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An Antijamming and Lightweight Ship Detector
Designed for Spaceborne Optical Images

Huanqian Yan , Bo Li , Hong Zhang, and Xingxing Wei

Abstract—Ship detection in spaceborne optical images is a chal-
lenging task because ships have various orientations and scales,
especially complex backgrounds, i.e., ships are easily obscured by
various jamming. Moreover, most object detectors have enormous
computation and parameter numbers, which are unsuitable for
resource-bounded spaceborne platforms that contain restrictive
memory access and computation. In this article, in order to mit-
igate the influence of complex backgrounds and jamming on de-
tection, and improve the practicality of detection algorithms, a
new satellite optical image dataset and a novel ship detector are
proposed. We have collected a new dataset from the satellite, which
contains images of different time periods, different illuminations,
and different levels of jamming. The proposed dataset is different
from the widely used public remote sensing datasets, it is more
practical and challenging. The proposed ship detector can deal with
various images well and is robust to various complex backgrounds.
Specifically, a feature refining module is designed to extract features
effectively, which can improve detection performance significantly.
An antijamming module is proposed to highlight the features of
objects in the whole feature map. In contrast to mainstream ship
detectors, the proposed method is effective and lightweight. It can
also predict objects with oriented bounding boxes. Moreover, due
to the lightweight and simple network design, the designed detector
can be easily embedded into edge devices. Extensive experiments
demonstrate that the proposed detector is efficient and robust to
various complex backgrounds, and the new dataset is more suitable
for application scenarios and is quite challenging.

Index Terms—Object detection, remote sensing satellite imagery,
robust detection, ship detection, spaceborne ship dataset.

I. INTRODUCTION

OBJECT detection is widely applied in various scenarios
and is the core of many vision tasks [1]–[5]. It is used to

locate the objects and predict the categories of the objects from
the input images or videos, which is a kind of multitask learning
algorithm. Spaceborne optical image object detection has many
applications, such as military monitoring, fishery management,
vessel traffic services, and naval warfare [1], [6]–[9]. Object
detection technologies are the core means of remote sensing
data interpretation, which have been applied in many aspects
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of human life in recent years and have been drawing extensive
attention.

Ship detection in spaceborne optical images is a challenging
task because of the object’s huge variation in the scale, orienta-
tion, occlusion, and background clusters [1], [5], [6]. Although
most of the proposed ship detection algorithms can identify ships
well in the ideal background environment, they are often unable
to detect ships when there are various jamming in the back-
ground environment, such as shadows and clouds. In addition,
the extensive computational burden also limits some accurate but
complicated object detectors in spaceborne resource-bounded
scenarios [11]–[13]. To alleviate these challenges, various effec-
tive approaches have been explored, which are mainly reflected
in making more practical datasets and designing more accurate
and lightweight detection algorithms to meet the requirements
of the application platform.

Practical and challenging datasets are very important for ship
detection in spaceborne optical images. In recent years, many
satellite remote sensing image datasets are collected to meet the
training requirements of detection algorithms like HRRSD [14]
and HRSC2016 [10]. Although there are a lot of satellite remote
sensing ship datasets, the images usually do not reflect the real
detection scenes. These images are generally obtained through
Google Earth, they have high contrast and clarity. Therefore, it
is important to construct a dataset containing images captured
under different weathers and environments.

Recently, many object detectors based on deep learning have
been applied to remote sensing images [6], [15]–[18]. However,
different from most remote sensing images, spaceborne opti-
cal image objects are often affected by various jamming and
uneven illumination. In practical application, complex back-
ground and various jamming seriously restrict the reliability
of the algorithm [5]–[7], [19], [20]. Besides, the reliability of
most deep learning-based algorithms is strongly dependent on
the high-performance computing platform. However, in some
mobile application scenarios, only some resource-bounded de-
vices are available. The deep learning-based detectors can only
use some restrictive memory access and computation. How to
design a ship detector that meets practical requirements is of
great significance. In this article, to deal with ship detection in
complex jamming scenarios well in spaceborne optical images,
a new complex background ship dataset (CBSD) and a novel
ship detector for spaceborne optical images [antijamming and
lightweight ship detector, (ALSD)] are proposed.

Specifically, the new dataset CBSD is collected from the
satellites. It has 4826 ships with different scales, orientations,
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Fig. 1. Some satellite remote sensing images. Above the black dotted line are
two images sampled from the public dataset HRSC2016 [10]. Below the back
dotted line are two images sampled from our collected dataset CBSD. The ships
in these images have different scales and docking directions, but the background
in the images sampled from CBSD is more complicated. CBSD is different from
the previous public datasets, it is more realistic and challenging.

and shapes. Due to the complexity of practical application
scenes, the collected images deliberately take into account the
scenes under heavy cloud, low contrast, dense parked, moving
ship wake, and other conditions. Some satellite images are
shown in Fig. 1, which are sampled from the dataset HRSC2016
and our collected dataset CBSD, respectively. Compared with
HRSC2016, the proposed dataset CBSD is significantly more
realistic and challenging. The novel detection framework mainly
includes a feature refining module (FRM) and an antijamming
module (AM). The FRM is based on SkyNet [21] and improves
the deep features through multireceptive field feature extraction
and feature refinement. The AM is a supervised network used to
highlight the features of the object area. The proposed detector
has a simple network structure, does not need a complex network
connection, and has a good detection performance. It can be
easily embedded into some edge computing devices such as
DSP and FPGA. The main contributions of our work can be
summarized as follows.

1) We introduce a new satellite optical ship dataset, which is
different from existing public datasets. It is closer to the
real application scenarios and includes various types of
ship objects.

2) We propose a novel ship detector in spaceborne optical im-
ages. It includes a FRM and an AM. It has a high-inference
speed and can deal with various complex backgrounds and
recognizes objects accurately.

3) The proposed detector is lightweight and efficient, which
has a few computations and parameters. It can be embed-
ded into some resource-bounded mobile platforms, such

as DSP 6678, without any hardware-specified optimized
runtime libraries.

