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Aerial Photograph Categorization by
Cross-Resolution Deep Human
Gaze Behavior Learning

Luming Zhang *“, Ming Chen

Abstract—Accurately recognizing aerial photographs is a use-
ful technique in many domains like autonomous driving and
environmental evaluation. In practice, both low-resolution and
high-resolution aerial photos are captured asynchronistically for
each region, as there are hundreds of Earth observation satellites
orbitting the Earth. Realizing such multiresolution-based region
semantic understanding is a difficult task due to three challenges:
1) mimicking human visual perception when they actively viewing
the semantic objects inside each aerial photo; 2) deeply modeling
the visually/semantically salient objects sequentially perceived by
human visual system; and 3) developing a cross-resolution knowl-
edge transferal module to enhance the feature representation for
an area. To solve these challenges, we propose a cross-domain aerial
photograph categorization system by leveraging the low-resolution
spatial composition to enhance the deep encoding of human gaze
shifting path (GSP) with a high-resolution. More specifically, we
first use an active learning algorithm to discover multiple visu-
ally/semantically salient object patches for constructing GSP from
a high-resolution aerial photo. Then, an aggregation-based deep
model is formulated to sequentially link the deep features learned
from the object patches inside each GSP. Subsequently, a novel
knowledge transferal algorithm leverages the global spatial com-
position from low-resolution counterparts to upgrade the deeply-
learned GSP feature of the high-resolution aerial photo. Using
the upgraded deep GSP feature, a multilabel SVM classifier is
trained for categorizing aerial photographs. Comparative studies
on our million-scale aerial photograph set have demonstrated the
competitiveness of our approach.

Index Terms—Active learning, aerial photo, cross domain, deep
feature, gaze behavior, machine learning.

1. INTRODUCTION

ECOGNIZING aerial photo’s categories is a key technique
in multiple modern remote sensing systems [26]—[28]. For
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example, in autonomous navigation, it is necessary to ensure that
the smart vehicle can recognize the shortest path between two
cities intelligently. This requires that a set of aerial-photograph-
related cues, e.g., mountain terrain, traffic network topology, and
road gradient, can be rapidly incorporated. Besides, calculating
the regional categories of many low/high-resolution aerial pho-
tos can assist evaluating the village/city/state environment, e.g.,
the forest/crop coverage ratio and the impact of flood disaster.
Moreover, in many video-based pedestrian tracking systems, it is
standard to exploit local contexts (encoded by aerial photos) like
road direction and intersection topology, to enhance the tracking
accuracy.

In the past few years, hundreds of deep recognition models
were designed for recognizing scene/object categories, such as
the well-known AlexNet-CNN [1] and ResNet [42]. Experi-
mental evaluations have demonstrated their advantages toward
the shallow recognition models. Nevertheless, previous deep
scene/object recognition models cannot fulfill aerial photo-
graph categorization satisfactorily due to the following three
shortcomings.

1) There are tens and hundreds of visual salient objects (such
as rooftops and vehicles) within a high-resolution aerial
photo. They are indicative to the process of how humans
perceive an aerial photo, which is informative to recognize
aerial photo’s categories. However, it is difficult to propose
a mathematical model extracting these salient objects and
calculate the sequence of human gaze allocation simulta-
neously. Specifically, how to discover the GSP that mimics
human visual perception? as exemplified on the top of
Fig. 1.

2) Due tothe impressive performance of deep representations
in scene/object description, we believe that deep GSP
features can well represent aerial photos both visually and
semantically. Notably, the movements of human gaze and
the GSP’s geometry jointly capture how humans perceive
each aerial photograph. As far as we know, only the entire
image or its internal regions can be represented by the
existing deep models, while the GSP and the path’s ge-
ometry are not discovered. Integrating these two attributes
into a unified deep and solvable recognition framework is
challenging.

3) There are hundreds of satellites observing the Earth
(e.g., GF1 and Z2Y302), where both low-resolution and
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Fig.1. Top: The GSP(A — B — C — D — FE)cansimulate humans visual
perception of an aerial photograph (the red italic text denotes the aerial photo’s
semantic categories). In detail, human first fix on region “A,” and then shift
his/her gaze onto region “B,” and so on. Bottom: each landmark is captured by
multiple low/high-resolution aerial photos in a multisatellite earth observation
system.
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Fig. 2. Pipeline of our designed cross-domain deep perception-aware aerial
photograph categorization model.

high-resolution aerial photographs are taken for an area,
as exemplified at the bottom of Fig. 1. As the low-
resolution and high-resolution aerial photos are captured
asynchronistically, they characterize an area complemen-
tarily. For example, a playground is occluded in a high-
resolution aerial photo but clear in a low-resolution one.
Thus we have to combine the deep features from both
low-resolution and high-resolution aerial photos for visual
recognition. But building a knowledge sharing mechanism
that discriminatively fuzes deep features from aerial pho-
tos with multiple resolutions is unsolved.

To address the aforementioned problems, we propose a novel
multisatellite aerial photo categorization framework, focusing
on deeply learning high-resolution GSP features by lever-
aging the global spatial attributes from low-resolution aerial
photos. An overview of our approach is shown in Fig. 2.
Given a collection of high-resolution aerial photos, each cor-
responds to multiple low-resolution counterparts,' we adopt the
BING (binarized normed gradients) operator [60] to produce a
succinct set of object patches. To mimic human visual per-
ception, an active learning algorithm is proposed to discover

'In our work, each high-resolution aerial photograph and its corresponding
low-resolution counterparts capture the same region.
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the visually/semantically representative object patches within
each aerial photo. Thereby, the so-called GSP is constructed by
sequentially linking these discovered objected patches. Subse-
quently, we design an aggregation-based deep neural network
that statistically fuses the deep features of the GSP’s internal
object patches. To refine the learned deep GSP feature, a cross-
domain knowledge transferal algorithm is proposed to utilize
the low-resolution counterparts to enhance its descriptiveness.
Finally, by leveraging the refined deep GSP representation, a
multilabel SVM is learned to categorize each high-resolution
aerial photo into multiple categories. Extensive experimental
evaluations have demonstrated the superiority of our catego-
rization model, as well as the descriptiveness of the actively
learned GSP. In our work, features from the low-resolution aerial
image and high-resolution aerial image represent two domains,
respectively. Previously, only single low-resolution aerial image
or high-resolution aerial image is employed for aerial image
categorization. Apparently, this strategy is suboptimal if the
low-resolution or high-resolution aerial image is blurred or
noisy. When using two domains, the low-resolution and high-
resolution aerial images are complementary to each other in
describing different regions. In this way, better categorization
performance can be achieved.

