are defined using the set X, and the associated
target labels are represented by Y. In RNNs, the learnt state is
calculated as

ht = tanh(XT
t ·W + hT

t · U +B1) (5)

where T refers to the transpose operator. However, the signal
mentioned above is controlled through the gates in LSTMs and
the values of the weights associated to the gates are calculated
using the following equations:

it = σ(Ui · ht−1 +Wi ·Xt +Bi)

ft = σ(Uf · ht−1 +Wf ·Xt +Bf )

c̃t = tanh(Uc · ht−1 +Wc ·Xt +Bc)

ot = σ(Uo · ht−1 +Wo ·Xt +Bo)

ct = ft · ct−1 + it · c̃t
ht = ot · tanh(ct). (6)

Fig. 3. Model design.

The sigmoid and hyperbolic tangent functions act as gates and
control the flow of information to the cell state ct due to the
variation of its output in the range [0, 1] and [−1, 1], respectively.
A detailed description about the working of the LSTM model is
given in [38].

LSTM in Our Context: The model used for this work is
described in Fig. 3. We use two-layered LSTM model separated
by a Dropout layer. The deformation time series samples of
dimensions b1 ×m (b1 CCS points and m InSAR epochs) is
given as an input to the first LSTM layer. The LSTM layer and its
individual neurons are represented by Lk, and Lk

i , respectively,
where k ∈ [1, N ] and i ∈ [1, Hk], N is the total number of
LSTM layers and Hk is the total number of neurons in the
kth layer. The total number of weights for the kth LSTM layer
is equal to 4 · ((Hk)

2 +Hk · F +Hk). The output of the kth
time-distributed LSTM layer of ith neuron is a set of hidden layer
values {hk

i }m, where m refers to the size of the set. This output
from the kth LSTM layer is given as inputs to the (k + 1)th
layer. This continues until the N th LSTM layer, and the final
output is represented by HN

i i ∈ [1, HN ]. The dimension of the
final output is b1 ×HN . This shows that input of the model,
i.e., samples representing the deformation time series having
dimension b1 ×m have been transformed to a dimension of
b1 ×HN . The outputs of the LSTM layers are then connected to
a Dense layer with (HN ·NC) +NC parameters, which returns
the probability of each of b1 samples for NC classes.

The first LSTM layer is chosen to be a bidirectional layer,
which is often used to classify sequences with a better classi-
fication accuracy [39]. Bidirectional LSTMs use two LSTMs
to train one input sequence. It trains the original and a reversed
copy of the sample for training the two LSTMs in the same layer.
This provides additional context in the model from the same
time series. This also results in doubling of the total number of
parameters.
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D. Model Training and Evaluation

The LSTM neurons (Hk), LSTM iterations, and batch sizes
(Bs) are the three hyperparameters which are varied to find
the maximum classification accuracy. The LSTM iterations and
batch sizes are defined in such a way that their product is always
kept equal to the total training samples. The value of Hk is
generally chosen to be in the same order as the time length of
the samples. The batch size defines the size of chunks of sample
which are used to train the model in each LSTM iteration.

Loss Function: Categorical cross entropy is chosen as the loss
function for this study. It is defined as follows [40]:

CE =
−1

b1 ·NC

b1∑

i=1

NC∑

c=1

yci · log(ŷci ). (7)

CE represents categorical cross entropy, b1; c and NC are the
total number of samples, class index, and total number of classes,
respectively; y are the true class labels in one hot-encoding
scheme and belong to the label set Y and ŷ are the predicted
class scores for all classes. The optimization of the loss can be
done using the Adam optimizer [41], which is a commonly used
stochastic gradient optimization method.

Training and Testing Strategy: After the sample (X) and
corresponding label set (Y) preparation (Section II-B), the
samples are divided into training and test sets in the ratio of
2:1. The validation split is set to 0.2, i.e., the 20 percent of the
training samples are used for validation. For each combination,
the method training and testing are repeated for 15 times, so as to
get a statistically significant result. At each iteration, the training
and test set samples are randomized to account for correlation
between samples, and, therefore, reducing over-fitting.