4) Extensive experiments have confirmed the effectiveness
of our proposed detector. The results show that compared
with the state-of-the-art lightweight detectors, the pro-
posed method achieves better accuracy with less compu-
tation. It also demonstrates that the CBSD dataset is more
applicable to detection scenarios and is quite challenging.

The rest of this article is organized as follows. In Section II,
some related work about satellite optical ship datasets and some
deep learning-based detectors are introduced. In Section III,
a new satellite optical ship dataset is introduced. Section IV
describes the details of the proposed detector, which includes
a FRM, an AM, a rotated object detection head network, and
some loss functions. In Section V, details of implementation
and experiments are presented and discussed. Finally, Section VI
concludes this article.

II. RELATED WORK

A. Satellite Optical Ship Datasets

A lot of datasets have been released in recent years, which
are used to design novel detection algorithms and evaluate the
performance of the detectors. Some datasets are collected for
multicategory detection that includes ship detection, and some
datasets are specially made for ship detection. These datasets are
nearly collected from Google Earth. Here, we mainly introduce
the following public datasets containing ships.

HRRSD [14] is a dataset collected for alleviating the insuf-
ficiency of some publicly available remote sensing datasets. It
contains a lot of ships at sea and in ports. The images in this
dataset have high spatial resolution (approximately 0.15–1.2 m)
and large scale. These images in the dataset are mainly from
Google Earth, with a small number from BaiduMap.

DOTA [5] is a dataset with rotated bounding box annotations.
It is collected from Google Earth with 15 different object cat-
egories. The image sizes of the dataset range from 800*800 to
4000*4000. There are 2806 images including object instances
with different orientations and scales. Ship dataset is one of its
subsets.

HRSC2016 [10] is a ship dataset collected from Google Earth
used for ship detection in satellite remote sensing images. The
ships in this dataset have different orientations, scales, and
shapes. The number of images and ships is 1070 and 2976,
respectively. There is also not a uniform image size for this
dataset, and the image sizes range from 300 × 300 to 1500 ×
900. 1000 × 600 is the size of most images.

FGSD [22] is a high-resolution remote sensing image dataset,
which is collected from many large ports around the world with
spatial resolution from 0.12 to 1.93 m. There are a total of 4736
pictures with a unified image size of 930*930. In addition to the
horizontal boundary box annotation, the corresponding rotating
boundary box annotation is also added to each ship instance.

DIOR [1] is a remote sensing dataset containing 20 categories
with 23 463 images. All images have a unified image size of
800*800. The spatial resolutions of this dataset range from 0.5 to
30 m. All object instances in the dataset are manually annotated
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with horizontal bounding boxes. There are about 1200 images
that maybe exist ships. Similar to most of the existing datasets,
this dataset is also collected from Google Earth.

However, those remote sensing images above mentioned are
different from the images directly acquired from satellites, and
they have been processed and enhanced. The images from the
satellite are more challenging. The main challenges of the public
datasets focus on the difficulty of the recognition of the objects,
mainly focusing on multicategory and multiscale. However,
the images directly collected from satellites often have more
complex background environments, and the difficulty of object
detection in such images mainly focuses on the interference of
complex backgrounds. Therefore, there still lack the correspond-
ing datasets, which discourages the research of developing some
more practical deep object detectors. A new dataset collected
from satellites with a spatial resolution of 0.72 m is introduced
in this article, which has large scale variation, large appearance
variation, and complex backgrounds. The proposed dataset is
used to fill this gap and can also be used for the verification and
design of lightweight spaceborne object detection algorithms.

B. Deep Learning-Based Detector

Deep learning-based detection algorithms can also be roughly
divided into two categories: anchor-based detectors and anchor-
free detectors. Anchor boxes can be viewed as predefined sliding
windows, which are adopted by many detectors like Faster
R-CNN [23], Mask-RCNN [24], YOLO v2 [25], and Reti-
naNet [26], etc. Usually, anchor boxes are scattered on the fea-
ture map, the object regions are predicted by those anchor boxes
and an extra offset regression network. Meanwhile, the object
category can be also got by another regression network. Different
from anchor-based detectors, anchor-free detectors are only
based on regression. Through regression networks, locations
and categories of objects can be predicted, like CornerNet [27]
and CenterNet [28]. Due to CNN’s remarkable achievements in
natural object detection, researchers introduce it into satellite
remote sensing image object detection.

A deep learning-based detector is designed for warship recog-
nition [29]. To extract different sizes of ships, a multilayer
feature network is proposed. To balance the different samples,
different degrees of data expansion are adopted. The proposed
method can recognize up to nine kinds of ships, but it can only
give a horizontal bounding box, the detection performance is still
not ideal. The horizontal bounding box is widely used in nature
image detection, but it often introduces mismatches between the
region of interest and objects in the remote sensing images [16].
Therefore, many oriented detectors are proposed to alleviate this
problem.

RoI Transformer [16] is one of the most representative ori-
ented detectors. It uses spatial transformation on RoIs to get
the oriented bounding boxes of objects, and the transformation
parameters are learnt with manually annotated bounding boxes.
Similar to ROI transformer, DODet [30] is also designed for
evading the problems of spatial and feature misalignments.
AR 2 Det [31] is a one-stage ship detector, which consists
of three submodules, including a feature extraction module,

a ship detector, and a center detector. The feature extraction
module is used to learn the basic features and enhance the
discrimination of the features. A ship detector is developed
to decide the position and geometric attributes of ships. The
center detector aims to obtain more accurate detection results.
Multiscale context and enhanced channel attention are designed
for a lightweight oriented object detection algorithm [32]. It
can detect some small and oriented objects well. Although the
lightweight backbone is used, the proposed method still has a
complicated structure, it can only run in real-time with specific
high-performance graphics processors. Oriented RCNN [17]
is a recently proposed method. Its core idea is to learn the
high-quality oriented proposals of the object without any extra
network modules. LO-Det [33] is a lightweight oriented detector.
It uses channel separation-aggregation structures to simplify the
deep model and can produce competitive results. However, it has
many parameters, and it can only inference on embedded devices
with good computing power. AOPG [34] abandons the horizon-
tal boxes-related operations from the network architecture. It
first produces coarse oriented boxes by coarse location module
in an anchor-free manner and then refines them into high-quality
oriented proposals. Because of the complex network structure,
this algorithm cannot be used directly on edge devices.

