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Abstract—Synthetic aperture radar (SAR) automatic target
recognition (ATR) technology is one of the key technologies to
achieve intelligent interpretation for SAR images. With the rapid
development of deep learning, deep neural networks have been
successively used in SAR ATR and show priority in comparison
with the conventional methods. Recently, more and more attention
is paid to the robustness of deep learning-based SAR ATR methods.
The reason is that maliciously modified and imperceptible adver-
sarial images can deceive the SAR ATR methods, which are based
on the deep neural networks. In this article, we propose a novel SAR
ATR adversarial deception algorithm, which fully considers the
characteristics of SAR data. Our method can obtain the satisfactory
perturbations with a higher deception success rate, higher recog-
nition confidence, and smaller perturbation coverage than other
state-of-the-art methods for the SAR images. Experimental results
using the MSTAR dataset and OpenSARShip dataset demonstrate
the effectiveness of our method. The proposed adversarial decep-
tion method can be used in the applications, such as SAR dataset
protection, SAR sensor design, and SAR image quality evaluation.

Index Terms—Adversarial attack, automatic target recognition
(ATR), deep learning, synthetic aperture radar (SAR).

I. INTRODUCTION

DUE to the imaging ability of day-and-night and weather
independence, synthetic aperture radar (SAR) has been

widely used for remote sensing for more than 30 years. It plays
a significant role in the geographical survey, climate change
research, environment monitoring, military information pro-
cessing, and other applications [1]. With the wide applications
of SAR in the remote sensing field, target information extraction
from SAR data has become a hot research topic, especially the
automatic target recognition (ATR).
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Traditional SAR ATR can be composed by three steps,
which are preprocessing of SAR images, feature extraction, and
classification. The preprocessing step mainly includes filter-
ing [2]–[5] and target detection [6]–[8], which are employed
to provide the region of interests (ROIs) in SAR images. The
feature extraction aims to reduce redundant information of target
regions while providing discriminative representation informa-
tion [9], [10]. Based on the artificially designed features, the
classifiers can be used to determine the exact category informa-
tion of the ROIs, such as template matching [11], model-based
method [12], [13], neural networks [14], machine learning [15]–
[17], and deep learning [18]–[21].

In recent years, with the rapid development of deep learning
technology, its conspicuous learning ability and classification
ability have attracted increased attention in the field of optical
remote sensing image processing and SAR target recognition.
Compared with the traditional SAR ATR methods, deep learning
based methods have achieved satisfactory performance, e.g.,
deep convolutional autoencoder [22], deep belief network [23],
restricted Boltzmann machine [24], convolutional neural net-
works (CNNs) [18], recurrent neural networks [19], [25], and
their derived methods, e.g., spatial-temporal ensemble convo-
lution [26]. Up to now, the state-of-the-art methods can reach
a 100% recognition rate on the 10-class dataset of the Moving
and Stationary Target Acquisition and Recognition (MSTAR)
Program [27].

Deep learning has achieved remarkable results and become
the dominant approach for the SAR ATR. However, the inter-
pretability and robustness of deep learning-based SAR ATR are
worthy of further discussion. The internal working mechanism
and decision-making of the deep learning are relatively com-
plicated, making it difficult to determine the decision-making
boundaries. Therefore, the deep learning is fragile. Szegedy et al.
[28] discovered the existence of this specific disturbance against
the neural networks for the first time. Brown et al. [29] designed
the specific perturbations according to different scenarios of the
physical world. Ekholt et al. [30] added specific interference
stickers on the road signs to deceive the autonomous vehicles
in different scenarios, which can make the automatic driving
recognition model generate incorrect instructions. Hence, the
definition of adversarial sample is given, that is, a modified
version of the original image, which can deceive the machine
learning classification technique [31].

Adversarial sample can also weaken the performance of
various deep neural networks (DNNs), such as the detection
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networks, segmentation networks, and so on [32]–[34]. For
the deep learning-based SAR ATR models, the maliciously
modified and imperceptible perturbations can also cause its
misjudgments [35]. According to different attack scenarios and
objectives, there are several adversarial attack routes. As far
as the prior knowledge of deep model is concerned, it can be
classified into white box and black box, namely, whether the
model parameters are known. In terms of the attack objective, it
can be divided into targeted attack and untargeted attack, that is,
the target’s misclassification category is determined or uncertain.
In the early stages of theoretical research, these methods are
always combined to implement an adversarial attack. Huang
et al. [36] generated SAR adversarial samples using the iterative
fast gradient sign method (I-FGSM), iterative least likely class
method (ILCM), and the decision-based attack (DBA) [37]
against different SAR target recognition networks, respectively.
Among them, the I-FGSM and ILCM attack the SAR ATR
deep models in white-box mode, whereas the I-FGSM achieves
targeted attack and ILCM achieves untargeted attack. As for
the black-box mode, the DBA [37] is employed to attack the
SAR ATR models under the targeted attack. Meanwhile, it can
be seen from the experimental results that the SAR adversarial
samples can alleviate the recognition accuracy of SAR ATR
model by more than 90% [36]. In addition, this work also
demonstrates the vulnerability of the DNN-based SAR ATR
methods. Li et al. [38] used the FGSM [39] and basic iteration
method (BIM) methods to generate SAR adversarial samples
against the SAR ATR white-box models. Similarly, the experi-
ments in this article prove that the SAR ATR deep model will
make misjudgments when recognizing the adversarial image
samples.