Accuracy Assessment: The accuracy is assessed by calculat-
ing the Kappa coefficient (κ) [42]. The Kappa coefficient is
a measure of interrater reliability and takes into account the
possibility of correct classification occurring by chance. The
accuracy for each class is assessed by calculating the classwise
F-scores [43]. The F-score measure is calculated as the harmonic
mean of precision and recall. Precision is the ratio of the total
number of true positives to the total number of positively labeled
samples, whereas recall is the ratio of the total number of
true-positives to total number of positively labeled samples.

III. STUDY AREA AND DATASETS

We chose the test site which is near a Gypsum mining site
in the county of Monaghan in Northern region of Ireland. This
area coincided with a sinkhole event on 25-09-2018 [44]. The
location of the study area is shown in Fig. 4(a) in red. Sentinel-1
SAR image and burst coverage are shown in Fig. 4(a) as well.
Fig. 4(b) shows the SRTM digital elevation model over the
zoomed area around the sinkhole spot, which is shown in red.
Fig. 4(c) shows the corresponding hillshade map. It shows a
depression immediately south-east of the sinkhole site, which
corresponds to the location of the mine.

The deformation estimations of the CCS (i.e., PS) were esti-
mated using 104 Sentinel 1-A ascending repeat pass SAR SLC
(single look complex) images covering the sinkhole area. The

Fig. 4. (a) Sentinel-1 SAR image coverage in black. The two bursts used in
the study in the dark and light gray. (b) Digital elevation model and (c) Hillshade
map covering the sinkhole area. The red dot in the figures shows the sinkhole
location.

images are taken over a time period between 05-09-2015 and
31-12-2018. The repeat pass period for all except 9 images is
12 days. The remaining images have a temporal resolution of
24 days. Fig. 5(a) shows the CCS deformation velocity map
superimposed on the amplitude map over the study area and over
a subset around the sinkhole location. This map corresponds to
the two bursts shown in Fig. 4(a). The extent of the study area
spanned ∼ 63× 44 km.

IV. RESULTS

A. InSAR Time Series Extraction

The deformation time series was estimated by implementing
single master TSInSAR processing using Delft implementation
of persistent scattering interferometry (DePSI) [6]. We took the
image acquired on 10-03-2017, as the reference master image.
Then the deformation time series was readjusted with respect to
the first acquisition date. Therefore, the temporal baseline varied
between 0 to 3.65 a. Thereafter, the deformation time series
was resampled to a common temporal baseline of 12 days using
the bilinear interpolation method. From the TSInSAR derived
results, standard postprocessing methods were used to reduce the
number of noisy samples. Therefore, the total number of InSAR
epochs were augmented to 112. Thereafter, the deformation
velocity subset was set between −25 and 5 mm·yr−1. After
applying this condition the total number of CCS were reduced
from 92 456 to 40 838. The spatial distribution of CCS in radar
coordinates can be observed both in Fig. 5(a), and in the cropped
scene Fig. 5(b), which corresponds to the black box (denoted as
Area-1) in Fig. 5(a). The gray box on the top-right of the image
(Area-2) corresponds to a nonsinkhole affected area which is
used for comparison of results in Section IV-D.

B. Decomposition and Scattering Mechanism Classification

The false color composite of the filtered Sentinel-1 multi-
temporal images in VV and VH channels, as well as the SM
classification of a subset of the study area (Area-1) are shown
in Fig. 5(c) and (d), respectively. In the polarimetric false color
composite [see Fig. 5(c)], the normalized radar cross sections in
VV,σ◦

V V
2, was assigned to the red color channel, the normalized

radar cross sections in VH, σ◦
V H

2, was assigned to the green
color channel and (σ◦

V V
2 + σ◦

V H
2)/2 was assigned to the blue

color channel. In this false color composite, the red colored areas
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Fig. 5. (a) CCS deformation velocity map overlaid over the filtered VV channel image. (b) Cropped image, (c) polarimetric false color composite, and
(d) scattering classification map corresponding to the black box in (a) of size 1000× 1000 pixels (Area-1). The white markers show the approximate locations
of the examples of Linear, Heaviside, and Breakpoint anomaly classes shown in Fig. 6. The gray box represents the alternate nonsinkhole area (Area-2) used for
comparison, see Fig. 11(d) and (e).

and bright white pixels show correspondence to double-bounce
scattering. Most prominently, this SM can be observed over
the step-terraces of the mine [see Fig. 5(d)]. The green areas
correspond to volume scattering. The dark patches relate to
surface scattering, majorly over water bodies.