Although many high-precision detectors have been proposed,
they usually rely on high-performance graphics processing and
are difficult to be directly deployed to edge devices like satellites.
Therefore, an effective and practical ship detector is proposed
for spaceborne optical images in this article. It is a one-stage
detector without the cumbersome anchor design and can predict
objects with oriented bounding boxes. The proposed detector has
a lightweight structure and can be easily implemented without
any third-party library dependencies. Moreover, our algorithm
also can withstand a certain amount of jamming, and achieve
high-precision detection in case of jamming.

III. COMPLEX SPACEBORNE OPTICAL SHIP DATASET

Ship detection can be applied in maritime surveillance, traffic
supervision, military operations, and other key links, playing an
increasingly important role in many tasks. A new ship dataset
is proposed in this article. The ship data are mainly collected
from the far sea area and the near port area. By taking satellite
images from different locations at different times and in different
weather, we get satellite images covering large areas. Due to
the huge resolution that cannot be dealt with by detectors well,
we have cropped each image as small 800*800 pixel images.
800*800 is a common image size in mainstream public datasets.
After cropping and selecting, we have collected 1658 high-
resolution satellite images including about 4826 ships. Some
images from the collected dataset are shown in Figs. 1 and 2.

As mentioned above, all satellite images are taken at differ-
ent times, which makes the detectors’ recognition task more
difficult, requiring them to be able to detect ships at day time
and night time. For specific types of ships, we collect ships
including carriers, destroyers, cargo ships, etc. Unlike some
common datasets, we do not give the concrete type of each ship,
we classify all ships into the same category “ship.” The main
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Fig. 2. Some remote sensing satellite images from the collected dataset CBSD.
Due to different weather, different time periods of day, and different locations, we
roughly divide these images into six scenes—heavy cloud scenes, low contrast
scenes, incomplete ship scenes, dense scenes, wake scenes, and other scenes.

reason why we set it is that the amount of ship data of some
categories is very small, which is not conducive to the single
category learning by deep networks. So the new dataset has a
large apparent difference between ships.

The difference in ship appearance will increase the diffi-
culty of detection. Here, we show the apparent difference in
data from two aspects: scale variation and ratio variation. We
use the absolute size (asi) to measure the size of the ship i:
asi =

√
hi × wi, where hi and wi is the height and width of the

ship i. The statistical results of aspect ratio and absolute scale
are recorded in Fig. 3. To show the uniqueness of the proposed
dataset, the statistical results of the public dataset HRSC2016 are
also shown in Fig. 3. Obviously, the proposed dataset has more
ships, especially small ships, and the ships have large scale and
ratio variations.

According to the COCO dataset setting [35], ships with pixel
numbers less than 32*32 are classified as small ships, ships

Fig. 3. Some attribute distributions of ships in the dataset CBSD and
HRSC2016. On the left is the distribution of the aspect ratio of ships. The image
on the right shows the scale distribution of ships.

Fig. 4. (a) Ratio of ships with different scales. (b) Ratio of scenes with
different complex backgrounds. As shown, the collected dataset CBSD has a
large proportion of small ships and the images with complex scenes occupy a
large proportion of the whole dataset.

with pixel numbers between 32*32 and 96*96 are classified
as medium ships, and ships with pixel numbers greater than
96*96 are regarded as large ships. The statistical results of large,
median, and small ships are recoded in Fig. 4(a). As shown, the
proportion of small ships is about 1/3. Using the same statistical
setting, the proportion of the large ships in the public dataset
HRSC2016 is more than 3/4, and there are almost no small
ships. It is more challenging for identifying small objects in
the collected dataset. The improvement of the detector for the
small object is one of the effective means to improve detection
performance for the new proposed dataset.

Moreover, to more concretely describe the complexity of
the images, we divide the images into different scenes roughly
according to the background of the ship. We mainly divide the
scene into six aspects: the heavy cloud scenes, the low contrast
scenes, the dense scenes, the wake scenes, the incomplete scenes,
and other scenes. There are often different cloud interference in
heavy cloud scenes. Low contrast scenes are images with dark
backgrounds and images with low illuminations. For incomplete
ships, it is caused by cropping or satellite imaging limitations.
For dense scenes, there are usually densely parked ships in the
images. The wake scenes are the scenes that exist moving ships
with large tailings. The distribution of different scene ships
is shown in Fig. 4(b). Compared with the public datasets like
HRSC2016, the image scenes of the proposed dataset are more
diverse and complex. Although it may be difficult for one detec-
tor to take into account the ship detection in different complex
scenes at the same time, it could help design effective detection
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Fig. 5. Proposed ship detection framework. It mainly consists of a feature refining module and an antijamming module. The whole detector is lightweight and
effective. It is robust to complex backgrounds and ship appearance variations, and it also can detect ships with oriented bounding boxes.

algorithms to alleviate the influence of complex backgrounds or
jamming in practical applications.

The annotation of ships in the collected satellite image dataset
is completed by four graduate students with experience in
object detection tasks. They follow a uniform ship annota-
tion specification to obtain consistent annotation information.
They use the software tool1 “roLabelImg,” which annotates
the objects through θ-based oriented bounding boxes, namely
(xc, yc, w, h, θ), where θ denotes the angle from the horizontal
direction of the standard bounding box. Annotations are saved as
XML files, which contain the position information and category
information of each ship. It took about five days to annotate
the entire dataset. Each image has at least one ship and up to
97 ships. All the ships have different scales and appearances.
All the images in CBSD have different time periods, different
illuminations, and different levels of jamming. It could help to
develop object detection algorithms adapted to complex scenar-
ios, which can be immune to jamming but can identify objects
well.

