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Visual Saliency Detection in High-Resolution
Remote Sensing Images Using Object-Oriented

Random Walk Model
Lin Ding , Xing Wang , and Deren Li

Abstract—As high-resolution remote sensing images begin to
integrate new characteristics, such as a great volume of data, a
wide variety of ground objects, and high structural complexity,
traditional methods previously used for feature extraction in low-
resolution remote sensing images are inefficient and inadequate for
the accurate feature description of various objects. Thus, object
feature extraction from a high-resolution remote sensing image
remains a challenging task. To address this issue, we introduced
the visual attention mechanism into high-resolution remote sensing
image analysis in this study by proposing a novel object-oriented
random walk model for visual saliency (ORWVS) detection from
high-resolution remote sensing images. In the proposed model, an
object-oriented random walk strategy is designed to simulate the
transfer path of visual focus on the images and to extract the
local salient regions in an efficient and accurate manner, laying
a foundation for accurate feature descriptors. The ORWVS is
compared with eight visual attention models, and the experiments
prove its superiority.

Index Terms—Focus of attention (FOA), random walk, salient
object detection, visual saliency.

I. INTRODUCTION

W ITH the continuing development of new sensor tech-
nology and earth observation technologies, the spatial

resolution of remote sensing images continues to increase.
At present, the spatial resolution of GeoEye, an international
commercial remote sensing satellite, has reached 0.41 m, the
U.S. military reconnaissance satellite KH-12 has reached an
optical resolution of 0.1 m [1], and the spatial resolution of the
Chinese Earth observation satellite Gaofen-2 has reached 0.8
m [2]. These high-resolution remote sensing images document
detailed and complex land covers with rich color (spectrum),
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Fig. 1. Comparison of global color histograms of remote sensing images.
(a) WorldView-2 remote sensing image 1. (b) Color histogram (quantized to
512 levels) of image 1 in the CIELab color space. (c) WorldView-2 remote
sensing image 2. (d) Color histogram (quantized to 512 levels) of image 2 in the
CIELab color space.

texture, and geometric and structural information, offering us
a new opportunity for advancing the interpretation of remote
sensing images. At the same time, geospatial object detection
and scene-level geographic image categorization, the two fun-
damental yet challenging research aspects of remote sensing
image analysis, have attracted increasing attention.

Traditional pixel-based analysis methods for low-resolution
remote sensing images are not powerful enough when dealing
with high-resolution remote sensing images. They also fall short
in obtaining accurate and discriminative descriptions of objects.

Fig. 1 shows a set of examples, where panels (a) and (c)
present two WorldView-2 remote sensing images and (b) and
(d) demonstrate their corresponding global color histograms
(quantized to 512 levels) in the CIELab color space. The major
difference between images (a) and (c) is the existence of a
house with an orange roof in (a). Despite the fact that the local
salient objects in the two images have great visual differences,
the color histogram distributions of the two images are very
similar to each other due to the small proportion of the changing
area (i.e., the house) in (a). Therefore, for the remote sensing
image (a), traditional feature extraction methods that fail to
separate the image target from the background are unsuitable
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to represent local salient objects. However, when faced with
high-resolution remote sensing images, humans are often able
to discern the characteristics of these ground objects in a rapid
and accurate manner. Thus, how to simulate the human visual
attention mechanism to obtain visual features of various ground
objects remains a challenging task.

As early as the 1980 s, neuroscientists discovered that when
facing massive amounts of visual information in a complex
scene, the human visual system (HVS) would selectively focus
on some local regions and ignore the background that often
takes up a higher proportion area of the scene. By simulating the
visual attention mechanism of HVS, scholars from the computer
vision field came up with several visual attention models (VAMs)
that include ITTI [3], graph-based visual saliency (GBVS) [4],
etc. The performances of these models have been validated in a
number of natural image databases [5].

In this article, the visual attention mechanism of HVS is in-
troduced into high-resolution remote sensing image processing,
and an object-oriented random walk model for visual saliency
(ORWVS) detection in remote sensing images is proposed. In
the proposed model, an object-oriented random walk strategy is
adopted to simulate the transfer path of visual focus on remote
sensing images, aiming to obtain the local salient regions of
images efficiently and accurately. This study lays the foundation
for the accurate description of salient objects in high-resolution
remote sensing images.