The SM classification was done using supervised random
forest model. The SM classes were surface, low volume, high
volume, and double bounce scattering. Volume scattering was
bifurcated into two classes, (low and high) so as to differentiate
between high volume scattering features, such as trees and low
volume scattering features like farms. The training samples
were manually crafted from the image shown in Fig 5(a). The
samples for the surface scattering were pixels selected from
water bodies and paved roads. The samples for the low and
high volume scattering were selected from farmlands and trees,
respectively. The samples for the double bounce scattering
were selected from urban areas, mostly from buildings. The
input features used for this classification were the normalized
radar cross sections, σ◦

V V , σ◦
V H , in the VV and VH channels,

respectively, as well as the Cloude–Pottier entropy calculated
using the 2× 2 coherency matrix.

For the random forest classification, the total number of
decision trees were 500, the maximum number of features used
to split the data at the nodes of decision trees was selected as√
2 times the total number of features, i.e., 2 and Gini index was

used to select the feature and feature value for splitting data at
each node. The number of samples for the four classes in the
same order as described above were 1521, 450, 1750, and 541,
respectively. The out-of-bag error for the ensemble of 500 trees
was 6.69%.

C. Deformation Class and Sample Extraction

Four deformation classes were extracted using MHT, which
gave test statistics for each deformation class. The a priori
variance used for the stochastic modeling was 5 mm2. The level
of significance (α) is defined using the total number of tempo-
ral epochs (m), as α = 1/(2 m) = 1/(2× 112) ≈ 0.45%. The
power of the test γ was assigned as 50%.

The deformation classes were further separated using thresh-
olds on the estimates of the test statistics, jumps and deformation
velocity change. The bounds on the test ratios were applied in
the form of p-values. The percentiles for the upper bound for the
test statistics of the primary class, i.e., forTC , C ∈ {DH ,DBr}
was set to 95%. The percentile threshold for the lower bounds
for the secondary class (TC∼

) was set to 30%. There is a tradeoff
between the purity of samples and the total number of selected
samples. High extremes for choosing the thresholds mentioned
above, i.e., high values for TC and low values for TC∼

, would
result in improved likelihood of samples belonging to class
C. However, that would reduce the total number of filtered
samples, which may lead to inadequate number of samples for
training the LSTM model. These values were set after experi-
menting between various values between [80%, 95%] for TC ,
and [5%, 35%] for TC∼

.
Thereafter, the deformation time series samples were filtered

using jumps and deformation velocity change angles. The lower
bound for jumps in the Heaviside class was applied based on the
limit due to the a priori known signal noise ∼ 5 mm, and the
upper bound was set by keeping the phase unwrapping errors
into account. For a C-band sensor, with wavelength λ = 5.6 cm,
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Fig. 6. Samples belonging to (a) Linear, (b) Heaviside (b), and (c) Breakpoint
classes marked as P1, P2, and P3, respectively, in Fig 5. The blue curve shows
the model test statistics. The dots represent deformation estimations.

Fig. 7. (a) Density scatterplot between jumps and velocity change angles
estimated at the detected anomaly epoch for Heaviside and Breakpoint samples.
(b) Result after applying thresholds.

this value would be λ/4 = 14 mm. Therefore, ΔDH
min = 5 mm

and ΔDH
max = 14 mm. The maximum jump for the Breakpoint

class, i.e., ΔDBr
max was set to 5 mm. This is because the maximum

jumps for the Breakpoint class should be as low as possible so
as to distinguish it from the Heaviside class and also realistic.
The minimum jump threshold for the same class, i.e., ΔDBr

min
was set as the least possible value, i.e., 0. The minimum and
maximum angle for the Breakpoint class, i.e., θDBr

min , and θDBr
max at

the velocity change epoch was set to 20◦ and 70◦, respectively.
This is set so as to ensure that the velocity change angle for the
Breakpoint class should be higher than that for the Heaviside
class. Consequently, the maximum angle of the velocity change
for the Heaviside class, i.e., θDH

max was set to 20◦.
As mentioned in Section II-B, the application of these thresh-

olds is important to reduce the interclass similarity. The inter-
class similarity after the application of these thresholds can be
assessed visually in Fig. 6, which shows three distinct models,
i.e., Linear, Heaviside, and Breakpoint corresponding to CCS
P1,P2, andP3, respectively, marked in Fig. 5. Fig. 6(a) shows an
example of linear deformation class which has an ensemble co-
herence of 0.95. The model test statistic (12) is the highest at the
epoch of velocity change for the Breakpoint sample [Fig. 6(c)],
and also at the epoch of highest jump in the Heaviside sample
[Fig. 6(b)]. Fig. 6(b) and (c) also show the ensemble coherence,
jumps (Δ) and velocity change angles (θ) for Heaviside and
Breakpoint class samples.