IV. PROPOSED METHOD

Most state-of-the-art object detectors usually take a big and
complex network as the backbone for high detection perfor-
mance [7], [27], [36]. The mainstream big backbone networks
include VGG [37], ResNet [38], GoogleNet [39], DenseNet [40],
and so on. However, these backbone networks require huge
computational overhead and are not suitable for practical de-
ployment requirements. SkyNet [21] is designed to deliver AI
capabilities on some resource-constrained edge devices. In terms
of the tradeoff between detection performance and lightweight,
it is chosen as the backbone for our detector.

In this section, we mainly introduce the design of the whole
detector from four aspects: (FRM, AM, rotated detection heads

Fig. 6. Feature refining module. It mainly consists of a multireceptive field
feature extraction network and a feature refinement network.

(RDH), and the corresponding loss functions. The whole detec-
tion framework is shown in Fig. 5. In the following sections, we
introduce each part step by step.

A. Feature Refining Module

The whole feature refining module is depicted in Fig. 6. To
preserve more low-level features which are beneficial for local-
ization in object detection, the outputs of the third (C2) and sixth
(C5) layers of the backbone network are fused. To align these
two feature maps, we use the nearest neighbour interpolation
algorithm to dilate the size of high-level features as the size of
low-level features. Instead of doing feature fusion directly, we
convolved the features of the upper level with different dilation
rates r = 0, 1, 2, and then concatenate these different recep-
tive field feature maps with the low-level feature map. These
operations are conducive to obtaining semantic information
with different receptive fields, obtaining higher-level semantic

1[Online]. Available: https://github.com/cgvict/roLabelImg

https://github.com/cgvict/roLabelImg
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Fig. 7. (a) Feature reordering operation. (b) Detection performance changes
with different S value settings.

information, and preserving the superficial feature details [41].
Additionally, we also use feature map bypassing and reordering
operations as in the original SkyNet to enhance the ability of
small object detection. The bypassing operation is similar to the
skip-connection operation, it often crosses a pooling layer, so we
use reordering to align the size of the original feature map and
bypass one without losing valuable features. The mechanism
of reordering operation is shown in Fig. 7(a), which converts a
large feature map into several small ones. It is a reorganization
operation of the deep features.

Due to the concatenation of low-level features and high-level
features in the channel, the additional computational overhead
is required if we directly use the fusion features in the next
convolution operations. To reduce the computational complexity
and make the deep features more effective, a refinement network
is designed to reduce the channel of the concatenated features.
Motived by the SENet [42], we first take the average pooling
of the concatenated features as 1-D vectors. Then, we use a
three-layer fully connected network to learn the weights of
different channels, and the number of neurons in the fully con-
nected network are 384, 24, and 384, respectively. The predicted
weights are used for improving the deep features, and one layer
with 1*1 convolution operations is used to reduce the feature
dimensions. Compared with direct fusion features, the refined
features can reduce the parameter numbers of the whole detector
by about 13.9%. After FRM operation, the more efficient deep
features can be got, and we use them in the next steps.

More detailed network structure information of backbone
and FRM is recorded in Table I. The first six stages are the
introduction of the backbone, the last stage is the description
of the FRM. The final features extracted by the proposed FRM
are recorded in the last line. The parameter numbers for each
stage are counted in the last column. As shown, the whole FRM
is lightweight. Additionally, the visualizations of deep features
with refining module and without refining module are shown in
Fig. 8 using EigenCAM algorithm [43]. Obviously, the features
with the refining operation are more effective.

B. Antijamming Module

Remote sensing satellite images often face various forms of
jamming in the object regions due to clouds, dust, weather, and
other unknown reasons. Different jamming will cause occlusion
to the object and the jamming with similar geometric shapes
will induce the neural network to produce wrong recognition.
Enhancing object cues and weakening nonobject information is

TABLE I
BACKBONE NETWORK AND FEATURE REFINING MODULE CONSIST

OF SEVEN STAGES

DW-Conv3 is the 3× 3 depth-wise convolutional layer. PW-Conv1 is the 1× 1 point-
wise convolutional layer. Here, an input scale of 160× 128 is taken as an example to
demonstrate the process of deep feature extraction.

Fig. 8. Visualization of the deep features without the refining module (a) and
with the refining module (b).

an effective solution for mitigating the effects of jamming. The
AM is designed for enhancing the objectness of objects under
complex backgrounds. It can predict different weights for deep
features. Usually, the features of the object region will have
big weights and the features in other regions are going to have
smaller weights.

The AM is a four-layer convolution network without pooling
operations, which is lightweight and flexible. As shown in Fig. 9,
it consists of two depth separable convolution layers and two
standard convolution layers. The channels of its four layers are
192, 128, 64, and 1, respectively. The parameter numbers of the
AM are about 118.8 K. Due to its lightweight structure, it does
not add too much additional computational overhead.

In the training phase, we use the ground-truth information
to produce the corresponding mask for guiding the AM to
update its parameters. The mask is a binary graph. The mask



4474 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 9. Proposed AM. The input of the network are h ∗w ∗ c feature maps,
and the output is a h ∗w weight map. The weight maps are supervised by a
ground-truth mask during training to learn the importance of different areas.

position corresponding to the object area is set to 1, and the
value of the nonobject area is set to 0. To preserve more context
information, we have expanded the object area by a factor of S.
In experiments, different S values are tried with the input size
416*416, the detection results are shown in Fig. 7(b). It is found
that S = 1.5 is a good setting. Therefore, the hyperparameter S
is set to 1.5 in our proposed method.