The key novelties of this work are three-fold as follows.

1) An aggregation-based deep network for GSP representa-
tion, which encodes multiple visually/semantically salient
regions sequentially perceived by humans.

2) Aknowledge transferal algorithm that leverages the spatial
composition of low-resolution counterparts to enhance the
deep learning of GSP feature from a high-resolution aerial
photo.

3) A massive-scale multiresolution aerial photo set, based on
which empirical evaluation is conducted to validate our
approach.

The rest of this article is organized as follows. Section II
briefly reviews the previous work related to ours. Section III
introduces the three key modules in our framework: 1) ac-
tive learning visually/semantically salient object patches, 2) an
aggregation-based deep model that hierarchically derives the
deep GSP features, and 3) a cross-resolution knowledge shar-
ing algorithm to enhance deep GSP encoding. Comprehensive
evaluations in Section IV demonstrated the effectiveness of our
method. Finally, Section V concludes this article.

II. RELATED WORK

Our method is closely related to two research fields in
computer vision and remote sensing: 1) deep-learning-based
object/scene categorization and 2) visual semantic models for
aerial photos.

A. Deep-Learning-Based Object/Scene Recognition

Recently, a rich variety of deep architectures has been pro-
posed for object/scene recognition. A few representative works
are briefly introduced in the following. Multilayer CNNs with
tailored architectures make building visual recognition models
for million-level image set such as ImageNet [48] feasible.
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Krizhevsky et al. [1] proposed to learn large-scale CNNs using a
subset of ImageNet [48], where impressive visual categorization
performance has been achieved. Although the trained ImageNet-
CNN focuses on generic object recognition, the engineered deep
features can enhance many computer vision tasks, e.g., semantic
annotation and human reidentification. Recently, the conven-
tional ImageNet-CNN has been upgraded in two directions. The
first direction handles the problem of generating high quality
region samples from a rich set of images. Selective search [49]
integrates the exhaustive search and semantic segmentation
into a unified framework. A concise set of data-dependent and
class-aware image regions are generated. For the other direction,
Girshick et al. [50] proposed the well-known regions with
CNN features (R-CNN). The core technique of R-CNN is a
high quality image regions sampling strategy. Moreover, Zhou
et al. [51] enhanced the CNN-based scene recognition by col-
lecting qualified training samples. They collected a scene-centric
image set consisting of seven million labeled scene images. In
practice, itis suboptimal to train a CNN by leveraging each entire
scene image or random image patches. Thereby, Wu et al. [57]
developed a preprocessing strategy to enhance deep models
for scene classification. It leverages a pretrained deep CNN by
generating local and discriminative meta objects. He et al. [42]
developed the ResNet, a residual learning algorithm to facilitate
the training of very deep neural network compared to the stan-
dard ones. The network layers are formulated as learning a series
of residual functions. Empirical results have demonstrated that
highly competitive recognition performance has been observed
on the ImageNet [48]. Further in [58], Wu et al. [42] introduced
BlockDrop to enhance ResNet. It dynamically activates each
deep network layer during inference, and, thereby the total
computational cost is drastically reduced without performance
loss.

It is worth emphasizing that, our method fundamentally dif-
fers from the deep recognition models in two aspects: 1) it natu-
rally encodes human visual perception of high-resolution aerial
photos by deeply learning the actively discovered GSPs and 2)
it refines the deep GSP features of high-resolution aerial photos
by exploring the knowledge of the low-resolution counterparts.

B. Semantic Aerial Photograph Modeling

A number of visual semantic models have been proposed to
annotate aerial photos, either at image-level or at region-level.
For semantic annotation at image-level, Zhang et al. [46] pro-
posed a visual descriptor called graphlets to explicitly character-
ize aerial photo’s geometry. And, thereby a discriminative model
is trained for categorizing aerial photos into multiple classes.
Xia et al. [47] formulated an aerial photo recognition frame-
work by weakly supervised encoding region-level semantics.
A multichannel hashing algorithm is unitized to fast calculate
the image kernel for categorizing aerial photos. Akar et al. [2]
employed the rotation forest and exploited object-level infor-
mation for categorizing aerial photos. Experimental evaluations
demonstrated its superiority toward competitors like Adaboost.
Sameen et al. [16] proposed a deep CNN for recognizing aerial
photo from high-resolution urban regions. It seamlessly encodes
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optical bands, digital surface, and ground-truth maps into the
deep architecture. Cheng et al. [20] designed a pretuned deep
CNN for high-resolution aerial photo categorization. The model
is fine-tuned by a domain-specific scenery set. Moreover, Yao
etal. [45] used CNN for semantic classification of aerial images.
They proposed to semantically label pixels of urban regions
by designing a multiresolution CNN to learn spatial-spectral
features.

Many deep/shallow models have been proposed for detecting
different types of region-level semantics. Fu. et al. proposed
a fine-grained aircraft localization algorithm based on high-
resolution aerial photos. The method employs a multiclass ac-
tivation framework to discover the multiple parts within each
aircraft. Wang et al. [44] formulated a multiresolution and
end-to-end deep network for visual attention learning, associated
with a classification and regression branch, for object detection
in aerial photographs. Yang et al. [21] developed a double focal
loss deep CNN for aerial-photo-based vehicle detection, where
the skip connection is employed. Wang et al. [32] complied
a waste plastic bottle set with 25407 aerial images. Corre-
spondingly, they proposed to utilize unmanned aerial vehicles
(UAV) to localize these plastic bottles. Costea et al. [3] proposed
automatic geo-localization of aerial photos by identifying and
matching of roads and intersection. Experiments using aerial
photos from two European cities and OpenStreetMap-based
roads annotations have shown its advantages.

Compared to the aforementioned techniques, our approach
supports multilabel aerial photo annotation and the semantic
categories can be flexibly defined. Thereby, our method is highly
compatible with different circumstances. Moreover, as far as we
know, only our method can explore cross-domain knowledge
for multilabel semantic understanding, whereas our competitors
only leverage one single aerial photo or multiview aerial photos
from the same domain.

Cheng et al. [52] proposed a comprehensive review of the
recent progress. They compiled a large-scale and public dataset,
NWPU-RESISC45, for Remote Sensing Image Scene Classifi-
cation. And several representative methods are evaluated using
the proposed dataset. In [53], the authors proposed a simple
but effective method to learn discriminative CNNs to enhance
the performance of remote sensing image scene classification.
The models are trained by optimizing a new discriminative
objective function. Further Yao et al. [54] proposed a unified an-
notation framework for high-resolution aerial image modeling,
They seamlessly combined the discriminative high-level feature
learning and weakly supervised feature transferring.