The effect of thresholding can be seen in Fig. 7. In Fig. 7(a),
the color shows the kernel density scatterplot. Even though
the phenomena of jumps and deformation velocity changes are
not orthogonal to each other, they have been represented as
such just for visualizing the distribution of two key temporal
features for Heaviside (jumps) and Breakpoint (deformation ve-
locity change) classes. We observed significant reduction in the

Fig. 8. Violinplot for the κ values calculated after running 15 iterations over
each model defined as L(H,Bs).

number of class samples after applying these strict thresholds,
see Fig. 7(b). It can be seen that majority of the jumps correspond
to low velocity change angle for the Heaviside samples and
vice-versa for the Breakpoint samples.

D. LSTM Modeling and Evaluation

The combination of values for the LSTM neurons and batch
size are shown in Fig. 8, where the associated violinplot for
kappa values over a set of model training repetitions is also
shown. Each combination is represented by L(H,Bs), where
H is the number of neurons in both the LSTM layers and Bs is
the batch size. The learning rate was set as 0.001, and exponential
decay rates for the first and second moments estimated by the
Adam optimizer were 0.9 and 0.999, respectively.

We tested a three values of LSTM neurons
H = {20, 50, 100}, testing from small values to the number
of InSAR epochs, and batch sizes were varied in the set
Bs = {10, 20, 30, 50, 70}. The test was done first by using
the samples from just the first Sentinel-1 image burst (red and
blue violins). Second, the test was performed by using samples
from both image bursts (green violins) in order to assess the
additional advantage of increasing sample size. The evaluation
metrics were calculated over the test dataset. The red violins
in the violinplot show the results from the training set after
thresholding of samples. The blue ones, however, show the
results before the application of these thresholds. The effect of
thresholding is clearly visible here where there is 40%−60%
consistent increase in the κ coefficient values, inspite of the
larger sample size in the blue case.

The red and green violins show that the accuracy increases
after increasing the number of samples by a factor of ∼ 2
(2 Sentinel-1 bursts against 1 burst). Furthermore, the variability
in the kappa value decreases (see, smaller interquartile ranges
in green). The results in Fig. 8 show that lower batch sizes
and high number of neurons generally perform well in the
deformation classification task. The best combination was found
out to be L(100, 30). This combination was chosen for further
experimentation in the case of class crossing. Furthermore, it was
observed that the model started overfitting, i.e., the loss values
for validation set started rising, after ∼ 30 LSTM epochs. The
loss values for both training and validation set decreased by
∼ 37.5% during the course of 30 LSTM epochs, as opposed
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Fig. 9. (a) Sample distribution, and (b) classwise precision, recall and F-score
for deformation classes and intersecting scattering mechanism classes.

to an increase of loss value by ∼ 37.5% for 120 LSTM epochs.
Therefore, for further analysis, the number of LSTM epochs was
set to 30.

Class Crossing: There was highest relative intersection for all
the deformation classes with the double bounce SM class (SDbl).
This was especially the case for the linear deformation class
samples (DLin), see Fig. 9(a). There were no intersecting samples
between the surface scatterring class and any of the deformation
classes. The low volume scattering class also intersected lesser
number of samples than high volume scattering and double
bounce scattering classes. This is expected because surface
scatterers, such as water bodies, and low volume scatterers, such
as farms, do not scatter consistent and high signal back to the
radar sensor. Amongst the Heaviside and Breakpoint classes, the
Breakpoint class intersected with higher proportion of double
bounce scatterers.