The AM network predicts a mask map of the objects RM ∈
R1×H/s×W/s, where W , H is the width and height of the input
remote image. s is the stride of the deep model, it is four in
the proposed detector. The channel of the prediction map is
one because each image only needs one mask map to indicate
the position information of the objects in the input image. The
sigmoid function is used to scale the predicted value to the
interval [0,1] at the end of the AM. For the loss function used
for updating the antijamming network, we do not use a complex
loss function, but a simple binary cross-entropy loss function

lossmask =
1

N

N∑
k=i

−[p̂i × log(pi) + (1− p̂i)× log(1− pi)]

(1)
where p̂i is the ground-truth pixel value, pi is the prediction pixel
value.

After training, the AM can predict the corresponding feature
weights. The weights mean the probability that the current
pixels have objects. So the deep features multiplying with the
weights can enhance the object cues and weaken the nonobject
information.

C. Rotated Detection Heads

As aforementioned, objects in remote sensing satellite images
are usually rotated. Using horizontal boundary boxes to predict
arbitrary direction objects and densely parked objects will lead to
the deviation or mismatch between the predicted object position
and the corresponding ground truth position. Compared with the
horizontal boundary boxes, the rotated boundary boxes are more
suitable for satellite remote sensing images. There are many
rotated object detection algorithms, which usually regress an
additional angle parameter to locate objects precisely [16]. Ob-
viously, angle regression is sensitive. For large objects, a small

Fig. 10. Rotated detection head network. It has three different mission
branches: cls head, loc head, and offset head.

Fig. 11. Schematic diagram of the working principle of each detection head
network.

angle deviation will result in a big positioning error. Moreover,
the angle regression is separated from the regression of other
attributes of the object, which is not conducive to learning and
convergence of the network.

In this article, we predict the oriented objects with key points.
We do not regress the w, h, and angle θ at each feature pixel,
rather than regress five points at each feature pixel. The center
point and the position of the four vertices will locate the ob-
jects with oriented bounding boxes. The principle of position
regression is shown in Fig. 10. It is simple and effective. For
the detection heads, there are three branches: cls head, loc head,
and offset head. The cls head is used to predict the categories
of the objects. It has C channels, where C is the class num-
ber. The loc head is used to predict the positions of the four
points. The offset head is used to compensate for the difference
between the quantified floating center point and the integer cen-
ter point. The total parameter numbers of these three detection
head branches are about 1.25 M. Through these three heads,
we can get accurate detection results. The working schematic
diagram of different heads is shown in Fig. 11.

D. Loss Functions

Similar to most object detection frameworks, we use different
convolution features to predict the categories of different objects.
Through the recognition of object center points of different
categories, it can be determined whether there are objects of
the category in the input image. On the one hand, the center
points can be used for predicting the categories of objects, and
on the other hand, it is coordinated with the location prediction
network module loc, which is more helpful to the learning and
convergence of the detector. Specifically, the cls head outputs
the the feature maps OM ∈ RC×H/s×W/s with C categories.
The map values are regarded as the confidence of the objects.
To make the maps smooth, each channel feature is normalized
with a sigmoid function before prediction. During training, only
the center points c are positive, and the other points are negative.
To mitigate this balance issue, we use a variant focal loss [27]
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to train the cls head

losscls = − 1

N

∑
i

{
(1− pi)

αlog(pi) if p̂i = 1

(1− p̂i)
βpαi log(1− pi) otherwise

(2)
where p̂ andp refer to the ground-truth and the predicted heatmap
values, i indexes the pixel locations on the feature map, N is the
number of objects, α and β are the hyperparameters used for
balancing the contribution of each feature pixel. Similar to [27],
we set α = 2 and β = 4 in our experiments.

Because the object position information will cause floating
point to integer loss bias in the process of features mapping
at different scales, detection algorithms usually learn this bias
through an extra network module and then compensates for it
in the inference phase. The offset head is used to learn this
biasFM ∈ R2×H/s×W/s. The offset between the scaled floating
center point and quantified center point can be defined as

o =

(
cx
s

−
⌊
cx
s

⌋
,
cy
s

−
⌊
cy
s

⌋)
(3)

where c = (cx, cy) is the ground-truth center point. The offset
can be optimized with a smooth L1 loss

lossoffset =
1

N

N∑
i=1

SmoothL1(oi − ôi) (4)

where ô refers to the ground-truth offset. The smooth L1 loss
can be expressed as

SmoothL1(x) =

{
0.5× x2 if |x| < 1

|x| − 0.5 otherwise.
(5)

As aforementioned, we use the keypoint regression to pre-
dict object location information. Based on the position of the
keypoints, we could calculate the bounding boxes through the
minimum circumscribed rectangle algorithm. To increase the co-
operation among keypoints and speed up the convergence rate of
the detection head networks, we do not directly regress the four
corners of the objects, but indirectly calculate the coordinates
of the four corners by regression to the deviations of the center
point of the four sides relative to the center points of the object.
The regression corner learning is expressed on the right side of
Fig. 10. This operation can increase the relationship between
boundary points and central points, promote the accuracy of
key points learning, and alleviate the problem of poor locating
accuracy caused by weak features. The loc head will predict a
box parameter map LM ∈ R8×H/s×W/s. The reason there are
eight channels is that there are 2× 4 vectors. Smooth L1 loss is
used to guide the regression

lossloc =
1

N

N∑
k=i

SmoothL1(bi − b̂i) (6)

where b and b̂ are the predicted and ground-truth box parameters,
respectively.

Normalizing loss: Although lossloc can guide the detector
to predict some objects accurately, it can not deal with some
small objects well. Because the position deviation of small

Fig. 12. Normalizing loss lossnorm of two oriented regression boxes. It first
calculates the distance loss of the corresponding horizontal regression boxes,
then calculates the rotation angle bias loss, and evaluates the difference between
the boxes by the product of the two kinds of losses.

objects is easy to be ignored by the lossloc function, it can not
have a positive effect on the detector. Small object imprecise
location information could make the final detection results have
small Precision values and small AP values. Here, we introduce
another location loss function lossnorm to train the detector
except from the loss lossloc. The corresponding quintuple rep-
resentation of the object position (cx, cy, w, h, θ) is computed by
transforming the coordinates of the prediction bounding boxes,
so we can get the horizontal regression box Bi of the objects.
The ground-truth horizontal bounding boxes B̂i can be acquired
by minimum circumscribed rectangle algorithms. Finally, the
lossnorm loss function is defined as

Lossnorm =
1

N

N∑
k=i

(
d2(Bi, B̂i)

D2

)
× ‖θi − θ̂i

π
‖ (7)

where D2 means the diagonal distance of the minimum circum-
scribed rectangle of two bounding boxes, d2 means the distance
of two center points of two horizontal bounding boxes, θ̂i is the
ground-truth angle of the object. The normalizing loss lossnorm
of two oriented regression boxes is described in Fig. 12. It does
not ignore the deviation of some small objects, which is good
for locating small objects.