The rest of this article is organized as follows. Section II
reviews the related works on VAMs. Section III presents each
stage of our visual saliency detection model. Section IV first
introduces the datasets used for performance evaluation and then
shows the experimental results. Finally, Section V concludes this
article.

II. RELATED WORK

Most existing efforts on the VAM are concentrated in the field
of natural image analysis, such as the ITTI model [3], a classical
VAM proposed by Itti et al. [6] from the University of Southern
California in 1998 based on the classical “feature integration
theory”. The ITTI model contains five steps for calculating
the scan path of focus of attention (FOA) in the image. First,
an input image is subsampled into a Gaussian pyramid, with
each pyramid level decomposed into channels for red, green,
blue, yellow, intensity, and local orientations. Second, center-
surround feature maps for different features are constructed and
normalized from these channels. Third, maps are summed across
the scale and normalized again in each channel. These maps
are linearly summed and normalized once more to produce the
“conspicuity maps.” Fourth, the conspicuity maps are linearly
combined to generate the saliency map. Finally, based on the
saliency map, a “winner-take-all” neural network [7], [8] and
an “inhibition of return” method [9] are employed to obtain the
scan path of FOA.

Inspired by the ITTI model, more VAMs were designed.
Bruce and Tsotsos proposed the attention based on information
maximization (AIM) model by introducing the self-information
metric in the classical Shannon information theory to image

saliency calculation [10]. Harel et al. [4] proposed a GBVS
computation method based on the ITTI model. Hou and Zhang
[11] proposed a dynamic visual attention (DVA) model based
on sparse features. Garcia-Diaz et al. [12] used local energy
variability to measure the saliency of images with an adaptive
whitening saliency (AWS) model. Goferman et al. [13] pro-
posed a context-aware (CA) saliency detection model based on
context awareness. As the effectiveness of VAM in the field of
image analysis has been confirmed through these studies, more
attention has been paid to VAM with the design of other notable
methods [5], [14].

From the perspective of human visual behavior, the selective
attention mechanism of HVS often appears as the fixation and
transfer of FOA. FOA is usually defined as the point that has
the highest score of saliency in a scene. Therefore, the scan path
of FOA is very important for the visual saliency distribution in
the image. Studies in cognitive psychology have shown that the
FOA transfer path has certain randomness, and an appropriate
random walk model allows us to effectively predict the FOA
transfer path [15], [16]. On the basis of this theory, scholars
have proposed a series of VAMs based on random walk models
for predicting the visual saliency distribution of images [4], [17],
[18]. Among them, the most classical and influential model is
the visual saliency model based on the graph theory proposed
by Harel et al. [4], called GBVS. This model improves two steps
on the basis of the existing models and traditional methods: One
is the activation map generation, and the other is the activa-
tion map normalization and fusion. The GBVS model defines
Markov chains in different feature maps, calculates the transition
probability of the visual focus between the pixels by comparing
the character difference and distance of pixel points, and treats
the equilibrium distribution of FOA on the image pixels as the
saliency value of the pixels. Experiments show that the GBVS
model is able to accurately predict the fixation of FOA and has
notable advantages compared to other VAMs [19]. However, the
GBVS model has some limitations. First, GBVS treats pixels as
the basic unit and calculates the saliency value of each pixel
by a constructed Markov chain. Such a Markov chain tends to
have a large number of nodes, leading to great computational
needs. Second, the GBVS model calculates the final saliency
map with a Gaussian smoothing step, resulting in blurred edges
of the salient region.

In light of the deficiencies of the GBVS model, this article
introduces the idea of object-based image analysis into the VAM
field. An object consisting of adjacent similar pixels is used as
the basic unit in visual saliency computing, as an alternative
to a single pixel in the traditional way. An ORWVS detection
in high-resolution remote sensing images is proposed. The OR-
WVS not only reduces the number of nodes in the Markov chain
but also obtains sharp edges from the saliency map, benefiting
the extraction of salient regions from the images.