Although the previous studies verify that the deep learning-
based SAR ATR is susceptible to malicious perturbations, there
are still several unresolved issues. First, the fooling rate is not
promising and can be further improved. Second, as for a success-
ful adversarial sample, the confidence probability is relatively
low, especially in black-box mode. Third, the coverage of ad-
versarial perturbation (AP) is relatively wide and can be further
decreased for better imperceptibility. Therefore, the following
two criteria should be considered to improve the deceptiveness
of the adversarial samples in SAR ATR.

1) Keep strong deceptive ability: Maximize the fooling
rate and the recognition confidence of SAR adversarial
samples.

2) Reduce the visual perception: Minimize the deceptive per-
turbation coverage in the SAR image without dramatically
changing the backscattering.

Generally, existing SAR adversarial attack methods cannot
completely meet the above criteria. In order to further improve
the deceptive performance, we propose a new SAR ATR ad-
versarial deception method in this article, which introduces
three specific constraints as the improved optimization strategy
to generate SAR adversarial samples. Compared with other
methods, the SAR adversarial samples generated by our method
are expected to be more deceptive and robust. In this article,
the proposed method is based on three optimization strategies,
utilizing an iterative solution to yield malicious perturbations

and further generate SAR adversarial images. The main contri-
butions are given as follows.

1) A higher fooling rate of the adversarial deception method
is achieved by minimizing the image differences and max-
imizing the feature differences between the original and
the adversarial images.

2) A higher recognition confidence of the adversarial sample
is reached through the recognition probability constraints
among classes.

3) A smaller perturbation coverage of the adversarial sample
is meet by introducing the nonzero element constraint of
the perturbation image.

The rest of this article is organized as follows. In Section II,
we introduce the recent studies on adversarial attacks on SAR
target recognition network. In Section III, the proposed decep-
tion method for SAR ATR is introduced, including the basic
generation, the high misjudgment probability generation, and
the small perturbation coverage generation of SAR perturbation
images. Section IV presents the experimental results and anal-
ysis based on the MSTAR and OpenSARShip dataset, as well
as the comparisons with other state-of-the-art methods. Finally,
Section V concludes this article.

II. RELATED WORKS

In this section, we briefly introduce the newly published
adversarial attack methods against the SAR target recognition
networks. Currently, the I-FGSM (BIM), ILCM, and DBA meth-
ods have been utilized for the attack of SAR target recognition
network. The basic ideas of these methods are similar, i.e., make
the network model produce wrong labels by iteratively adjust the
perturbation.

Given an image X ∈ Rn, there will find a perturbation δ,
which will produce a roughly similar image X ′ = X + δ (ad-
versarial example). For the images X and X ′, different labels
are marked by the well-trained target recognition network. Ac-
cording to the definition of adversarial example, C&W model
the process of generating δ into as a following constrained
minimization problem [40]:

minimize ‖δ‖22 + c · f(X ′, l)
such that X ′ ∈ [0, 1]n

(1)

where c presents a hyperparameter, f(·) is a loss function that
reflects the level of adversarial attacks, and l indicates the class
label of X ′.

In detail,X + δ ∈ [0, 1]n is rewritten as 1
2 tanh(W ) + 1. Since

−1 ≤ tanh(W ) ≤ 1, so that 0 ≤ X + δ ≤ 1. The perturbation
δ can be expressed by W . In this way, we can formulate the
problem as follows [40]:

minimize L = ‖δ‖22 + c · f(X ′, l))

δ =
1

2
(tanh(W ) + 1)−X (2)

where L presents the loss function of the specific constraint. By
minimizing the loss function, we can find the optimal perturba-
tion image δ.
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Fig. 1. Illustration of adversarial deception against SAR ATR networks.

So far, the loss function is still an indeterminate expression
and is highly related to the deep recognition network’s output.
In order to realize a high-quality deception in two different
ways, namely, targeted attack mode and untargeted attack mode,
two objective functions are used for the optimal perturbation
generation [40].