Therefore, the whole loss function of the proposed detector
is rough as follows:

Loss = α× losscls + β × lossloc + γ × lossnorm

+ ρ× lossmask + κ× lossoffset (8)

where α, β, γ, ρ, and κ are the balance coefficients. As a rule of
thumb, they are set to 1, 0.3, 0.7, 0.1, 1 in our experiments.

V. EXPERIMENTS AND ANALYSIS

The new proposed dataset, CBSD, is used to quantitatively
evaluate the performances of the proposed method in the exper-
iments. To evaluate the effectiveness of the proposed method,
it is compared with five mainstream methods: BBVector [7],
RIDet [44], Oriented FCOS [45], RoI Transformer [16], and
Oriented RCNN [17]. The evaluation metrics precision, recall,
F1-score, and AP are used to measure the detection algorithms
in the experiments.
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A. Competitive Algorithms

For BBVector, it detects the center keypoints of the objects
and regresses the box boundary aware vectors to capture the
oriented bounding boxes. The framework is simple but efficient.
For RIDet, it uses cascaded RetinaNet to achieve oriented ob-
ject detection and designs a representation invariance loss to
optimize the bounding box regression. For Oriented FCOS, it
is an extensible version of the original FCOS method. FCOS is
a single-stage object detection algorithm based on full convo-
lution. It acquires the object position and category information
by predicting each feature pixel, similar to semantic segmenta-
tion. In the experiments, in order to predict direction, an extra
channel convolution layer is used to regress the direction angle
θ. Following original FCOS, PolyIoULoss [46], [47] is used for
training. As for RoI transformer, it learns spatial transformations
on RoIs and uses these information to change the horizontal RoIs
to oriented RoIs. For oriented RCNN, it proposes an oriented re-
gion proposal network. Since the prediction of rotation direction
does not involve the additional network modules, it does not need
additional computation.

To meet the requirements of practical scenarios, many re-
searchers have been conducted to design lightweight object
detectors. Replacing the initial complex backbone network of
the detectors with a lightweight backbone network is a common
way to make it lightweight, which is widely used and adopted.
The focus of the proposed method is practical application, so the
selected competitive algorithms need to have fewer parameters
and computation. To make fair comparisons, we replace all
backbone networks of comparison algorithms with MobileNet
V2 network [13], SqueezeNet network [48], and ShuffleNet
network [12]. MobileNet V2 uses depthwise separable convolu-
tions to build lightweight deep neural networks. ShuffleNet uti-
lizes two operations, pointwise group convolution and channel
shuffle, to reduce computation costs. SqueezeNet uses squeeze
convolution operations and expands layers to reduce parame-
ters while maintaining competitive accuracy. Those models are
well-known lightweight neural networks, widely used in object
detection algorithms and adopted by various detection algorithm
platforms.

In order to minimize the impact on the detection performance
of the original detection algorithms, we retain the FPN opera-
tions [49] of all comparison detectors, and increased the number
of iterations of each algorithm to 60 epochs. For MobileNet V2,
2nd, 4th, and 6th feature maps are selected. For ShuffleNet and
SqueezeNet, 2nd and 4th feature maps are used for detection.

B. Evaluation Metrics

For each ship predicted by the detection algorithm, if the
overlap rate between the area of the predicted ship position and
the ground truth area is greater than 50%, it is considered that
the prediction result is correct, otherwise, it is wrong. For evalu-
ation metrics, recall, precision, F1-score, and average precision
(AP) are used to evaluate detection results. Recall measures
how many positive samples in the total sample are predicted
to be correct. Precision measures how many of the predicted
positive samples are positive. Since recall and precision rates

TABLE II
ABLATION STUDY ON NEW COLLECTED DATASET CBSD

Recall (R) value, precision (P) value, F1-score (F1), and AP value are used to evaluate
the detection performance. A larger metric value means a better detection result.
The bold entities represent the best performances.

have different evaluation concerns on detection results, F1-score
evaluates detection performance by combining recall and pre-
cision,F1 = (2× precision× recall)/(precision+ recall).
AP is also an evaluation index that takes into account both
recall and precision rates. Different from F1-score, AP value is
a comprehensive evaluation index of precision under different
recall values, similar to the area under the precision-recall curve.
For all evaluation indices, the higher the values, the better the
performance, and vice versa.

C. Implementation Details

The dataset CBSD is randomly divided into 60% and 40%
for training and testing, respectively. The same partitions are
used for evaluating all algorithms in the experiments. We im-
plement the proposed method on Pytorch 1.1.0. All algorithms
in experiments use two NVIDIA TITAN V GPUs for training
and testing. Because the training set is a bit small, we only train
the proposed model for 60 epochs in the training phase. We use
Adam optimizer [50] for training and 6e-4 as the initial learning
rate and decay it by a factor of 0.5 at 25 and 50 epochs. The input
size of the proposed model is set to 600*600 pixels, which leads
to the batch size being only 4. For the comparison algorithms,
we use the same settings as the proposed method.

D. Ablation Studies

We analyze the importance of each proposed component on
our collected dataset CBSD. The impact of each component is
listed in the Table II. In this section experiment, we do not use
the large input size, but a smaller one, 416*416. It is well known
that smaller input size tends to have faster training speed and
inference speed, while larger input size tends to have higher
performance indicators.