III. METHODOLOGY

Our proposed ORWVS is mainly different from the existing
GBVS model in that we introduce object-based image analysis
for visual saliency map computation and regard objects as the
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Fig. 2. Flowchart of the proposed ORWVS.

basic processing unit, which has been proven to be effective
for high-resolution remote sensing images. Furthermore, we
exploit the random walk model to predict the transfer path
of FOA between the objects in the image and, thus, propose
an object-based random walk strategy to calculate the visual
saliency distribution of the objects. Fig. 2 illustrates the process
of our proposed ORWVS, which includes five steps: multiscale
segmentation, object feature extraction, FOA transition proba-
bility computation, visual saliency computation, and saliency
map fusion.

Specially, in the first step, N scales are set to perform multi-
scale segmentation for the input image to obtain N segmentation
maps, and the adjacent regions with similar color features in each
segmentation map will be merged to improve the segmentation
result. Visual features, including color, intensity, and texture, of
each segmented region are then extracted to establish an object
set for the segmentation map of each scale. For the object set of
each scale, the edge weights are derived from feature differences
between the objects to calculate the transition probabilities of
FOA, and the visual saliency map of each scale is then achieved
via saliency computation, which are further fused to obtain the
final saliency map.

A. Multiscale Segmentation

The continuous improvement of the spatial resolution of
remote sensing images over the last decade facilitates the ac-
quisition of detailed information about diverse ground objects.

Such a trend redirected the research attention from pixel-based
image analysis to object-oriented image analysis [1].

The idea of object-oriented image analysis was first applied
in remote sensing image processing in the 1970s [21]. Since
2000, with the popularity of high-resolution remote sensing
images, object-oriented image analysis methods have experi-
enced rapid development due to their advantages [22]–[24]. The
idea of object-oriented image analysis is to treat the object
as the minimum image processing unit instead of pixels. A
common approach for extracting objects from an image is image
segmentation [20].

Image segmentation, a process of dividing an image into a
number of homogeneous regions (also called “superpixels”)
without overlap [25], is an important task in the computer vision
community. After years of development, great achievements
have been made in image segmentation. The current mainstream
image segmentation methods can be broadly divided into two
categories, i.e., graph-based methods and gradient ascent meth-
ods [26].

To explore the performances of different image segmentation
methods on visual saliency computing, three image segmenta-
tion methods were employed for comparative analysis, including
the graph-based image segmentation (GS) [27], the quick shift
(QS) method [28], and the simple linear iterative clustering
(SLIC) method [26]. However, due to the wide variety of ground
objects and the high structural complexity in high-resolution re-
mote sensing images, different ground objects in images always
appear on different scales. Therefore, it is challenging to extract
various ground objects on a single scale. To address this issue,
scholars have proposed solutions from two perspectives. Some
solutions used multiple-scale parameters to perform multiscale
segmentation on remote sensing images; others performed an
oversegmentation on remote sensing images, followed by merg-
ing oversegmented regions with certain constraints. Inspired by
these solutions, we use multiple-scale parameters to perform
multiscale segmentation on remote sensing images and further
analyze the adjacency matrix and color features of the segmented
regions at each scale, followed by a merging mechanism that
merges the adjacent regions with similar color features.

It is worth noting that we perform multiscale segmentation
using N different scale levels, where each level has its own scale,
and the multiscale parameter “N” is determined by manually
setting one scale per level. Therefore, for each image, we can
obtain N segmentation maps, which are then further used for
subsequent feature extraction for objects.

B. Object Feature Extraction

Image segmentation is intended to obtain a series of homoge-
nous regions without overlap. However, if we want to construct
objects on the basis of the segmented regions, the extraction
of visual features from these segmented regions is needed.
In the field of VAM, scholars often consider color, intensity,
texture, and orientation as the common visual features, with
color features being the most widely used ones. In this study,
we extract three types of common features from the objects,
including color, intensity, and texture, and provide a comparative
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analysis of these three types of visual features on the visual
saliency computing performance in the following experiment
section.

1) Color Feature Extraction: In early studies of VAMs,
scholars generally used the red–green–blue (RGB) color space
to obtain color feature maps. However, with the development
in the color theory field, it was discovered that the RGB color
space is inconsistent with the human perception of color psy-
chology, as visual differences between two colors often failed to
be presented accurately in the form of distance between two
points in the RGB color space. To address this issue, many
VAMs adopt visual-perception-oriented color models, such as
the hue–saturation–value (HSV) color space and the CIELab
color space.