The classification accuracy of all crossed samples in the test
set is shown in Fig. 9(b). It shows that the accuracy metrics: 1)
precision, 2) recall, and 3) F-score for the best chosen LSTM
model L(100, 30). The linear double bounce scatterers were
almost completely correctly classified, but the classification
accuracy for anomalous classes, i.e., Heaviside and Breakpoint
ranged between 0.4 to 0.6. The accuracy for the double bounce
scatters (SDbl) was higher than the high volume scattering
class SV olhigh in case of the Breakpoint deformation class.
These results are consistent with the sample distribution as seen
in Fig. 9(a).

Looking Into the Box: The classification results were also
analyzed in the context of learnt state values for different classes.
The weights of the trained model, L(100, 30), see Fig. 8, were
used to calculate the learnt state value for all neurons for three
deformation class samples crossed with the double bounce
scattering class. The results of the average learnt state values
(ct), which are shown in Fig. 10(a), show that certain neurons
transform the samples for the DLin to a much higher absolute
value than that for the samples for the DH and DBr classes. The
extent of values is proportional to the number of InSAR epochs
because the values are iteratively added to the learnt state ct of the
LSTM neuron, see Fig. 2. Fig. 10(b) shows the variation of the
hidden state value (ht) with respect to InSAR epochs. It can be
seen that the values for the linear class are significantly distant
from the Heaviside and Breakpoint classes. Furthermore, the
separation between the anomalous and nonanomalous classes
increases as the InSAR epochs increase.

From both results shown above, i.e., Fig. 10(a) and (b), the
contrast between samples for the two anomalous classes is much

Fig. 10. (a) Values of state (ct) learnt by all 100 neurons of the 2nd LSTM
layer for three deformation classes crossed with the double bounce scattering
class. (b) Values of hidden state (ht) with respect to InSAR epochs. The gray
lines represent the state values for all samples, and black lines show the average
values.

lower, which explains the reason for the lack of distinction
between the two anomalous classes in the classification results,
see Fig. 9. However, the distance between the two anomalous
classes increases with the increase in InSAR epochs.

Anomaly Analysis: The deformation class map over the sink-
hole are is shown in Fig. 11(a). The majority of scatterers belongs
to the double bounce scattering class (red). We note a higher
density of Heaviside and Breakpoint anomalies detected near
the sinkhole site as compared to the linear deformation class.
Out of the 202 points in Fig. 11(a), ∼70% are classified as one
of these anomalies, and the remaining ones as linear scatterers.
Furthermore, the anomalies occur very close to the sinkhole
epoch, which was at the 90th epoch, see Fig. 11(c). However, the
extent of jumps and velocity changes increases as we move away
from the sinkhole spot, see Fig. 11(b). Fig. 11(d) and (e) show the
deformation classes corresponding to the gray box in Fig. 5(a).
Fig. 11(d) shows the deformation class overlaid with the SM
class and Fig. 11(e) shows the jump and velocity change angles
of Heaviside and Breakpoint classes, respectively. These figures
show substantially less anomalies (false positives) suggesting
that this area is less prone to sinkhole-related deformation be-
havior. In fact, 229 of the 386 points, are classified as linear.
Furthermore, any large clusters of anomalous deformations are
absent here, in contrast to the mining area in the sinkhole region,
cf. the black box in Fig. 11(f). When comparing the Heaviside
jump and Breakpoint velocity change maps to the deformation
velocity maps, we note that the area in the 200-m vicinity of
the sinkhole subsides with a velocity of −20 to −25 mm·yr−1,
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Fig. 11. (a) and (d) Map of linear, Heaviside and Breakpoint deformation classes crossed with scattering mechanism classes. (b) and (e) Heaviside jumps
and Breakpoint velocity change angles; and (c) detected anomaly epochs identified over the sinkhole area. (f) Stricter threshold applied to map in (b). (d) and
(e) correspond to Area-2 (gray box), whereas others correspond to Area-1 (black box) in Fig. 5(a), see the borders of subfigures. The sinkhole spot is shown as a
red dot.

while the area in the gray box region is stable, i.e., deforming
with a velocity ranging between 0 and −5 mm·yr−1. False
positives can be reduced by applying stricter thresholds on the
jump and velocity angle changes, when contextual information
is available. This can be noted for instance in Fig. 11(f), showing
a significant reduction of false positives by more than 50%.