III. OUR PROPOSED METHOD

A. Encoding Active Visual Perception

BING [60] Object Patches: There are a rich number of
fine-grained objects and their components inside each high-
resolution aerial photo. Both biological and psychological stud-
ies have uncovered that humans are prone to attend a small
proportion of visually/semantically salient objects during visual
perception. In practice, before understanding each aerial photo,
humans will first perceive objects, e.g., localizing an aircraft and
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its parts. Subsequently, they will attend to only a few prominent
regions in detail, while the rest are kept almost unprocessed.
Apparently, it is worthwhile to incorporate human visual per-
ception during aerial photo categorization. In our categorization
pipeline, a fast object proposals extraction associated with a
geometry-preserved active learning algorithm is employed to
select representative object patches for characterizing human
gaze behavior during aerial photo perception.

Given a high-resolution detailed aerial photograph, humans
usually attend to the semantically meaningful objects, e.g.,
rooftops and vehicles. These objects combined with their spatial
compositions collaboratively determine the process of human
perceiving each aerial photography. To localize objects that
potentially draw human attention, we employ a state-of-the-art
objectness measure to generate a concise set of object patches.
In our work, we employ the BING [60] operator as the object-
ness measure due to its inherent competitiveness: 1) receiving
a satisfactory object detection performance while keeping an
extremely low calculation time; 2) generating a set of highly
representative and low redundant object patches to enhance the
deep encoding of human gaze behavior; and 3) having a high
generalization capability to unknown aerial photo categories,
and, thereby the categorization model is adaptable across differ-
ent image sets.

Geometry-preserved Active Learning: There are still lots of
object patches (102 ~ 10%) extracted by the BING [60]. In
practice, however, humans actively attend to fewer than 15
objects within each scenery. To characterize such active visual
perception, a novel active learning is presented to discover K
object patches from each aerial photo for GSP construction.
It seamlessly integrates two representative attributes: 1) aerial
photo’s spatial configurations and 2) descriptiveness of the ob-
ject patches at semantic-level.

Generally, a well-designed aerial photo categorization model
should capture aerial photo’s spatial compositions, i.e., the rel-
ative position between the foreground and background objects.
To quantify such attributes, we believe that each object patch
can be approximated by a linear combination of its neighboring
object patches. During reconstruction, the contribution of each
object patch is determined by the objective function as follows:

N N
arg min Z ||z — ZEijsz
i=1 =1

N
S.t.ZEi_j =1LE; =0, if z; ¢ N(zj) M

j=1

where {z1,...,2x} € RV*F is the deep representations de-
rived from the V BING [60] object patches in each aerial photo,
F is the the deep feature dimensionality to each object patch,
matrix E;; quantifies the contribution of the ith object patch
to reconstruct the jth one, and N(z;) comprises of the spatial
neighbors of object patch z;.

Besides spatially encoding each aerial photo, the semantic
descriptiveness of the selected object patches that constructing
GSP is another important attribute. Based on the reconstruction
error in (1), we denote {g1, . .., gn } as the reconstructed object
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Fig. 3. Humans Sequentially perceive five semantic objects within a high-
resolution aerial photo (indicated by GSP: A - B — C — D — E).

patches. Afterward, we identify the K selected object patches
by optimizing the following objective function:

n(gl7"‘7gN)

K N N
= 90 = 9al>+ 7Y _llg: = > Eugill> @
i=1 i=1 j=1

where 7 is the weight of the regularizer, and {gq,,. .., gqx }
denotes the K actively selected object patches. Specifically, the
first term optimizes the cost of fixing the coordinates of the K
selected object patches. The second term enforces that the re-
constructed object patches are maximally similar to the original
ones semantically. In general, optimizing (2) can produce a set of
semantically descriptive object patches, which can reflect human
visual/semantic perception toward different aerial photos.

Let matrix Z = [z1,...,2n] and G = [g1, . .., gn], and de-
noting A as an N x N diagonal matrix indicating the se-
lected object patches, i.e., diagonal element A;; =1 if ¢ €
{q1,--.,qx} and O otherwise. Based on these, the cost function
(2) can be upgraded into the matrix form

n(Q) =tr((G —Z)TA(G - Z)) + tr(GTTG) (3)

where matrix T = (I — E)” (I — E). To minimize (3), the gra-
dient of 1(G) is set to zero and we obtain

A(G - Z)+7TG = 0. )

Then, the reconstructed object patches are calculated by
G=(T+A)'AZ. 5)

Based on the reconstructed object patches, the new recon-
struction error is updated into

N(2qrs- - 20) =12 = GllE = [|Z = (7T + A) T AZ[%
= llrT + &) TZ |7 (©)
where || - ||% is the matrix Frobenius norm.

Following (6), each GSP can be constructed by sequentially
linking the actively discovered K object patches inside each
aerial photograph, as exemplified in Fig. 3. More specifically,
suppose k object patches have been determined, the (k + 1)th
object patch is selected by

gr+1 =arg  min |[(7T + A + Ti)_lTTZHQF )

i¢{qr,....qr}

where the jth diagonal element of matrix A, € RY*V is one

if z; has been selected in the kth iteration and zero otherwise,
and Y; € RV*¥ is a diagonal matrix whose ith diagonal entity
is one, while the rest are zeros.
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Fig. 4. Our proposed deep model for representing a GSP sequentially con-

necting five object patches.

B. Deeply Learned GSP Representation

By actively discovering the GSP from a high-resolution aerial
photo, we propose a scale-invariant network to calculate the
deep GSP representation hierarchically. The pipeline of our
designed deep model is shown in Fig. 4. In brief, the proposed
deep architecture is comprised of two modules. First, a so-called
adaptive spatial pooling (ASP) is deployed to characterize ob-
ject patches with multiple scales. Afterward, the patch-level
deep representations are concatenated into the image-level one
through a statistical combination operation.

Module 1: Generally speaking, maintaining the original
image resolution and aspect ratio is significant to represent
aerial photo’s spatial configurations [63]. Practically, distin-
guished from the fixed-sized image patches, supporting object
patches with varied scales are more descriptive to semantic
objects/components [62]. Aiming at this, the standard five-
layer CNN [61] is upgraded to support differently sized input
patches.

The our proposed deep network (Fig. 4) is detailed as follows.
Given a set of salient object patches sequentially linked by
each GSP, we flip/rotate each randomly to increase the sample
number. The entire deep architecture involves four operations:
convolution, ASP, and local response normalization, associated
with a fully connected layer with 256 latent units. Afterward, the
deep network branches out a fully connected layer with R units.
Each unit corresponds to the R latent aerial-photos-relevant
topics. Noticeably, R is a parameter depending on a particular
dataset. Herein, we set R to the number of aerial photo categories.