The HSV color space is a classic visual-perception-oriented
color model that contains three channels, i.e., hue, saturation,
and value, corresponding, respectively, to the color, the color
depth, and the degree of brightness. HSV color space has two
major advantages. The first advantage is that the value channel
and the color channels are independent of each other; the other
advantage is that the hue channel and the saturation channel are
more suitable for human perception of color. CIELab, another
visual-perception-oriented color model, is more uniform in a
visual sense. The Euclidean distance can be used to measure the
dissimilarity between colors in the CIELab color space.

According to the above-mentioned advantages of the two
color spaces, we combine the H channel of the HSV color space
with the L, a, and b channels of the CIELab color space to build
a color feature map for objects’ saliency computation. First,
the original remote sensing image is converted from the RGB
color space to the HSV color space and the CIELab color space.
Second, values in the H, L, a, and b channels are quantized into 4,
8, 16, and 16 levels, respectively. Third, these four channels are
combined into an 8192 (4×8×16×16) level color feature map.
Finally, the color histogram of all pixels within each segmented
region of the image is calculated to obtain the objects’ color
features.

2) Intensity Feature Extraction: As one of the three core
features of human perception of color, the intensity feature has
attracted wide attention and has been widely used in visual
saliency computation. In this article, we use a similar method
of extracting color features to acquire objects’ intensity fea-
tures in images. First, the original remote sensing image is
converted from RGB space to HSV space. Second, values in
the V channel are quantized to 256 levels. Furthermore, the
intensity histogram of all pixels within each segmented region
of the image is calculated to obtain the intensity feature of each
object. Assuming that the original remote sensing image is I ,
and the three color channels of the RGB color space are R, G,
and B, respectively, the corresponding intensity feature map V
can be easily calculated by the following equation:

V =
1

3
(R+G+B) . (1)

3) Texture Feature Extraction: As a type of commonly used
low-level visual feature, texture features have attracted more and
more attention in the VAM field in recent years [29], [30]. In

this study, we employ the rotation-invariant local binary pattern
(LBP) [31] to compute the objects’ visual saliency.

The texture feature extraction process for objects in the image
is similar to the color feature extraction process. First, the
original remote sensing image is converted into a grayscale
image, from which the LBP feature map and local contrast (LC)
feature map (quantized to 8 levels) are extracted. Then, the LBP
feature map and the LC feature map are combined into a texture
feature map. Since the rotation-invariant LBP pattern has only 36
possible values, LC and LBP feature maps can be combined as
a 288 (36 × 8) level texture feature map. Finally, the texture
histogram of all pixels within each segmented region of the
image is calculated to obtain the texture feature of each object.
Note that the texture feature represents the joint probability
distribution of the LBP values and the LC values.

For all the segmented regions of the image, after extract-
ing the above-mentioned three types of visual features, we
construct a complete object set, serving as a state space
of the Markov chain in the next step. Given a remote
sensing image I , SEGn is the segmentation result of image I
under scale n, where n = 1, 2, . . . , N , withN being the number
of scale levels and r

(n)
i being a segmented region in SEGn,

where i = 1, 2, . . . , R(n), with R(n) being the total number of
the segmented regions under scale n. To construct object Obj(n)i

based on the segmented region r
(n)
i , we extract the following

properties and visual features of the region r
(n)
i .

1© Area area(n)i , i.e., the total number of pixels within the

region r
(n)
i .

2©Center coordinates center(n)i = (x
(n)
i , y

(n)
i ), i.e., the mean

2-D coordinates of all pixels within the region r
(n)
i .

3© Color feature vector Clr(n)i = (HClr
1 , HClr

2 , . . . , HClr
8192),

i.e., color histogram of the region r
(n)
i .

4© Intensity feature vector Int(n)i = (H Int
1 , H Int

2 , . . . , H Int
256),

i.e., intensity histogram of the region r
(n)
i .

5© Texture feature vector Tex(n)
i = (HTex

1 , HTex
2 , . . . , HTex

288),

i.e., texture histogram of the region r
(n)
i .