1) Objective Function of Targeted Attack Mode: In the tar-
geted attack model, the adversarial sampleX ′will be determined
to a specific target class label t. Accordingly, the objective
function in targeted attack mode are as follows:

f1 (X
′, t) = max

i�=t
(Z(X ′)i − Z(X ′)t) (3)

whereZ(X ′) ∈ RK is the logit layer representation of the recog-
nition network, and Z(X ′)i indicates the predicted probability
that X ′ belongs to class i, i ∈ (1,K).

2) Objective Function of UnTargeted Attack Mode: In the
untargeted attacks mode, the adversarial sample X ′ can be
determined to any label, as long as the conditionC(X ′) �= C(X)
can be met. The objective function is set as follows:

f2 (X
′, t0) = Z(X ′)t0−max

i �=t0
(Z(X ′)i) (4)

where t0 is the class label of the original imageX . The objective
function f2(·) intends to increase the probability difference
between the non-t0 class and the t0 class to realize a high
confidence DNN deception.

In general, the perturbation image δ will be calculated by min-
imizing the loss function L. By constructing different objective

functions, adversarial image samples for different application
scenarios will be generated to fool the specific DNNs.

III. PROPOSED METHOD

In this section, we will introduce the framework of SAR
target recognition network deception method, as shown in Fig. 1.
Its basic idea is to superimpose an imperceptible perturbation
image δ to the original SAR image X to generate an adversarial
sample image X ′, which can trick the SAR ATR model into
producing wrong labels. According to the original SAR imageX
and specific constraints, the perturbation δ will be yielded after
iterative optimization. Under the premise of fully considering
the characteristics of SAR images (speckles, backscattering, and
geometric distortions), three attack objectives are considered for
the perturbation generation, which are high fooling rate, high
misclassification confidence (MC), and small perturbation cov-
erage. Correspondingly, the generation process is divided into
two parts, i.e., perturbation generation and adversarial image
generation.

Compared with the low confidence probability in [36], the
high confidence constraint can make the classification of the
generated SAR adversarial samples with dominant confidence.
Compared with the noticeable perturbation in [38], the low
perturbation range constraint only allows a few pixels to be
disturbed, thus preserving the texture information of the SAR
image. In this article, we set two attack modes (targeted and
untargeted attacks) for the proposed method under different
application scenarios.
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Fig. 2. Generation of SAR adversarial image.

A. Framework of SAR Adversarial Image Generation

1) Perturbation Generation: As shown in Fig. 2, the gen-
eration of SAR perturbation image is an iterative optimization
process, through which an AP that meets the objectives can be
generated. In each iteration, the SAR image X and the iteration
variable δ0 are superimposed to yield the initial adversarial
image X ′, which will be input into a well-trained CNN model
to obtain the inference label. According to the logits of X ′

and the δ0, the loss value of L(δ0) is calculated by the loss
function (2). Then, a perturbation δ′ will be calculated by the
optimizer (Adam Optimizer is employed to minimize L(δ0)).
If the iteration termination condition is not met, the variable
δ′ will be updated to the iteration variable δ0, and the next
round of iterative optimization will start. When the loss value
no longer drops, or the number of iterations is reached, the
final perturbation image δ is obtained. The detailed process of
perturbation generation is shown in Algorithm 1.

2) Adversarial Image Generation: By superimposing δ on
the SAR image X , a SAR adversarial image sample X ′ is
produced. Besides, the best perturbation may not necessarily
correspond to the best adversarial image. So, the matrix δ′ of
each iteration could be saved to generate more adversarial image
samples, which can be verified by the well-trained network to
find the optimal SAR adversarial image with high fooling rate,
high MC and low visual difference.

B. Loss Function of High Fooling Rate

As the first step of the proposed SAR ATR adversarial decep-
tion method, the goal is to achieve a high fooling rate, which
means the high ratio of the misclassified adversarial samples

Algorithm 1: Method of Perturbation Image δ Generation.
Input: SAR image X and its label t0, initial perturbation
δ0 and its target label t (for targeted attack model),
number of iterations N .

Output: Perturbation image δ.
1: while (∇L(δ0) > 0)||n < N) do
2: calculate the objective function f1(X,′ t) or

f2(X,′ t0);
3: calculate the loss function L(δ0) according to (2);
4: minimize L(δ0) to obtain δ′;
5: Update δ0 ← δ′;
6: n++;
7: end while
8: δ=δ0;

to the total adversarial examples. According to the basic opti-
mization strategy and two attack modes, we set the fundamental
constraint of SAR adversarial image as the following:{

Targeted : LBt
= ‖δ‖22 + c · f1(X,′ t)

Untargeted : LBu
= ‖δ‖22 + c · f2(X,′ t0)

(5)

where LBt
is the loss function under targeted attack mode and

LBu
is the loss function under untargeted attack mode. We

can generate SAR adversarial samples by minimizing the loss
function under different attack modes.