Module 2: Given a high-resolution GSP that is constituted
by a set of sequentially linked object patches with multiple
scales, we extract the A-dimensional deep feature for each object
patch using the aforementioned patch-level deep CNN. Then, we
statistically concatenate these patch-level deep features into the
deep representation characterizing each GSP.
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Fig. 5. Using the global composition from low-resolution aerial photo to
enhance the high-resolution deep GSP feature learning, where the occluded
regions can be largely recovered.

We denote W = {t;};c1,x), where ¢; € RF is the deep
feature learned from each of the K object patches inside a
GSP. Subsequently, we represent 7, as the set of values of
the mth component of all 1; € W, i.e., Ton = {Pmj}jcp1.x]-
The statistic aggregation layer contains a set of statistic func-
tions: = {y }yef1,4. Each & is a particular statistic opera-
tion for a set of patch-level deep features learned from the K
CNNs (as shown in Fig. 4). For our proposed SA-Net, ¥ =
{min, max, mean, median}. The outputs of ¥ are concatenated
and then aggregated using a fully connected layer to produce
a S-dimensional vector as the deep representation for a GSP.
Formally, these operations can be formulated as

F(U) =W x (@aey Bh—y £u(Tm). 8)

where W € R%*4F denotes the matrix parameterizing the fully
connected aggregation layer, and & concatenates the 4" short
vector £, (7 ,) into a long one.

In our method, we discriminatively pretrain the CNN model
toward different object patches. The CNN is pretrained by lever-
aging the large-scale auxiliary dataset (ILSVRC2012 [56]) with
image-level annotations only. The pretraining was performed
using the open source Caffe CNN library [55]. In our imple-
mentation, we carefully tuned the inherent parameters of the
pretrained CNN (i.e., the number of layers is adjusted from 4
to 8, the kernel size is tuned from 64 x 64 to 512 x 512, and
the output dimensionality of each layer is adjusted from 128 to
1024) until the best performance is reached.

C. Cross-Resolution Deep GSP Feature Enhancement

As aforementioned, the deep high-resolution GSP represen-
tation describes how humans perceive visually/semantically
salient objects, which locally characterize each aerial photo.
Meanwhile, the global spatial composition from one or mul-
tiple low-resolution counterparts are also contributive to human
semantic perception, especially when the high-resolution aerial
photo is blurred/occluded. Taking Fig. 5 as an example, many
areas in the high-resolution aerial photograph are occluded by
clouds, making the semantic categorization task difficult. But
these areas are clear and nonoccluded in the low-resolution
counterparts. Based on this observation, it is necessary to transfer
the knowledge from low-resolution aerial photos to the high-
resolution one to enhance visual semantic categorization. In our
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work, a domain-transfer paradigm is proposed to leverage the
global spatial compositions from low-resolution aerial photos to
improve the high-resolution deep GSP feature.

Domain-Transfer-Based SVM: To complementarily opti-
mize the low-resolution global compositional feature and
high-resolution deep GSP feature, a common subspace that
bridges the high-resolution feature and the low-resolution one
is constructed.? Specifically, a D.-dimensional common sub-
space is built, where the low-resolution feature f! and high-
resolution one f" can be projected onto it by transformation
matrices U € RP<*Prand V € RP<*Pn respectively. Inspired
by the impressive performance of feature augmentation tech-
nique [19] in fusing heterogeneous features, we incorporate
the original high/low-resolution features (f' and f”) and sub-
sequently augment them by two augmented feature mapping
functions, i.e.,

e(fl) = [Ufl’fl’ODz] (9)
O(f") = [Vf", f",0p,]. (10)

Based on the above augmented features, the low-resolution
global compositional feature and the high-resolution deep GSP
feature are readily comparable. Afterward, we incorporate the
augmented feature into a multiclass SVM framework for aerial
photo semantic categorization, where the standard SVM formu-
lation with the hinge loss is adopted. Mathematically, a weight
vector g = [gX, gI', gF'17 is defined for the augmented feature,
where g, g;, and g, denote the weight vectors for the common
subspace, the low-resolution global composition feature, and the
high-resolution deep GSP feature, respectively. Based on these,
the optimal transformation matrices U and V as well as the
weight vector g are calculated by minimizing the SVM struc-
tural risk. Formally, the above formulation can be represented
as

M, My,
wivg v e, S+ (Y + 3

8:0:Pip =1 i=1
stl(g"m(f) +b) > 1—pl, Mg m(f) +b) > 1—pf
Pl > 0,[|U[|% <o, |[VI[7 < on (11)

where H > 0 is a parameter balancing the tradeoff between the
model complexity and the empirical losses of training low/high-
resolution aerial photographs; o; and o} are two prespecified
positive numbers that control the complexity of matrices U and
V, respectively.

To optimize (11), the dual form of its inner optimization
is derived as follows. Mathematically, the dual variables wf»
and wf are introduced. Then, we set the derivatives of the
Lagrangian of (11) with respect to g, b, p!, pk to zeros. Accord-
ingly, we obtain the KKT conditions as: g = ZZ LwHbm (fH +

2Without loss of generality, we assume that each high-resolution aerial photo
is associated with one low-resolution counterpart. When more than one low-
resolution counterparts are employed, we can combine them using a standard
multiview learning algorithm [43] and further use the combined feature for
domain transferal.
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ZZ 1whlh7rh(fih), Ziwllwlll Zl 1o.)hlh—O and 0 <

wz < wzh < H. Then, the dual problem is given as

1
miny, v max,, 17w — §(w o y)TKU’V(w oy)

st.1Tw=0,0<w < HL||U||Z <o, ||V||% <o (12)

where vector w = [wi,...,wh, Wi, ... wh, 1T e RMAMn
contains the dual variables; y = y"
{1,...,L}Mi+Mrjs  the training samples’ category

labels (L denotes the number of aerial photo’s cat-
egories); y; and Yy, denote the category labels from
the low-resolution and high-resolution aerial photos,
respectively; FLT(ITD [y uru) TFZTUTVFQ
’ FIVTUF, FT(Ip, +VTV)

is the (M; + Mp,) x (M; + M},) kernel matrix characterizing
both the low- and high-resolution aerial photos; and F; =
[fll,...,f}wl} € RP>Miand F, = [f}, .. .,fﬁjh] € RP»>* M
are feature matrices for the low- and high-resolution aerial
photos, respectively.