6© Set of adjacent objects {Obj(n)k |k ∈ NB(Obj(n)i )}, where

NB(Obj(n)i ) records all index numbers of the adjacent objects

of Obj(n)i .
With these properties and visual features of segmented regions

in SEGn, we further construct an object set {Obj(n)i }R(n)
i=1 under

scale n.

C. FOA Transition Probability Computation

Studies on the human visual cortex show that the receptive
fields of most neurons are present as concentric circles, whereas
the center neurons and the surrounding neurons are in a mutual
inhibition competition. Based on this evidence, Schiller et al.
suggested that the mammalian visual system has both an ON

channel (with a central activated region and a surrounding inhib-
ited region) and an OFF channel (with a central inhibited region
and a surrounding activated region) to yield equal sensitivity and
to facilitate high contrast sensitivity [32].
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Inspired by this study, we hypothesize that the saliency of an
individual object is primarily determined by the feature contrast
between itself and its adjacent objects. Based on this assumption,
we further hypothesize that the edge weight between objects
is mainly determined by two factors, i.e., the visual feature
differences and the centroid distances between adjacent objects.
The calculation of edge weight (taking the color feature as an
example) is given as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w
(n)
i,k = DFea(Obj(n)i ,Obj(n)k ) ·DSpt(Obj(n)i ,Obj(n)k )

DFea(Obj(n)i ,Obj(n)k ) = exp(N(χ2(Clr(n)i ,Clr(n)k )))− 1

DSpt(Obj(n)i ,Obj(n)k )

= exp(−(N(
∥∥∥center(n)i − center(n)k

∥∥∥))2/c1)
(2)

where w
(n)
i,k is the edge weight between Obj(n)i and its adjacent

objects Obj(n)k . If two objects are not adjacent in the image, the

edge weight between them should be zero.DFea(Obj(n)i ,Obj(n)k )
represents the visual feature differences between the two objects,
and it can be replaced by the corresponding feature vector
when calculating the intensity or texture feature difference
instead. DSpt(Obj(n)i ,Obj(n)k ) represents the centroid distances

between the objects. Moreover,χ2(Clr(n)i ,Clr(n)k ) represents the

chi-square distance between the color feature vectors, Clr(n)i

and Clr(n)k . For the feature vectors A=(a1, a2, . . . , aT ) and
B=(b1, b2, . . . , bT ), their chi-square distance can be calculated
as follows [33]:

χ2(A,B) =

T∑
t=1

(at − bt)
2

2 (at + bt)
. (3)

In addition, ‖center(n)i − center(n)k ‖ represents the Euclidean
distance between the centroids of the two objects.N(·) is a linear
normalization function

N(m) =
m

max(M)
(4)

where m is an arbitrary element of matrix Mand c1is a constant
parameter (its settings are discussed in a sensitivity analysis).

After serving all edge weights between objects, the transition
probability p

(n)
i,k of FOA between Obj(n)i and its adjacent object

Obj(n)k can be calculated as follows:

p
(n)
i,k = w

(n)
i,k

/
K∑

k=1

w
(n)
i,k . (5)

D. Visual Saliency Computation

After computing the FOA transition probabilities between all
objects, an FOA transition probability matrix between objects
can be built. Furthermore, the FOA equilibrium distribution
among objects can be calculated. Assuming that the FOA equi-
librium distribution is Π(n) = (π

(n)
1 , π

(n)
2 , . . . , π

(n)
R(n)) and the

transition probability matrix is P (n)

P (n) =

⎛
⎜⎜⎝

p
(n)
1,1 · · · p

(n)
1,k · · · p

(n)
1,R(n)

...
...

...
...