C. Loss Function of High MC

Technically speaking, a high fooling rate does not mean a
successful deception attack. If the MC level is too low, it may
not pass the manual or algorithmic rechecks. Therefore, based
on the basic loss function, a new constraint that can maximize
the misjudgment probability is introduced to improve the adver-
sarial performance. The main idea of the constraint is to increase
the logit difference between the misclassified category and the
others, and the constraint strategy is depicted as follows:

LH = min{sum
i �=l

(Z(X ′)i)− Z(X ′)l} (6)

where l represents the label of misclassified category. It can be
seen that the smaller the value of the high constraint function,
the higher the confidence of the misclassified perturbation sam-
ple. Since the misjudgment category label of the adversarial
sample image should be given in advance, only the target attack
mode is considered in this constraint optimization.

D. Loss Function of Small Perturbation Coverage

The previous two constraints are proposed from the view of
data results and intend to achieve a good and highly credible
recognition result. However, the adversarial image sample may
be easily checked if such a deceptive image is more differentiated
and violates the physics of electromagnetic scattering, e.g., there
are some significant perturbations on airport runways where
should exhibit low backscattering. Compared with the targets,
the scattering distribution of the background clutter is generally
more homogeneous. Once this homogeneous texture changes,
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it will easily attract visual attention. Therefore, a better way
to attack SAR recognition networks with low influence on the
image texture is to narrow the perturbation coverage.
C&W l0 algorithm is employed to generate the SAR adver-

sarial images with a small perturbation coverage. Its basic idea
is to use l0-norm to constraint the coverage of perturbations. The
definition of l0-norm is depicted as follows:

‖δ‖0 = #(i|δi �= 0) (7)

which represents the total number of nonzero elements in the
image matrix. By minimizing the l0-norm of perturbation (L2P)
image, the number of nonzero perturbation pixels can be sig-
nificantly decreased. Thus, the definition of the constraint with
small perturbation coverage is described as follow:

LS = ‖δ‖0. (8)

For the l0-norm,C&W l0 is used to achieve the minimization.
C&W l0 is an iterative algorithm. The process of C&W l0
algorithm is explained as follows. First, in each iteration, the
basic optimal strategy is used to generate the SAR adversarial
image without considering a small range coverage. Second, these
pixels, which have less impact on the range coverage, can be
found through the gradient of the loss function to the input δ.
Then, we set the perturbation of these pixels as zero for the
further iteration. In this procedure, the number of zero-pixel
in the SAR adversarial image will increase in each iteration.
Eventually, the SAR adversarial image with a small coverage
can be obtained.

By minimizing the constraint, the SAR perturbation image
with a small perturbation coverage is generated. Eventually,
LBt,u

, LS , and LH are integrated to optimize the generation
of SAR adversarial image, which can meet the goals of high
fooling rate, high misclassified confidence, and small perturba-
tion coverage. Therefore, the final loss function can be depicted
as follows:{

Targeted : LT =‖δ‖22 + ft(X + δ) + LS + LH(X + δ)

Untargeted : LU =‖δ‖22 + fu(X + δ) + LS
.

(9)

E. Minimization of Loss Function

As for minimizing the loss function, Adam optimizer [41]
is employed to find the optimal δ′ through the gradient of the
loss functions L. The process of minimizing loss function to
get δ is shown in Algorithm 2. The gradient of the SAR target
recognition network is hard to solve. In the white box and the
black box, the network information we obtain is different, so the
way to solve the gradient is also different.

For the SAR target recognition network, its expression can be
depicted as follows:{

zi = ϕi

(
W i · ai−1 + bi

)
Z = zl = φ(X;W, b)

(10)

where zi is the expression of ith layer, W i and bi represent the
weights and biases of ith layer, respectively. ai−1 is the input of
ith layer. At the same time, it is also the output of (i-1)th layer.
zl is the logit layer Then, the expression of the logit layer Z can

Algorithm 2: Adam Algorithm: Minimizing L to Get δ.
Input: L: Loss function with parameters δ ∈ Rn (n pixels)
α = 0.01: StepSize, β1 = 0.9, β2 = 0.999: Exponential
decay rates for the moment estimates in Adam algorithm.
δ0: Initial parameter
m0 ←− 0, v0 ←− 0, t←− 0, Same as δ′s dimension
m0, v0 are the first and second moments, respectively
Output Perturbation image δ.
1: while δt is not converged do
2: t++;
3: gt ← ∇δL(δt−1);

White box: Estimate it by backpropagation of (10);
Black box: Estimate it by calculating (11).

4: mt ← β1 ·mt−1 + (1− β1) · gt, Update mt;
5: vt ← β2 · vt−1 + (1− β2) · gt2, Update vt;
6: m̂t ← mt/(1− βt

1), Bias-corrected mt;
7: v̂t ← vt/(1− βt

2), Bias-corrected vt;
8: Update δt ← δt−1 − α · m̂t/(

√
v̂t + ε);

9: end while
10: δ=δt;

be expressed as a composite function between the input layer
and logit layer.