Optimizing objective function (12) needs the dimensionality
of the common space D. to be specified, which might be
infeasible in practice. It is observable that in the kernel matrix
Ky, v, the transformation matrices U and 'V typically appears
in the form of UTU, UTV, VTU, and VT U. We then define a
semidefinite intermediate matrix R = [U, V|7 [U, V]. Thereby,
the common subspace becomes latent since we do not have to
solve matrices U and V explicitly.

According to the definition of matrix R, the objective function
(12) can be upgraded into

Kyv =

1
mingso max,, 17w — §(w oy)'Kr(woy)

st.17w =0,0 <w < H1,trace(R) < o (13)
_ T : _ F; Op,xm
where Kr = F* (R +I)F, matrix F = [0 )
Dy, x M h

€ R(Ps+D)x(Mi+Mn) “and o = 0; + oy,. To solve the objective
function (13), we employ the alternating optimization [41]. That
is, an SVM problem is solved with respect to w, followed
by a semidefinite programming (SDP) problem with respect
to R.

Based on the learned SVM hyperplane w and the interme-
diate matrix R, we can categorize each aerial photo into the
corresponding multiple semantic categories. By summarizing
this section, the pipeline of our cross-resolution deep aerial photo
categorization is shown in Algorithm 1.

IV. EXPERIMENTAL EVALUATION

In this section, we validate the performance of our designed
perception-aware cross-resolution deep aerial photograph cate-
gorization using three experiments. We first detail the massive-
scale cross-resolution aerial photo set we compiled, based on
which we compare our method with well-known deep/shallow
scene/object categorization models. Subsequently, we evalu-
ate three key modules in our cross-resolution categorization
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Fig. 6.

Algorithm 1: Perception-Aware Cross-Resolution Deep
Aerial Photo Categorization .

input: Massive-scale high-resolution aerial photos, each
associated with one/multiple low-resolution
counterparts; Training aerial photos’ semantic labels;

output: Predicted semantic label of a test aerial photo;
1) Use BING [60] to extract many object patches from
each high-resolution aerial photo, and then adopt
geometry-based active learning to construct the GSP;

2) Adopt the aggregation-based deep network to learn the
deep GSP representation;

3) Use the domain-transfer SVM to fuse low-resolution
global composition feature and high-resolution deep
GSP feature for aerial photo categorization.

pipeline: 1) active learning for GSP extraction, 2) aggregation-
based deep GSP learning, and 3) domain-transfer-based deep
GSP feature enhancement. Finally, we evaluate the influences
of different parameters.

The experiments were carried out on a PC workstation
equipped with dual Intel ES-2630 CPUs, 128 GB RAM, and
a Tesla K40 GPU. All the compared categorization models were
realized using C++.

A. Dataset

As far as we know, there is no public million-scale cross-
resolution aerial photo set currently. In our work, we spent lots
of human resources to collect about 2 M aerial photos from
the Google Earth.?> As Google Earth photos from metropolises
are generally more clearer and detailed, a crawler software is
designed to download and crop million-scale aerial photos from
the 100 famous cities throughout the world, as reported in Fig. 6.

3[Online]. Available: https://www.google.com/earth/

Number of high-resolution aerial photos crawled from each of the top 100 metropolises.

TABLE 1
15 REPRESENTATIVE SEMANTIC CATEGORIES AND THE CORRESPONDING
NUMBER OF HIGH-RESOLUTION AERIAL PHOTOS

Tall building | 105342 | Residential | 121 768 | Intersection 87 843
Forest 85874 Sea 131436 | Soccer field | 107 435
Aircraft 97 685 Railway 118 453 Bridge 98 562
Road 86 894 River 132 692 Park 103 321
Palace 98 676 Factory 121 009 Farmland 112 324

Typical resolutions of these aerial photos are between 100 x
100 and 1200 x 1200. Then, we consider an aerial photo whose
resolution is smaller than 400 x 400 as low resolution, while that
larger than 800 x 800 as high resolution. In this way, we collect
0.83 M high-resolution aerial photos and 1.35 M low-resolution
ones.

Distinguished from the crawler that is conducted automati-
cally, each high-resolution aerial photos and its low-resolution
counterparts are paired semiautomatically. In detail, we record
the XY -coordinate of each crawled aerial photo. For each pair
of low-/high-resolution aerial photos, if their XY -coordinates
are sufficiently small, then we consider they are potentially
pairable. Subsequently, we recruit 28 master/Phd students from
the Computer Sciences Department of Zhejiang University for
dataset compilation. They worked about ten hours every working
day to double-check the potentially pairable low/high-resolution
aerial photos. This double-checking took two weeks. Finally, we
obtained 0.69-M high-resolution aerial photos, associated with
1.12-M low-resolution counterparts.

To semantically annotate each aerial photograph at image-
level, we inspected the top 100 cities throughout the world and
summarized the 15 most representative semantic categories, as
shown in Table 1. For our aerial photo set, each aerial photo is
typically associated with one to four semantic categories. In our
implementation, the semantic categories of each aerial photo are
annotated semiautomatically. First of all, object detectors cor-
responding to the 15 semantic categories are learned, which are
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utilized to label the semantic categories inside each aerial photo.
To further refine these semantic labels, the same 28 master/Phd
students carefully double-checked each aerial photo’s labels.

B. Comparative Study

1) Categorization Accuracy: In the first place, we com-
pare our proposed perceptual cross-resolution deep recogni-
tion model with several well-known shallow categorization
models: 1) fixed-length walk and tree kernels, abbreviated as
FLWK and FLTK [33], respectively, 2) multiresolution his-
togram (MRH) [38], 3) standard spatial pyramid matching
(SPM)-based image kernel associated with its three variants:
LLC-SPM [34], SC-SPM [59], and OB-SPM [35], and 4) the
super vector (SV) [36]-based image encoding and supervised
image encoding algorithm (SSC) [37]. In our implementation,
the setups of the aforementioned baseline algorithms are briefed
as follows: the FLWK’s and FLTK’s lengths are tuned from two
to ten. For the MRH, the adopted scene images are smoothed
by the Gaussian kernel (o = 2) calculated with 15 gray levels.
For SPM and its variants, the entire training scene images
were decomposed into 1.5 million SIFT points. Thereafter, an
800-sized codebook is learned via k-means.

Owing to the impressive performance of deep categoriza-
tion models, our method is also compared with a set of deep
scene/object categorization models: the ImageNet CNN [1],
the R-CNN [50], the meta object CNN (M-CNN) [57], the
deep mining CNN (DM-CNN) [40], spatial pyramid pool-
ing CNN (SPP-CNN) [39], ClearnNet [4], deep transferable
architecture (DTA) [5], discriminative filter bank (DFB) [6],
and multilayer CNN-RNN (ML-CNN-RNN) [7]. Moreover,
we compare our cross-resolution categorization model with
three semantic scene categorization models; they are proposed
by Mesnil et al. [8], Xiao et al. [9], and Cong er al. [10],
respectively.