...

p
(n)
R(n),1 · · · p(n)R(n),k · · · p(n)R(n),R(n)

⎞
⎟⎟⎠ . (6)

According to the nature of equilibrium distribution, the re-
lationship between Π(n) and P (n) conforms to the following
formula:

Π(n) = Π(n) · P (n). (7)

In practice, any element π(n)
i of the equilibrium distribution

Π(n) can be quickly calculated by the edge weights w(n)
i,k from

(2), which is calculated as follows [34]:

π
(n)
i =

∑
k

w
(n)
i,k

/∑
i,k

w
(n)
i,k (8)

where
∑

k w
(n)
i,k is the sum of the edge weights between Obj(n)i

and all its adjacent objects, and
∑

i,k w
(n)
i,k is the sum of all edge

weights in the graph.
Besides the FOA equilibrium distribution, we argue that the

visual saliency of an object is also closely associated with the
area of the object. For a remote sensing image with a relatively
stable segmentation result, objects with very large areas tend to
be the background of the image. Thus, when calculating the
area factors of an object, its visual saliency with very large
areas should be inhibited. The formula for the area factor can be
expressed as follows:

A
(n)
i = 1/(1 + (c2 · area(n)i

/
(iw · ih))

2

) (9)

where iw and ih are the width and height of the original remote
sensing image, respectively, c2 represents a constant parameter
(discussed in the sensitivity analysis). After obtaining the equi-
librium distribution π

(n)
i and the area factor A(n)

i of each object

by (8) and (9), respectively, visual saliency S
(n)
i of the object

Obj(n)i can be calculated as follows:

S
(n)
i = π

(n)
i ·A(n)

i . (10)

To generate a normalized saliency map under each segmen-
tation scale, we normalize the visual saliencies of the objects

Saliency(n)
i =

S
(n)
i −min({S(n)

i })
max({S(n)

i })−min({S(n)
i })

. (11)

By assigning the normalized visual saliency values to all
pixels in the corresponding objects, we can obtain the scalewise
normalized saliency map.

E. Saliency Map Fusion

After obtaining the normalized visual saliency maps under
multiple scales, we further fuse them into a single visual saliency
map. Assuming that pxl is a pixel in the original remote sensing
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image I , its multiscale saliency can be expressed as follows:

SMap(pxl) =

∑N
n=1

∑R(n)
i=1 Saliency(n)

i ·
(
||Ipxl−c

(n)
i ||+ε

)−1

·l(pxl∈Obj(n)i )

∑N
n=1

∑R(n)
i=1

(
||Ipxl − c

(n)
i ||+ε

)−1

·l(pxl ∈ Obj(n)i )

(12)

where Ipxl is the three-dimensional feature vector in RGB color

space of the pixel pxl, c(n)i is the color center of all the pixels in

Obj(n)i , ε is a small constant (set as 0.1 in our experiment), and

l(pxl ∈ Obj(n)i ) is an indicator function, whose specific values
are as follows:

l(pxl ∈ Obj(n)i ) =

{
1, pxl ∈ Obj(n)i

0, pxl /∈ Obj(n)i

. (13)

The multiscale visual saliency of each pixel can be obtained
by (12). We further normalize the visual saliencies of all pixels
again to obtain the final saliency map of the original remote
sensing image.

IV. EXPERIMENTAL ANALYSIS

A. Experiment Dataset

UCM dataset: The UCM dataset [35] consists of 21 image
categories, and each category has 100 images with the size of
256 × 256 pixels. We selected 600 images containing distinct
ground objects from 8 categories, which are airplanes (100
images), baseball diamonds (100 images), freeway (59 images),
golf courses (65 images), rivers (67 images), sparse residential
(58 images), storage tanks (97 images), and tennis courts (54
images). These images are then manually labeled to generate
the ground truth masks for performance evaluation.

ORSSD dataset: The ORSSD dataset [36] is a challenging
dataset with diverse spatial resolutions including 1264 × 987,
800×600, and 256×256. It contains 800 optical remote sensing
images collected from several existing datasets.

B. Evaluation Measures

We employ two sets of evaluation criteria to compare
the performances of different methods quantitatively, i.e., the
precision–recall curve (i.e., the PR curve) with the F-measure
curve for full-range thresholds and the average precision, recall,
and F-measure for adaptive thresholds.