In the white box, weights and biases of each layer of the SAR
target recognition network are known. So, we can obtain the
gradient by the composite function of the white-box network.

However, in the black box, we can only get the classification
score F (.) of the network. The symmetrical difference is em-
ployed to get each pixel’s gradient of the black-box network.
The definition of symmetrical difference is

∇δiF (δ) ≈ F (δ + hei)− F (δ − hei)

2h
(11)

where h is a small constant, which is set to 0.0001 in the
experiments, ei is a standard basis vector that has the same
dimension with δ, and the ith component of ei is 1, and the
rests are 0.

Compared with the black-box network, the white-box net-
work has a faster gradient solution speed and more accurate
gradient information. However, it requires more information
about the SAR target recognition network. In this way, we can
get the optimal δ by the Adam optimizer.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, four different scenarios are designed to discuss
the effectiveness of the proposed method for the experiments,
namely, targeted attack on white-box CNN, targeted attack on
black-box CNN, untargeted attack on white-box CNN, and
untargeted attack on black-box CNN. In the experiments, the
deception success rate is selected as an indicator and three
state-of-the-art methods are chosen for the comparison. The
employed CNN networks are implemented under the Keras
architecture and TensorFlow backend. Table I gives the basic
configuration of the platform.
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TABLE I
CONFIGURATION OF EXPERIMENT PLATFORM

TABLE II
NUMBER OF SAMPLES IN THE MSTAR DATASET

TABLE III
NUMBER OF SAMPLES IN THE OPENSARSHIP DATASET

A. Experimental Data and Model

1) MSTAR Dataset: In this article, we adopt the widely used
MSTAR dataset, which includes ten types of vehicle targets and
has different image sizes. We use the dataset with 17 depression
angles as the training set and the dataset with 15 depression
angles as the test set. The training set and validation set include
2547 and 200 images, respectively. The details of the dataset
are given in Table II. In addition, in order to make the image
size uniform for the CNN input, we center-crop each image to
128×128.

2) OpenSARship Dataset: In order to verify the robustness
of the method, the OpenSARShip dataset is also employed in
the experiments. The dataset includes three types of ship targets,
which have the same image size (512 × 512). The training set
and test set include 1050 and 108 images, respectively. We crop
each image to 128 × 128 for the network input. The details of
the dataset are given in Table III.

3) Adversarial Sample Set: For these two datasets, their test
samples are selected as the original images of the adversarial
samples. In untargeted attack mode, the label will be confused
as any category other than its own category. For each original
image, a random label from other categories is distributed, and
accordingly, the number of adversarial samples is the same as
the number of the test set. In targeted attack mode, the label
will be confused as a specific class other than its own category.
For each original image, adversarial samples are generated by

TABLE IV
MODEL ARCHITECTURES FOR THE CNN MODEL

TABLE V
TRAINING AND TESTING ACCURACY OF THE CNN MODEL

assigning the corresponding labels form other classes. There-
fore, the number of adversarial samples in the MSTAR dataset
is nine times the number of the test set. Similarly, the number of
adversarial samples in the OpenSARShip dataset is two times
the number of the test set.

4) Well-Trained CNN Model: The CNN model architecture
is given in Table IV. The CNN model is composed of four
convolution layers and three fully connected layers. In addi-
tion, the ReLU activation function and the maximum pooling
method are adopted in the CNN model. The ReLU activation
function can suppress the gradient diffusion phenomenon of the
network model to a certain extent, and it has high computational
efficiency.

In the experiments, the input image size is 128×128. We use
the SGD optimizer to train it. The hyperparameters are set as
follows: learningrate = 0.01, decay = 1e-6, momentum = 0.9,
epoch = 30 and batchsize = 32. The final training results are
given in Table V.

5) Evaluation Metrics for the SAR Adversarial Images: To
better evaluate the performance of the proposed method, four
evaluation metrics are used for the SAR adversarial images.
First, the fooling rate is introduced to verify the effectiveness
of the proposed method. It represents the ratio of the number of
samples that can successfully fool the SAR ATR model (Nsuccess)
to the number of all adversarial samples (Nall), and can be
expressed as the following:

fooling rate =
Nsuccess

Nall
. (12)

Second, the MC is employed to verify the deception perfor-
mance of SAR adversarial samples against SAR ATR models.
It indicates the confidence probability that a SAR image of
a particular class is misclassified into other class, and can be
acquired from softmax unit of ATR model.

Third, the structural similarity (SSIM) and L2P are introduced
to evaluate the imperceptibility of the SAR adversarial sample.
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Fig. 3. SAR adversarial samples generated in the white-box state under
targeted attack mode.