1) Effect of the Feature Refining Module: First, we use the
proposed oriented heads and the original SkyNet to build a
baseline method, which is named “RDH+SkyNet.” There are
not any improvement operations in this new detector, just a
simple combination. Second, we add the FRM to the baseline
method. The new combination is named “Baseline+FRM.” The
experimental results clearly show the advantages of the feature
extraction refining module. The main improvement focuses on
recall value and AP value. The “Baseline+FRM” are about
12.8% and 12.7% ahead of the baseline method “RDH+SkyNet”
in recall and AP, respectively. This apparent advantage mainly
comes from the improvement of the backbone network. The
FRM can obtain more effective features and directly promote
the improvement of network detection performance.
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2) Effect of the Antijamming Module: There are some obvi-
ous jamming scenes and unclear object areas in the new dataset
CBSD. The proposed AM is evaluated here. It refines the validity
of the depth feature by suppressing the feature of the jamming
region and highlighting the object region. Here, the AM is
added to the method “Baseline+FRM,” and the new method is
named “Baseline+FRM+AM.” As observed from the table, the
module improves the final detection performance significantly.
For recall value, the new method has been improved about
11.5%. It means that the problem of missing detection has been
mitigated. For Precision value, the new method is also ahead
about 8% than baseline. This means that detection results are
more reliable. Additionally, the new method is ahead 9.6% and
7.6% of the method “Baseline+FRM” in indices F1-score and
AP, respectively. Those significant improvements are consistent
with the theoretical analysis. It can conclude that this module
can effectively suppress the effects of jamming and reduce false
detection and missing detection.

3) Effect of the Normalizing Loss: The proposed rotated
distance loss function make some normalization for position
information of the predicted object relative to the corresponding
ground truth information, theoretically eliminating the criticism
that the loss values are different due to the different object
scales. Here, the normalizing loss is added to guide the training.
This new method is named “Baseline+FRM+AM+lossnorm,”
and it also named ALSD. Through comparison, we can find that
normalizing loss can slightly improve detection performance,
mainly focusing on the improvement of precision values and
F1-score values, because more accurate location information
can effectively alleviate the problem of missing detection and
wrong detection. The tighter the bounding boxes, the larger the
overlap with the ground truth annotated rotated boxes, and the
easier it is to be identified as a ship. The new loss function can
improve the detection algorithm about 2.9%, 1.6%, and 0.9% in
precision, F1-score, and AP, respectively.

E. Comparisons With the State-of-The-Art Methods

The detection results of the proposed ALSD and the other
fifteen lightweight detectors are recorded in Table III. Those
comparison algorithms include three single-stage detectors (BB-
Vector, RIDet, oriented FCOS) and two double-stage detectors
(ROI transformer and oriented RCNN). Note that all comparison
algorithms are based on three different backbone networks. The
best results under different evaluation indices are marked in bold.
From a comprehensive point of view, the proposed ALSD has
the dominant advantage in all evaluation indices. The proposed
algorithm has an overwhelming advantage in recall value, which
benefits from effective feature extraction and feature enhance-
ment of object region. Some detection examples of the proposed
method and two double-stage detectors RoI Transformer and
Oriented RCNN are shown in Fig. 13. The reason the results of
two double-stage detectors are chosen for the result presentation
is that they have better detection performance in comparison al-
gorithms. For those shown images, they are all sampled from the
CBSD testing dataset, and the images are either low illumination
or clouded. As shown, the proposed ALSD still deals well with

TABLE III
DETECTION RESULTS ON THE DATASETS CBSD WITH SIX DETECTION

METHODS BASED ON DIFFERENT LIGHTWEIGHT BACKBONE NETWORKS

The bold entities represent the best performances.

ship detection in various scenarios, but the other two comparison
algorithms have some false positives and false alarms. In the next
paragraphs, we compare and analyze the proposed method with
other competitive algorithms in detail.

Comparing the proposed ALSD with three single-stage detec-
tors based on three different lightweight backbone networks, the
proposed method has obvious advantages. Among those three
comparison single detectors with different backbone settings,
the best detection results are produced by RIDet with ShuffleNet
(RIDetsh). Compared to RIDetsh, ALSD is 8.3%, 6.1%, 7.2%,
4.3% ahead of it in recall, precision, F1-score, and AP, respec-
tively. In a series of comparison algorithms, oriented FCOS
based on MobileNet V2 (oriented FCOSmbl) is second only
to RIDetsh. Compared to oriented FCOSmbl, ALSD is 11.7%,
58.9%, 37.6%, 11.8% ahead of it in recall, precision, F1-score,
and AP, respectively. With the SqueezeNet setting, oriented
FCOS (oriented FCOSsq) has given a better precision value than
the proposed ALSD, but oriented FCOSsq has a terrible result
in AP value. For oriented FCOS, it regresses object attributes
based on full convolution. The biggest difference between it
and the proposed ALSD lies in the rotation angle prediction. It
uses an extra network branch to predict the rotation angle value.
Although it is simple, the angle value is sensitive, which limits
the detection performance.

Comparing the proposed ALSD with two double-stage detec-
tors based on three different lightweight backbone networks,
three algorithms produce better detection results in a series
of comparison detectors, which are RoI transformer based on
MobileNet V2 (RoI transformermbl), RoI transformer based
on SqueezeNet (RoI transformersq), oriented RCNN based on
MobileNet V2 (oriented RCNNmbl). The proposed ALSD is
7.8%, 10.3%, 9.2%, 5.1% ahead of RoI transformermbl in recall,
precision, F1-score, and AP, respectively. It also is 11.6%, 6.7%,
8.8%, 5.5% ahead of oriented RCNNmbl in recall, precision,
F1-score, and AP. For RoI transformersq , it has a better precision
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Fig. 13. Visual comparisons of RoI transformermbl, oriented RCNNmbl, and ALSD. All images are from CBSD’s testing dataset. The score threshold of these
three methods for visualization is set to 0.2. Please enlarge the picture for showing it clearly.

index than ALSD, but the advantage is small. Except for the
precision index, the proposed ALSD leads in indices recall,
F1-score, and AP. With the lightweight setting, two double-stage
methods are significantly superior to oriented FCOS and BB-
Vector in all evaluation metrics in the experiments. Generally,
double-stage detectors are better than single-stage detectors in
detection performance, but the advantages do not seem to exist
when compared with the proposed method. Two double-stage
detectors have some missing and wrong detections. We think
there are two possible reasons behind these poor detection re-
sults. One is that the feature extraction ability of the lightweight
backbone network is limited, which is difficult to meet the
double-stage tasks at the same time. The other one is that there
are many challenges in testing data, such as large object variants
and complex backgrounds.