The PR curve and the F-measure curve for full-range thresh-
olds are calculated as follows. First, an integer value within the
range [0255] is selected as a threshold for generating a binary
mask from the saliency map. Second, the precision and recall can
be calculated by comparing the binary mask B and the ground
truth mask G ⎧⎨

⎩
Precision = |B∩G|

|B|

Recall = |B∩G|
|G|

(14)

where | · | denotes the number of nonzero entries in the mask.
The F-measure can be calculated as follows:

F−measure =
(1 + β2) · Precision · Recall

β2 · Precision + Recall
(15)

where β2 is a weight parameter, commonly set to 0.3 to increase
the importance of the precision value [14], [18], [39]. Third, for
each integer threshold within the range [0255], the precision, re-
call, and F-measure are calculated based on the binary mask and
the ground truth mask. Fourth, for all images in the experimental
dataset, the precision, recall, and F-measure values for full-range
thresholds are calculated, and then the average precision, recall,
and F-measure for each threshold within the range [0255] can
be obtained. Finally, the PR curve is plotted by setting the
average precision and average recall as the ordinate and abscissa
values, respectively; the F-measure curve is plotted by setting
the average F-measure and the threshold as the ordinate and
abscissa values, respectively.

The average precision, recall, and F-measure for adaptive
thresholds are calculated as follows. First, the Otsu method [39]
is employed to perform an adaptive binarization on the saliency
map. Second, the precision, recall, and F-measure are calculated
via (14) and (15) based on the adaptive binary mask and the
ground truth mask. Finally, for all images in the experimental
dataset, the precision, recall, and F-measure values are calcu-
lated, and then the average precision, recall, and F-measure for
adaptive thresholds can be obtained.

C. Performance Analysis

1) Visual Saliency Computation Based on Different Segmen-
tation Methods: As a key step in our ORWVS, image segmen-
tation has a great impact on the subsequent object extraction
and visual saliency computing. To analyze the performances of
different segmentation methods on visual saliency computation,
we employ the GS, QS, and SLIC segmentation methods and
their two combination schemes to segment the original remote
sensing images at multiple scales and calculate the final saliency
map. The first scheme is to compute the mean values of the
saliency maps based on the three methods at the pixel level
(named “Mean”), and the other scheme is to compute the max
values of the three saliency maps at the pixel level (named
“Max”).

The segmentation results measured using average precision,
recall, and F-measure for adaptive thresholds are reported in
Table I. From Table I, we notice that in terms of average precision
and F-measure, GS outperforms the other two methods. How-
ever, when using the average recall as an evaluation measure,
QS and SLIC perform notably better than GS, whereas QS
achieves the best performance among the three methods. Such
inconsistent rankings are mainly due to the adaptive thresholds.
Our further analysis suggests that the adaptive threshold values
of the QS and SLIC saliency maps are less than those of the GS
saliency maps in general. Therefore, QS and SLIC saliency maps
often have a larger foreground area, leading to a higher recall and
a lower precision. However, according to (15), precision is more
important for the F-measure calculation. Thus, the performance
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TABLE I
PERFORMANCES OF THE GS, SLIC, AND QS SEGMENTATION METHODS AND

THEIR FUSIONS ON AVERAGE PRECISION, RECALL, AND F-MEASURE FOR

ADAPTIVE THRESHOLDS

The bold indicates the best result of each column.

TABLE II
PERFORMANCES OF THE COLOR, INTENSITY, AND TEXTURE FEATURES AND

THEIR COMBINATIONS ON AVERAGE PRECISION, RECALL, AND F-MEASURE

FOR ADAPTIVE THRESHOLDS

The bold indicates the best result of each column.

rankings using average F-measure are similar to those using
average precision and different from those using average recall.

2). Visual Saliency Computation Based on Different Object
Features: Object feature extraction is another critical step of
our proposed ORWVS. To thoroughly analyze the performances
of different object features on visual saliency computation, we
extract color, intensity, and texture features of the objects to
construct the image object sets and then compute the visual
saliency for objects to obtain their corresponding visual saliency
maps.

The performances of different object features on salient object
extraction are shown in Table II. With regard to the average
recall and F-measure, the color feature outperforms the other
two features, particularly the texture feature. However, as for the
average precision measure, the performance rankings of these
three features follow intensity, color, and texture, with intensity

TABLE III
PERFORMANCES OF THE ORWVS WITH DIFFERENT VALUES OF c1 ON

AVERAGE PRECISION, RECALL, AND F-MEASURE FOR ADAPTIVE THRESHOLDS

The bold indicates the best result of each column.