The L2P is expressed as the following:

L2P = ‖δ‖2 =
√

δ2(1,1) + δ2(1,2) + · · ·+ δ2(n,n), n = 128.

(13)
At last, the number of disturbing pixels (NDP) is used to

verify the controlling effect of the perturbation coverage. For
each perturbation image, pixels whose pixel gray value is greater
than 0 are regarded as the disturbing pixels.

B. SAR Adversarial Deception With MSTAR Dataset

In this section, attack experiments are conducted under four
different scenarios. First, the construction of adversarial decep-
tion set will be introduced. Meanwhile, the visual effect of these
perturbations will be presented. Second, the detailed evaluation
on adversarial deception will be discussed among these four
scenarios.

In targeted attack mode, for each SAR image, we set the other
nine categories as their specific target categories to generate nine
adversarial samples separately, as shown in Figs. 3 and 4. The
nine perturbation images of each SAR image are quite different
regardless of whether it is in the white-box or black-box CNN
models. Take the image in the left corner as an example, it will
be misclassified to the fifth class if the fifth perturbation in the
first row is superimposed on itself.

In the untargeted attack mode, for each SAR image, the class
label of adversarial image is an arbitrary label generated at
random except for its own label, as shown in Figs. 5 and 6.
In each three columns, the left column lists the original images,
the middle column lists the corresponding perturbations, and the
right column lists the adversarial images. It can be seen that the
perturbations of white-box CNN is weaker than that of black-box
CNN. The reason may be that the white-box way acquires more
information than the black-box way.

Furthermore, to verify the imperceptibility of the SAR ad-
versarial image, the SSIM is used to evaluate the similarity
between the original SAR image and the SAR adversarial image,

Fig. 4. SAR adversarial samples generated in the black-box state under
targeted attack mode.

Fig. 5. SAR adversarial samples generated in the white-box state under untar-
geted attack mode. (a) Original image of class 0–4. (b) Perturbation image. (c)
Adversarial image of class 0–4. (d) Original image of class 5–9. (e) Perturbation
image. (f) Adversarial image of class 5–9.

as shown in Tables VI and VII. As for the experimental data,
one SAR image is selected for each class in the targeted and
untargeted experiments, ten SAR images are selected for each
class in the average SSIM experiment, including the targeted
and untargeted attack. In the experiment of targeted attack, a
SAR image is selected from each are employed to generate
90 adversarial images The SSIMs of the white-box attack are
slightly bigger than that of the black-box attack, and the SSIMs
of untargeted attack are bigger than that of targeted attack. Com-
pared with the untargeted mode, the extra constraint condition
in targeted attack mode will increase the noisy level of AP. In
general, the adversarial image generated by the proposed method
is highly similar to the original SAR image, thus achieving high
concealment.

In order to evaluate the adversarial performance of the pro-
posed method, nine adversarial image samples of 2S1 category
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Fig. 6. SAR adversarial samples generated in the black-box state under untar-
geted attack mode. (a) Original image of class 0–4. (b) Perturbation image. (c)
Adversarial image of class 0–4. (d) Original image of class 5–9. (e) Perturbation
image. (f) Adversarial image of class 5-9.

TABLE VI
SSIM OF THE ORIGINAL SAR IMAGE AND SAR ADVERSARIAL IMAGE IN THE

WHITE-BOX STATE

are tested by the CNN model, and their confidence probabilities
are shown in Fig. 7. Basically, the confidence of white-box attack
is much higher than that of the black-box attack, and can be
stabilized above 70%. As for the black-box attacks, although
they are not dominant, the confidences still exceed 50%.

C. Performance of Improved Loss Function

In this article, we propose the constraints of high fooling rate,
high MC, and small perturbation coverage for the deception
algorithm to reach the criteria (reduce the change of texture and
keep strong deceptive ability of SAR adversarial image). This
section will verify the positive performance of the constraints
on SAR adversarial deception algorithm.

First, an original SAR image of 2S1 category is employed
to perform the ablation experiments, which are the attack with
high fooling rate constraint, attack with high fooling rate and

TABLE VII
SSIM OF THE ORIGINAL SAR IMAGE AND SAR ADVERSARIAL IMAGE IN THE

BLACK-BOX STATE

confidence probability constraints, and attack with all three
constraints. Second, in targeted attack mode, nine adversarial
images are generated under the high fooling rate constraint, nine
adversarial images are generated under the first two constraints,
and nine adversarial images are generated under the whole
constraints, respectively. Finally, in the case of a successful
adversarial attack, we compare the effects of SAR adversarial
images under the three constraints from different perspectives,
as shown in Table VIII.