As can be seen from Tables II and III, a quantitative com-
parison is conducted among the above 22 deep/shallow catego-
rization models. Each experiment is repeated 20 times and the
standard derivations are reported accordingly. In total, we make
the following observations.

1) Our cross-resolution deep categorization model outper-

forms the shallow ones significantly due to three reasons:
a) SPM and its variants, and SV only depend on SIFT
descriptors. And it is infeasible to integrate multichannel
visual descriptors into these models, such as color mo-
ment [64]; b) the external object detectors in OB-SPM are
custom-built by the generic object categories. They are less
representative to the aerial photo’s categories; 4) RHM
encodes image rough structure approximately for each
aerial photo, and thereby it performs the worst; and d) due
to the inherent totter phenomenon for graphical-model-
based descriptors, the walk/tree kernel is less descriptive
for describing aerial photographs.

2) Our approach performs competitively to the compared

deep models in aerial photo categories categorization.
The reasons are twofold as follows: a) based on the
domain-transfer technique, our categorization model can
enhance the learned deep high-resolution GSP feature
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by leveraging the global feature of its low-resolution
counterparts. The inherent correlations between low-
/high-resolution aerial photos are modeled explicitly.
Comparatively, the other deep categorization models
simply engineer the deep feature from the combined low-
/high-resolution aerial photos, where the correlations are
undiscovered; and b) our method can precisely capture
human gaze allocation, which is informative to mimic
human perceiving each aerial photo. In contrast, the
other methods cannot encode such informative feature.
We notice that for the rest of the deep categorization
models, the traditional ImageNet-CNN [48] performs
the worst. This is because only global image layout is
encoded, and those fine-grained region-level details are
neglected.

3) Although the internal semantic objects are well discov-
ered, Mesnil et al. [8]’s and Cong et al. [10]’s methods can-
not challenge our method. Moreover, they cannot support
feature refinement by incorporating other domains. For
Xiao et al. [9]’s method, it underperforms our approach
since only low-level visual descriptors are exploited dur-
ing scene modeling, where high-level semantic features
are ignored completely.

2) Time Consumption: The time cost is an important criteria
that reflects the performance of each deep/shallow categoriza-
tion model. In this experiment, we report the training and test
time cost on our massive-scale aerial photo set. First, we report
the training time consumed for each module as follows: 7h 53 m
(active GSP extraction), 5 h 12 m (deep aggregation network for
GSP encoding), and 7 h 41 m (domain-transfer-based SVM).
During testing, given a new aerial photo, the time consumed for
each module is given as follows: 154 ms (active GSP extraction),
435 ms (deep aggregation network for GSP encoding), and 98 ms
(domain-transfer-based SVM).

In addition, the time cost of our method and a set of
deep/shallow categorization models are compared. We present
the time cost (both training and test) of these approaches in Ta-
ble IV. The following conclusions can be made. 1) The training
time of the shallow categorization models is much shorter than
those of deep models. But during testing, the deep models are
carried out faster. For our method, each aerial photo needs only
0.871 s to predict the categories. 2) Compared to the other deep
categorization models, our method is more efficient during both
training and test. This is because deep models like CNN and
R-CNN typically produce thousands of object patches during
training/test stage. But our method produces a succinct set of
linked object patches for deep model learning. 3) Although the
cross-domain transfer mechanism consumes extra time beyond
the deep model training/test, we believe that it is worthwhile
since the categorization precision can be enhanced by 6.7%
after incorporating global features of the low-resolution aerial
photos.

C. Stepwise Model Justification

In our proposed deep cross-resolution categorization pipeline,
there are three key modules: 1) BING [60]-based active GSP
learning; 2) aggregation-based deep model for GSP encoding;
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TABLE II
AVERAGE ACCURACIES OF THE ABOVE DEEP/SHALLOW CATEGORIZATION MODELS (EACH EXPERIMENT IS REPEATED 20 TIMES)

Category FLWK FLTK MRH SPM LLC-SPM SC-SPM OB-SPM SV
Tall building 0.537 0.513 0.571 0.614 0.637 0.593 0.673 0.682
Residential 0.635 0.539 0.593 0.624 0.631 0.601 0.657 0.661
Intersection 0.605 0.682 0.695 0.633 0.658 0.613 0.694 0.687
Forest 0.642 0.618 0.675 0.651 0.637 0.629 0.557 0.676
Sea 0.661 0.676 0.681 0.537 0.642 0.683 0.591 0.671
Soccer field 0.583 0.617 0.703 0.626 0.639 0.648 0.674 0.684
Aircraft 0.597 0.664 0.613 0.681 0.694 0.706 0.688 0.693
Railway 0.667 0.621 0.652 0.714 0.564 0.559 0.635 0.701
Bridge 0.538 0.597 0.601 0.615 0.634 0.616 0.651 0.695
Road 0.543 0.606 0.652 0.643 0.657 0.661 0.634 0.636
River 0.653 0.627 0.685 0.713 0.692 0.658 0.647 0.668
Park 0.632 0.659 0.664 0.652 0.708 0.692 0.673 0.691
Palace 0.681 0.584 0.592 0.568 0.613 0.657 0.682 0.672
Factory 0.673 0.698 0.639 0.734 0.716 0.671 0.594 0.683
Farmland 0.605 0.681 0.637 0.684 0.598 0.664 0.684 0.667
Average 0.617 0.625 0.644 0.646 0.648 0.643 0.649 0.678
Category SSC ImageNet-CNN R-CNN M-CNN DM-CNN SPP-CNN | CleanNet DTA
Tall building 0.692 0.679 0.681 0.705 0.716 0.681 0.673 0.684
Residential 0.638 0.725 0.673 0.659 0.681 0.657 0.667 0.713
Intersection 0.657 0.682 0.674 0.665 0.637 0.628 0.634 0.691
Forest 0.643 0.695 0.634 0.656 0.703 0.657 0.672 0.685
Sea 0.694 0.687 0.672 0.651 0.692 0.659 0.697 0.699
Soccer field 0.726 0.751 0.697 0.731 0.726 0.692 0.716 0.706
Aircraft 0.689 0.704 0.721 0.708 0.715 0.724 0.695 0.711
Railway 0.703 0.697 0.714 0.721 0.657 0.637 0.701 0.683
Bridge 0.693 0.656 0.708 0.694 0.724 0.713 0.645 0.694
Road 0.659 0.711 0.694 0.682 0.706 0.715 0.692 0.687
River 0.689 0.671 0.721 0.684 0.692 0.687 0.704 0.667
Park 0.693 0.677 0.726 0.638 0.697 0.712 0.677 0.715
Palace 0.692 0.683 0.669 0.694 0.709 0.724 0.731 0.707
Factory 0.655 0.687 0.674 0.661 0.692 0.716 0.722 0.716
Farmland 0.683 0.714 0.726 0.699 0.707 0.675 0.691 0.692
Average 0.680 0.695 0.692 0.683 0.697 0.685 0.688 0.697
Category DFB ML-CNN-RNN | Mesnil er al. Xiao et al. Cong et al. Ours
Tall building 0.711 0.713 0.698 0.721 0.744 0.747
Residential 0.694 0.723 0.715 0.724 0.733 0.736
Intersection 0.706 0.712 0.709 0.683 0.715 0.739
Forest 0.691 0.678 0.703 0.699 0.716 0.733
Sea 0.698 0.711 0.707 0.689 0.726 0.709
Soccer field 0.688 0.701 0.705 0.692 0.725 0.742
Aircraft 0.724 0.716 0.742 0.731 0.706 0.735
Railway 0.705 0.727 0.724 0.713 0.722 0.738
Bridge 0.742 0.749 0.717 0.721 0.703 0.714
Road 0.668 0.702 0.725 0.733 0.712 0.739
River 0.724 0.735 0.709 0.721 0.705 0.737
Park 0.694 0.705 0.673 0.734 0.693 0.744
Palace 0.722 0.743 0.705 0.711 0.706 0.748
Factory 0.703 0.697 0.684 0.692 0.715 0.736
Farmland 0.694 0.713 0.695 0.725 0.732 0.741
Average 0.704 0.715 0.707 0.712 0.717 0.736