TABLE IV
PERFORMANCES OF THE ORWVS WITH DIFFERENT VALUES OF c2 ON

AVERAGE PRECISION, RECALL, AND F-MEASURE FOR ADAPTIVE THRESHOLDS

The bold indicates the best result of each column.

and color performing significantly better than the texture. Sim-
ilar to the experimental results presented in Table I, due to the
greater importance of precision in the calculation of F-measure,
the performance rankings using average F-measure are similar
to those using average precision and different from those using
average recall.

3) Sensitivity Analysis to Model Parameters: There are two
important hyperparameters in our proposed ORWVS, i.e., c1 and
c2. We evaluate the performance with different values of c1 (see
Table III) and c2(see Table IV ).

4) Comparison With Other VAMs: To validate the perfor-
mance and advantage of our ORWVS, we compare this model
with the other eight VAMs. These eight models are AIM [10],
AWS [12], CA [13], DVA [11], GBVS [4], ITTI [3], RC [37], and
SVO [39]. We conduct a detailed comparative analysis between
our ORWVS and the other eight models. The PR curves and
F-measure curves of all these models are presented in Figs. 3
and 4, respectively.
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TABLE V
PERFORMANCES OF THE COLOR, INTENSITY, AND TEXTURE FEATURES ON AVERAGE PRECISION, RECALL, AND F-MEASURE FOR ADAPTIVE THRESHOLDS ON TWO

DATASETS

The bold indicates the best result of each column.

Fig. 3. PR curves of the ORWVS and the other eight models on two datasets. (a) Results on UCM dataset. (b) Results on ORSSD dataset.

To compare the performances of our ORWVS and the other
eight models on salient object extraction, we further calculate the
average precision, recall, and F-measure for adaptive thresholds.
The results are documented in Table V. We notice that our
ORWVS outperforms the other eight models by a large margin

in terms of average precision and F-measure on both UCM
and ORSSD datasets. However, the GBVS model performs the
best in terms of average recall. In fact, pixel-based models
generally perform well on average recall, mainly due to the
Gaussian smoothing process for saliency map generation in
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Fig. 4. F-measure curves of the ORWVS and the other eight models on two datasets. (a) Results on UCM dataset. (b) Results on ORSSD dataset.

Fig. 5. Comparison of the visual saliency maps of UCM by different VAMs (1st column shows sample images, 2nd column shows ground truth mask images,
and 3rd–12th columns show saliency maps by the ORWVS-Color, ORWVS-Mean, AIM, AWS, CA, DVA, GBVS, ITTI, RC, and SVO models, respectively.).

these pixel-based models, which brings in a high recall as well as
a low precision. However, for salient object extraction, precision
is considered more important than recall. Thus, in our evaluation,
we value precision more than recall.

For visual analysis, we take the UCM dataset as an example
and present its visual saliency maps by different VAMs. The
results are illustrated in Fig. 5. It can be observed that our model,
and particularly ORWVS-Color, outperforms other competing
models.

V. CONCLUSION

The merging remote sensing platforms that provide high-
resolution images provide great opportunities as well as
challenges. We notice that the efficient and accurate feature
extraction for ground objects in images has attracted increasing

attention. In this study, we introduce the selective attention
mechanism of HVS into remote sensing image processing and
employ the VAMs to extract ROI (i.e., salient region) from re-
mote sensing images. We propose a new VAM, i.e., the ORWVS.
The proposed method views image objects as the basic units in
visual saliency computation, leading to its great computation
efficiency and accuracy in terms of salient object extraction.
We further analyze the performances of different segmentation
methods and different object features in the model and conduct
a comprehensive comparative analysis between our ORWVS
and the other eight VAMs. Experimental results show that in
the saliency maps generated by our ORWVS, salient objects
have clear edges and accurate contours. Quantitative evaluations
suggest that the overall performance of our proposed model is
superior to that of the other eight VAMs.



DING et al.: VISUAL SALIENCY DETECTION IN HIGH-RESOLUTION REMOTE SENSING IMAGES 4707

The ORWVS can be widely used for object detection and
recognition, change detection, image retrieval, and scene un-
derstanding from high-resolution remote sensing images. As
for future works, we plan to further improve this model in two
directions, i.e., the efficiency of the multiscale image segmenta-
tion method and the development of innovative object features.
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