Each row of Table VIII lists the perturbation images of dif-
ferent constraint combinations and their evaluation indicators,
which include MC, L2P, NDP, and SSIM. From the results, it can
be seen that every additional constraint will bring performance
improvement. As far as the first constraint is concerned, L2P
indicates that the perturbation intensity level is satisfactory, but
the confidence is rather low, and the number of contaminated
pixels is relatively high. In this situation, the average MC is less
than 40%. After adding the confidence constraint, it can be seen
that the average MC is improved to around 60%. However, the
average NDP is still greater than 12 000 pixels. For L2P, it and
MC are proportional. In this sense, a higher MC will be achieved
as the perturbation intensity increases. But too high perturbation
intensity will cause apparent visual changes, which may not pass
the human visual inspection. As for the coverage constraint, its
advantage is obvious that the average NDP is reduced to a level of
less than 100 pixels, and the high confidence is still maintained.
Visually, the perturbation is concentrated on a small part of
the pixels (less than 1% of the whole SAR image). Compared
with the previous two cases, the proposed method with three
constraints is easier to achieve SAR adversarial deception.

D. SAR Adversarial Image Discussion With the OpenSARship

To further validate the robustness of the proposed method,
the OpenSARShip dataset is used for evaluation. For verifying
the deceptive ability of the proposed method, the adversarial
samples are generated under four different scenarios, which
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Fig. 7. Confidence of SAR adversarial samples generated in the white-box state and the black-box state under targeted attack mode. The category of the original
sample is 2S1. The category of the SAR adversarial example is: (a) BRDM2, (b) BTR60, (c) D7, (d) T62, (e) ZIL131, (f) ZSU234, (g) BMP2, (h) BTR70, and
(i) T72.

TABLE VIII
PERFORMANCE OF SAR ADVERSARIAL IMAGE UNDER DIFFERENT CRITERIA
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TABLE IX
FOOLING RATES OF SAR ADVERSARIAL IMAGES UNDER FOUR SCENARIOS

WITH OPENSARSHIP DATASET

are white-box CNN with targeted attack, white-box CNN with
untargeted attack, black-box CNN with targeted attack, and
black-box CNN with untargeted attack. As given in Table IX, the
fooling rate of white-box attack is bigger than that of black-box
attack, and untargeted attack is better than the targeted attack. It
can be concluded that a successful adversarial deception requires
more CNN model information and less dependence on target
information.

In order to better analyze the performance of the proposed
method, an original OpenSARship image is randomly selected
from the bulk carrier category, and is employed to generate SAR
adversarial samples under four different scenarios. As given
in Table X, the generated SAR adversarial samples are highly
similar to the original images from the visual check and the
SSIM indicator. From its perturbation images, we can analyze
the differences among the SAR adversarial samples of the four
different scenarios.

Under the untargeted attack mode, the L2P and NDP are
smaller than that of the targeted attack mode. From the aspect
of visual effect, the SSIM of untargeted attack is better than the
targeted attack. In terms of the perturbation image, the white-box
attack can realize a smaller coverage of perturbation while the
balck-box attack requires a larger coverage of disturbance.

For the white-box SAR ATR model, based on the model prior,
the impact of different SAR adversarial samples on the ATR
model can be obtained for the iterative optimization. Therefore,
the white-box attack method can quickly generate the SAR
adversarial samples that concentrate the perturbation in the target
region. However, for the black-box SAR ATR network, the
impact of SAR perturbation is hard to acquire. The limited
information lies on whether the perturbation can achieve a
successful attack, namely, the classification probabilities and the
determined labels. The experimental results show that the NDP
in the white-box attack is much lower than that of the black-box
attack, and the former attack also can reach adversarial deception
with higher confidence.

E. Analysis of the SAR Adversarial Image

In this section, in order to better represent the effectiveness of
the proposed method, we analyze the SAR adversarial samples
from the following three aspects, namely, the feature map anal-
ysis, transferability analysis, and physical realizability analysis.
Among them, the feature map part analyzes the key information
of the SAR adversarial sample that leads to its misjudgment
in the CNN-based SAR ATR model. The transferability part
analyzes the effect of adversarial samples on different networks
and initially discusses the applicability of SAR adversarial sam-
ples. The physical realizability section analyzes the perturbation
distribution of the SAR adversarial samples and discusses the

mechanism of physical camouflage realization of the SAR target
in detail.

1) Feature Map Analysis: Generally, one important advan-
tage of CNN is to automatically extract or learn the features from
the training samples. Thus, the key point of its decision-making
is the feature maps of SAR images from the convolutional
layers. Therefore, we conduct an experiment to demonstrate
the recognition state inside the so-called black-box model of
CNN for disclosing the recognition mechanism. In addition to
the original and adversarial samples, the experiment also adds
the Rayleigh noise sample, which is generated by multiplying
Rayleigh noise with the original image, to simulate the severe
speckle effect.