V. DISCUSSION

The estimated deformation velocity showed clusters of sig-
nificantly high subsidence velocities, ∼ −20 to −25 mm ·yr−1

over the mining area near the sinkhole site. This is also similar
to what was observed in [18]. Over the study area, the CCS
spatial density was found to be low because of nature of the
study area which is predominantly rural. This was also observed
in the SM classification map, which showed a higher presence
of volume scattering as compared to double bounce scattering.
For the SM classification, the volume scattering class was split
into two subclasses due to the bimodal nature of σ◦

V H . Upon
analysis of the polarimetric features, the entropy of the 2× 2
coherency matrix was observed to highly contrast between the
double bounce and volume scattering pixels, and, therefore, was
used as a feature in the SM classification using the random
forest method. This method was effective in classifying the SAR
image, with a low out-of-bag error of ∼ 6%.

The deformation classes were chosen in order to distinguish
between anomalous and nonanomalous classes. In this research,

the nonanomalous class was chosen to be a default linear model.
Anomalous classes were defined with respect to sudden vari-
ation in deformation time series and in deformation velocity
of CCS, i.e., showing Heaviside and Breakpoint anomalies,
respectively. These deformation classes were identified by fitting
anomalous deformation models to samples for which the linear
model residuals are large. This method is illustrated in [21,
Fig. 2]. Anomalies are defined only at single epochs to limit the
complexity in the class samples and demonstrate the application
of the LSTM model in classifying deformation time series
classes. In the future, multiepoch anomalies can be defined and
tested. Classification of multiepoch anomalies can be done by
increasing the number of layers in LSTM model.

Filtering of samples in anomalous classes was an essential step
in increasing the classification accuracy. Deformation jumps and
velocity change angles were identified as two key features which
represented the Heaviside and Breakpoint classes, respectively.
In this way, the distance between the samples of the two classes
in the jump-velocity change angle feature space increased. This
resulted in approximately a fivefold reduction in the total number
of samples, and in an increase in the classification accuracy by an
order of two. In this filtering step, the manual thresholds were set
to test statistics, jumps, and velocity change angles. The values
of these objective thresholds can be applied to other cases with
only minor tuning.

For the LSTM classification, the training dataset is crafted
by using only the deformation classes and then using a crossed
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configuration between the deformation and SM classes. In this
research. one-hot encoding was used to assign hard classes to the
samples. In the future, soft classes can be assigned using class-
wise likelihoods for all samples. Two model hyperparameters,
LSTM neurons, and batch size, were first tuned by conducting
experiments on only the deformation class samples. The range
of parameter values was based upon two rule-of-thumb notions:
first, the number of LSTM neurons should be close to the size of
the time dimension of the time series data, and second, the batch
sizes should be small. The results suggested that this was true,
and the best results were achieved when the number of LSTM
neurons was approximately equal to the time length of samples,
i.e., ∼ 100. Furthermore, it was observed that increasing the
number of neurons and reducing the batch size increased the
classification accuracy provided that the number of training
samples were in the order of magnitude of 103.

Post tuning, the model was tested on the crossed class con-
figuration, where the deformation classes were crossed with
the SM classes. The linear class samples intersected almost
completely with double bounce scatterers. The Heaviside and
Breakpoint class samples, however, intersected with both the
volume and double bounce scattering classes. Interestingly, class
crossing acted as an additional sample filtering method, where
the precision for double-bounce scattering samples was higher
than that for the high-volume scattering class, in the case of
both Heaviside and Breakpoint classes. The F-score for the
Breakpoint-double bounce class was significantly higher than
that for the Heaviside-double bounce class, which may have
been due to higher number of samples in the former class.

The results of the LSTM classification were further analyzed
by assessing the learnt and hidden states of the second LSTM
layer. This layer encompassed the state values of the first layer
as well. The values of the states showed high separation between
the linear and anomalous classes. Separation between the two
anomalous classes, however, was relatively low, but the intera-
nomalous class similarity reduced with the increase in InSAR
epochs. This suggested that increasing the number of InSAR
epochs further could improve the distinction between Heaviside
and Breakpoint classes.

Finally, the deformation classification map was analyzed
spatially, which revealed that the density of anomalies with
high jumps and velocity changes, was significantly higher near
the sinkhole area than in other areas. This suggested that there
may have been a relation between the sinkhole occurrence and
anomalous deformation activity. The anomaly epoch was closer
to the sinkhole epoch as we moved closer to the sinkhole spot.
The extent of jumps (∼10–12 mm) and velocity change angles
(∼ 50–60◦) were also found to be high over the mining area,
which is situated just across a road to the sinkhole site.