In order to further demonstrate the superiority of the pro-
posed detector, its variant methods “ALSDmbl,” “ALSDsq ,”
and “ALSDsh,” are also added in the comparative experiments.
The variant methods are made by replacing SkyNet with Mo-
bileNet V2, SqueezeNet, and ShuffleNet. With the MobileNet
V2 network, ALSDmbl has significant advantages than any
comparison detectors based on the MobileNet V2 network.
When all detectors use the SqueezeNet network as the backbone
network, the proposed ALSDsq is excellent in general. More

concretely, oriented FCOSsq has the best precision value, and
RoI transformersq has the best AP value. The proposed ALSDsq

has the best recall and F1-score values. With the ShuffleNet
backbone, RIDetsh have big advantages in recall and AP values.
The proposed ALSDsh has the best precision value and has a
similar performance to RoI transformersh.

Through a series of experiments and comparisons, we can
conclude that the new dataset CBSD collected by us is somewhat
challenging. It is different from other common data, and it is
closer to the practical scenarios. The complex satellite images
can easily cause deep detectors to miss and misidentify objects.
Additionally, we can also find that the proposed ALSD has
better detection performance and can predict a series of compet-
itive detection results compared with the mainstream detection
algorithms.

F. Detection on Dataset HRSC2016

The HRSC2016 is a widely used ship dataset including about
1070 images with the ship in various appearances. Here, it is
used to show the effectiveness of the proposed method. 626
images are used as the training set, the rest 444 images are used
as the testing set. Here, we select two double-stage detectors
as comparison algorithms. The performance comparison results
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TABLE IV
DETECTION RESULTS ON THE DATASETS HRSC2016

The bold entities represent the best performances.

Fig. 14. Computational efficiency analysis of four detectors, oriented FCOS,
RoI transformer, oriented RCNN, and ALSD. The input size of these algorithms
are all 600*600 pixels.

between the proposed ALSD and comparison algorithms RoI
transformer and oriented RCNN on HRSC2016 are shown in
Table IV. To demonstrate the effectiveness of the algorithms,
we combine each detector with different backbone networks.
Through comparison, we can conclude that the detection per-
formance of different algorithms has obvious fluctuation under
different backbone settings. With the SqueezeNet setting, RoI
transformer has the best results in indices recall and AP, but
the proposed ALSDsq has better precision and F1-score values.
Under the ShuffleNet setting, the proposed method has the best
results in all indices. For the Mobilenet V2 setting, the proposed
method also has the best results. Besides, we also record the
ALSD with the SkyNet in the Table IV. Although ALSD with
SkyNet does not produce the best detection results, it is still
better than most competitive algorithms. In general, it can be
concluded that the proposed ALSD can produce competitive
detection results and is comparable to the mainstream detection
algorithms.

G. Computational Efficiency Analysis

The execution efficiency of the algorithms is compared and
analyzed in this section. We mainly record parameter numbers,
FLOPs, and the inference speed of each algorithm. Here, all
comparison algorithms are built on MobileNet V2. The corre-
sponding results are shown in Fig. 14. The specific numerical
information is recorded at the top of each bar chart. For inference
speed, the proposed methods have some advantages, they have
over 30 FPS with the input size 600*600. In general, the smaller
the FLOPs value, the faster the inference speed. The proposed
ALSD has 4.23 Gflops, but oriented FCOS, RoI transformer, and

oriented RCNN have 8.06, 19.57, 12.09 Gflops. The proposed
ALSD with MobileNet V2 has 8.92 Gflops, but it is still lighter
than RoI transformer and oriented RCNN. Besides, ALSDmbl

has the fastest inference speed and is ahead of ALSD, which
may be due to MobileNet’s unique optimization for the hardware
platform.

Storage space is one of the factors restricting the successful
deployment of the detection algorithms. For parameter numbers,
parameter numbers of the proposed ALSD are about 85.3%,
15.3%, and 26.3% of the method oriented FCOS, ROI trans-
former, and oriented RCNN, respectively. The lower the number
of parameters, the lower the storage requirements. The proposed
ALSD with MobileNet V2 is also ahead of RoI transformer and
oriented RCNN about 79.9% and 65.4%, respectively.

In addition, due to the simple architecture of the proposed
detector, it can be easily implemented without any third-party
library support. We have embedded it into the satellite with the
DSP 6678 platform, and it can predict at the desired speed. To
sum up, we can conclude that the proposed method is lightweight
and practical.

VI. CONCLUSION

In this article, we have provided a new dataset for remote
sensing satellite ship detection, which is practical and challeng-
ing. Additionally, we have proposed a novel object detector for
remote sensing satellite images. An FRM has been designed
to extract effective deep features, which can improve detection
performance significantly. To deal with various jamming and
complex backgrounds, a lightweight network module based on
supervised learning was designed for highlighting the features
of objects in the whole feature map and suppressing other region
feature information. The proposed detection algorithm can deal
with the ships in various scales and orientations well and is
also robust to complex backgrounds. The extensive experiments
have confirmed the validity of the proposed method. The pro-
posed detection framework is different from other mainstream
detection networks, it was lightweight and efficient. Finally,
we hope that our newly introduced dataset CBSD will provide
opportunities for researchers to develop novel and lightweight
detection algorithms for remote sensing satellite images.
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