The bold entities indicate the best result.

and 3) cross-domain-based SVM learning. We evaluate the
effectiveness of each component to demonstrate their indispens-
ability and inseparability. Specifically, we replace each of the
three modules, while keeping the rest two unchanged. Based on
this, we report the corresponding categorization performance
decrement or increment.

Module 1: To evaluate the active GSP extraction, we first
replace the BING-based object patches extraction by superpixels
(S1) and randomly cropped patches (S2), respectively. We report
the corresponding average categorization accuracy decrements
in Table V. As shown, our adopted BING operator performs
much better than superpixels and random patches because it
is intrinsically descriptive to objects and their components.
Besides, we compare our geometry-based active learning with
three competitors i.e., unified active learning by He et al.
[24](S3), local representation active learning by Hu er al. [25]
(S4), and multilabel active learing by Wu er al. [29] (S5).
As reported in Table V, Hu et al.’s active learning achieves

the closest performance to our method, lagging behind only
1.231%. Meanwhile, He et al.’’s and Wu et al.’s algorithms
perform moderately worse than ours. Actually, the superiority
of our active learning is because of: 1) the aerial photo’s global
geometry is optimally preserved and 2) the sequentially solution
[as shown in (7)] can well reflect human gaze allocation.
Module 2: We then testify the performance of our aggregation-
based deep model. Two settings are adopted: 1) replacing the
deep GSP feature by the ImageNet CNN [48] that captures
each aerial photo globally (S1); and 2) abandoning the statistic
operator “min” (S2), “max” (S3), “mean” (S4), and “median”
(S5), respectively. As shown in Table V, our deep GSP feature
performs significantly better than the ImageNet-CNN feature.
This is because the actively selected GSP can well capture human
gaze behavior and its constituent object patches are highly rep-
resentative to aerial photo’s discriminative parts. Contrastively,
ImageNet-CNN feature only encodes the entire aerial photo
without indicating the discriminative object patches. Besides,
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TABLE III
STANDARD DERIVATIONS OF THE ABOVE DEEP/SHALLOW CATEGORIZATION MODELS (EACH EXPERIMENT IS REPEATED 20 TIMES)
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Category FLWK FLTK MRH SPM LLC-SPM SC-SPM OB-SPM SV
Tall building 0.011 0.012 0.010 0.013 0.013 0.013 0.013 0.011
Residential 0.012 0.008 0.011 0.008 0.012 0.014 0.011 0.010
Intersection 0.011 0.014 0.016 0.011 0.011 0.011 0.009 0.009
Forest 0.012 0.008 0.015 0.012 0.012 0.011 0.009 0.012
Sea 0.013 0.011 0.012 0.009 0.011 0.012 0.011 0.015
Soccer field 0.012 0.011 0.015 0.013 0.013 0.012 0.011 0.013
Aircraft 0.011 0.012 0.013 0.013 0.013 0.013 0.008 0.008
Railway 0.014 0.010 0.011 0.010 0.012 0.012 0.009 0.009
Bridge 0.013 0.013 0.013 0.011 0.011 0.011 0.012 0.012
Road 0.014 0.008 0.011 0.014 0.013 0.010 0.009 0.011
River 0.011 0.012 0.011 0.009 0.008 0.010 0.012 0.010
Park 0.012 0.011 0.013 0.012 0.011 0.012 0.012 0.009
Palace 0.011 0.008 0.010 0.012 0.015 0.010 0.009 0.012
Factory 0.010 0.010 0.011 0.009 0.010 0.011 0.011 0.011
Farmland 0.013 0.008 0.013 0.012 0.013 0.010 0.012 0.009
Category SSC ImageNet-CNN R-CNN M-CNN DM-CNN SPP-CNN | CleanNet DTA
Tall building 0.013 0.012 0.011 0.013 0.015 0.011 0.008 0.013
Residential 0.010 0.011 0.014 0.010 0.013 0.014 0.009 0.010
Intersection 0.010 0.013 0.012 0.011 0.009 0.011 0.010 0.012
Forest 0.012 0.009 0.010 0.015 0.013 0.011 0.009 0.008
Sea 0.008 0.012 0.013 0.009 0.011 0.013 0.008 0.011
Soccer field 0.012 0.010 0.013 0.012 0.014 0.010 0.010 0.013
Aircraft 0.011 0.008 0.011 0.013 0.015 0.015 0.009 0.012
Railway 0.008 0.012 0.013 0.010 0.012 0.014 0.008 0.010
Bridge 0.013 0.013 0.012 0.011 0.014 0.012 0.010 0.012
Road 0.011 0.009 0.010 0.013 0.011 0.011 0.009 0.011
River 0.008 0.008 0.015 0.011 0.012 0.013 0.012 0.013
Park 0.015 0.010 0.011 0.015 0.013 0.009 0.008 0.012
Palace 0.009 0.008 0.012 0.009 0.011 0.012 0.009 0.009
Factory 0.014 0.012 0.014 0.011 0.016 0.014 0.012 0.008
Farmland 0.009 0.011 0.013 0.014 0.012 0.011 0.014 0.011
Category DFB ML-CNN-RNN | Mesnil et al. Xiao et al. Cong et al. Ours
Tall building 0.011 0.012 0.011 0.013 0.012 0.011
Residential 0.008 0.008 0.012 0.011 0.014 0.009
Intersection 0.012 0.013 0.010 0.009 0.013 0.010
Forest 0.011 0.008 0.015 0.014 0.013 0.008
Sea 0.011 0.012 0.011 0.008 0.009 0.010
Soccer field 0.012 0.008 0.015 0.013 0.014 0.009
Aircraft 0.011 0.012 0.011 0.013 0.012 0.010
Railway 0.010 0.010 0.009 0.010 0.013 0.009
Bridge 0.008 0.014 0.011 0.011 0.015 0.010
Road 0.011 0.009 0.009 0.012 0.012 0.011
River 0.008 0.012 0.011 0.009 0.010 0.008
Park 0.012 0.011 0.013 0.012 0.009 0.010
Palace 0.011 0.009 0.012 0.012 0.013 0.008
Factory 0.008 0.012 0.011 0.009 0.009 0.009
Farmland 0.012 0.011 0.015 0.013 0.014 0.010
TABLE IV