The design and use of the LSTM model in deformation time
series classification is the main novelty of this study. The appli-
cation of this LSTM model is generic and in the future we aim to
continue this research to other areas and to compare our method
with other methods, e.g., [45]. This model can also be used for
deformation time series derived from other regions and SAR
satellite images. For the SAR datasets with the same number
of images and temporal resolution as used in this research, this
trained model could be used as it is after minor tuning of model

weights. For other datasets, the same model structure can be
directly used, but the model requests training with the newly
selected training datasets using MHT.

A major advantage of our model is that it scales well to
large areas, and, therefore, is well suited for classification of
deformation trends. Finally, any deformation classification map
should be analyzed along with the deformation velocity map,
the SM map, and the jump and velocity change angle maps in
order to identify critical areas of sinkhole-related precursory
deformation patterns. Accurate prediction of sinkhole-related
anomalies remains a challenging task because of underlying
geological and hydrological factors. These factors can either be
taken into account explicitly, or their effects can be learnt from
the data. A spatio–temporal sequence learning model would then
be useful.

VI. CONCLUSION

This study focuses on identifying sinkholes that are associated
with Heaviside and Breakpoint anomalies. Our proposed LSTM
method effectively differentiates hazard-related anomalous de-
formation time series from linear ones. Sample filtering on
the basis of the different velocity changes is recommended to
improve the separation between the two anomaly-related classes
as it increases the classification accuracy. SM classes are useful
in filtering the samples.

Our results showed that the accuracy for distinguishing be-
tween the two anomalies can be increased by using more de-
formation time series samples and by increasing the number of
InSAR epochs. Increasing this number may better separate the
two classes. More features like multiepoch jumps, multivelocity
changes, and classification on the basis of anomaly epochs, are
expected to result in a further increase of the classification accu-
racy. Alternatively, addressing multiple bursts may also lead to
more samples, while a higher number of LSTM layers should be
considered if the complexity in the class samples increases, such
as the presence of multiple anomalous epochs. False positives,
i.e., nonsinkhole-related anomalies, can be reduced by using
the parameter information of, e.g., the extent of jumps, velocity
change angles and anomalous epochs. The correlation between
these parameters could also be used in the analysis.

APPENDIX

TEST STATISTIC COMPUTATION

Herein, the method for calculating the test statistic values
for Heaviside and Breakpoint deformation functions are shown.
This formulation has been adapted from [46].

We assume that m (deformation) observations y and its
stochastic model Qyy are predesigned. The null hypothesis H0

includes the default model, a linear function of time for our
case, see (8). Against H0, the alternative hypothesis Ha can
be established by introducing additional parameter(s) ∇ and
specification matrix C, see (9).

H0 : E{y}
m×1

= A
m×n

x
n×1

;D{y}
m×1

= Qyy
m×m

(8)

Ha : E{y}
m×1

= A
m×n

x
n×1

+ C
m×q

∇
q×1

;D{y}
m×1

= Qyy
m×m

. (9)



KULSHRESTHA et al.: USE OF LSTM FOR SINKHOLE-RELATED ANOMALY DETECTION AND CLASSIFICATION OF InSAR 4569

HereE{.} andD{.} are the expectation operator and dispersion
operator, respectively. A is the design matrix, x is the unknown
parameter, and n is the number of unknowns. For instance, for a
linear function of time, A is the temporal baseline, and x is the
constant linear velocity. In this study, (2) and (3) are the examples
of C∇. As q is the number of new additional parameters, and
single Breakpoint and Heaviside both have only one additional
parameter, then q = 1.

The residual between observations and model, in H0, is
defined by

ê0 = ŷ −Ax̂. (10)

Then the test statistic is expressed as

Tq = ∇̂TCTQ−1
yyQ

−1
ê0ê0

Q−1
yyC

T ∇̂T (11)

where Qê0ê0 = Qyy −Qŷŷ .
Then (11) is reformulated as

Tq = êT0 Q
−1
yyC(CTQ−1

yyQê0ê0Q
−1
yyC)−1CTQ−1

yy ê0. (12)
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