TRAINING/TEST TIME CONSUMPTION OF THE ABOVE SHALLOW/DEEP CATEGORIZATION MODELS (EACH EXPERIMENT IS REPEATED 20 TIMES)

PERFORMANCE DECREMENTS (“-”")/INCREMENTS (“+”) BY REPLACING EACH

FLWK FLTK MRH SPM LLC-SPM SC-SPM OB-SPM SV
Training | 6 h32m 8h15m 3h35m 6h34m 8h 47 m 7h4m 12h34m [5h42m
Test 35s 7.6s 1.56's 34s 423 4.1s 6.6 3.7s
SSC ImageNet-CNN R-CNN M-CNN DM-CNN SPP-CNN | CleanNet DTA
Training | 7h23 m 94h 2l m 121 h43 m 165h32m | 89 h43 m 75h32m | 84h43m [91h43 m
Test 2.5s 8.7s 7.4's 92s 75s 45s 6.1s 55s
DFB ML-CNN-RNN | Mesnil et al. Xiao et al. Cong et al. Ours
Training |115h 21 m 67 h45 m 4h32m 2h2lm 5h32m 35h2lm
Test 1335 7.7 135 0.8s 145 31s
TABLE V

OF THE THREE KEY MODULES

[ Module T [ Module 2 | Module 3
S1 -3.541% -10.546% -4.530%
S2 -6.435% -1.434% -3.023%
S3 -2.434% -3.113% -6.652%
S4 -1.231% -2.158% -3.324%
S5 -3.143% -1.376% -2.543%

we notice that abandoning each statistic operator will hurt the
aerial photo categorization performance, especially the “max”
operator.

Module 3: Finally, we evaluate the effectiveness of our cross-
domain SVM learning. We first abandon the low-resolution
global composition channel and directly train the multilabel
SVM by the deep high-resolution GSP feature (S1). As re-
ported in Table V, this operation makes the categorization
accuracy decrease by 9.323%. This demonstrates the necessity
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(right).

Aerial photo’s categorization accuracies by varying 7 (left) and K

TABLE VI
PERFORMANCE BY TUNING H

H [ 10 [ 102 ] 10°
Acc | 0.677 [ 0.736 [ 0.719%
H 10 10° 10°

Acc | 0.675% [ 0.643 ] 0.615%

of transferring the low-resolution feature to enhance deep GSP
feature learning. Afterward, we compare our domain transfer
algorithm with three competitors: 1) translated learning [11]
(S2), 2) heterogenous transfer learning [12] (S3), and 3) hetero-
geneous domain adaption [13] (S4). As shown in Table V, all the
competitors underperform our method by at least 2%.

D. Parameter Analysis

Totally, there are three key parameters to be adjusted for our
cross-resolution deep categorization model: 1) 7, the regularizer
weight encoding the aerial photo’s geometry, 2) K, the number
of object patches inside each GSP, and 3) H in the multilabel
SVM formulation. Herein, we evaluate the influence of each
parameter on the aerial photo categorization.

First, we tune 7 from 0.05 to 0.5 with a step of 0.05 and
report the average categorization accuracy. As shown on the left
of Fig. 7, we notice that neither a too small 7 nor a very large
T is an optimal choice. This observation reflects that we cannot
neglect the global geometry or emphasize it aggressively. On
our compiled aerial photo set, we notice that when 7 = 0.25,
the best performance can be received.

Afterward, we adjust K from one to 19 with a step of two.
Similarly, we report the average categorization accuracy. As
displayed on the right of Fig. 7, the categorization accuracy
increases significantly when K is tuned from one to nine, and
subsequently remains stable. This observation indicates that
K =9 is sufficiently descriptive to our massive-scale aerial
photo set. Since K determines the SubCNN number in our
aggregation-based deep model, we set ' = 9 in order to main-
tain the effectiveness and effectiveness of our categorization
system. Each subCNN denotes the CNN trained toward the ith
object patch inside the GSPs. For example, if there are five object
patches inside each GSP, then there are five subCNNs. The ith
subCNN is particularly trained using the ith object patches from
all the training GSPs. Interestingly, we notice that, in our setting,
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the optimal K is larger than that on the nonaerial scenery set,
such as the Scene-67 [14]. The reason lies in that, an aerial photo
usually contains more foreground salient regions.

Last but not least, we evaluate the categorization performance
by varying H. We adjust H from 10 to 10° with a factor of 10.
As reported in Table VI, we notice that the best categorization
accuracy is received when H = 102,

V. CONCLUSION

Categorizing aerial photographs is an important application in
computer vision and remote sensing [28], [30], [31]. This article
formulates a deep cross-resolution aerial photograph categoriza-
tion framework. We leverage the low-resolution global compo-
sitional feature to enhance the deep learning of high-resolution
GSP feature. By active learning GSP from many BING [60]-
based object patches, an aggregation-based deep model is for-
mulated to represent each GSP. Afterward, a cross-domain and
multiclass SVM is derived by optimally combining low-level
global compositional feature and high-resolution GSP feature.
To evaluate our method, we compiled a million-scale aerial
photo set. Comprehensive empirical results have demonstrated
its effectiveness and efficiency.

The future work includes developing a semisupervised cross-
domain SVM, wherein the low/high-resolution aerial photos are
partially labeled. Moreover, we intend to release our compiled
aerial photo set for public evaluation.
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