As shown in Fig. 8, the first row lists the feature maps of the
original sample, the second row lists the feature maps of the
original sample multiplied by Rayleigh noise, and the third row
lists the feature maps of the original sample with AP added. It
can be seen that the feature maps of the original and adversarial
samples are significantly different from the third layer to the last
layer. Accordingly, the recognition results are confused from
Bmp2 to ZIL131 for the CNN model, and misclassified from
T72 to BTR60 for the AconvNet. On the other hand, for the
original and Rayleigh noise samples, their feature maps are
basically similar in visual representation. Thus, the simulated
severe speckle effect on the original sample does not affect the
recognition results.

Although the adversarial sample maintains the similarity with
the original SAR image, its perturbation changes the critical
information of the SAR image representation, and brings the
obvious changes in feature maps, resulting in misclassification.
For SAR adversarial sample, its perturbation is controlled in a
small range, so the key regions of SAR images for the CNN-
based model can be reflected in the perturbation images.

2) Transferability Analysis: In order to disclose the transfer-
ability of the adversarial samples, two experiments are designed,
respectively, white-targeted attack and white-untargeted attack.
The adversarial samples are generated from MSTAR datasets
with the proposed method and the employed CNN model (see
Table XI). The well-trained classical shallow and moderate
DNN, namely AConvNet and ResNet18, are employed to eval-
uate the transferability of the adversarial samples.

In the experiment on white-targeted attack, the baseline fool-
ing rate for the CNN model is 98.11%, and the fooling rates
decrease by about 27% for AConvNet and 15% for ResNet18. In
another experiment, the baseline fooling rate is 98.95%, and the
fooling rates decrease by about 58% for AConvNet and 20% for
ResNet18. For different adversarial attack modes, the fooling
rate of targeted attack mode is better than that of untargeted
attack mode. For the adversarial sample set generated under
targeted attack mode, the generation process is more targeted,
thus having better transferability in other CNN-based SAR ATR
models. From the results, it can be seen that the adversarial
samples can achieve successful adversarial attacks against other
neural networks to a certain extent, and are more likely to fool
the DNN, such as ResNet18.

3) Physical Realizability Analysis: In this section, we ana-
lyze the SAR adversarial image at the perspective of physical
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TABLE X
PERFORMANCE OF SAR ADVERSARIAL IMAGE UNDER FOUR SCENARIOS WITH OPENSARSHIP DATASET

Fig. 8. Feature maps of each layer in CNN Model and AConvNet.

realization. As shown in Fig. 9, each image in the MSTAR
dataset consists of three parts: the vehicle area, shadow area,
and background area.

Due to the limitation of electromagnetic waves, the elec-
tromagnetic waves around the vehicle will be blocked by the
vehicle, so the corresponding location in the SAR image will
be imaged as a shadow area. Therefore, it is difficult to add
perturbation in the shadow area. And due to the irradiation
angle of electromagnetic waves and the characteristics of the

target vehicle, some bright spots (strong scattering points) will
be formed in the vehicle area, as shown in the SAR image.
Therefore, for the vehicle area, a corresponding perturbation can
be added to change the distribution of bright spots (scattering
information) in the vehicle area. As for the background area of
the vehicle, the background is usually complex and changeable,
such as an ocean, urban area, farmland, and desert. Compared
with the background area, the types of vehicles of interest are
limited. So it is relatively easy to add perturbations to the target.



4518 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

TABLE XI
FOOLING RATES OF ADVERSARIAL SAMPLES ON DIFFERENT NETWORK

MODELS

Fig. 9. Examples of extracting vehicle areas from SAR image. (a) Original
SAR image. (b) Three areas of image (vehicle, shadow, and background).
(c) Vehicle area.

Fig. 10. Heatmap of perturbation image on vehicle area. Perturbation inten-
sity: the gray level difference between the SAR adversarial sample and the
original sample.

Therefore, considering the subsequent physical realization of
the SAR adversarial image, we only care about the perturbation
of the vehicle area.

We select an image in the 2S1 category and use it to generate
SAR adversarial image. In addition, we extract the perturbation
in the vehicle area and display it in the heat map.

As shown in Fig. 10, for SAR adversarial image, the red
pixel indicates that its gray level has increased relative to the
original SAR image, and the blue area indicates that its gray
level has decreased relative to the original SAR sample. It can
be seen from the experimental results that the perturbation of
the SAR adversarial image is concentrated on the boundary and
the inner side of the vehicle. In particular, at the boundary of the
vehicle, the brightness of the SAR disturbance becomes brighter,
whereas at the inner side of the vehicle, the brightness of the
SAR disturbance becomes darker. Therefore, according to the
physical characteristics of the SAR image and the law of SAR
disturbance, some strong scattering objects, which can change
the SAR backscattering can be added to the vehicle to achieve
the effect of physically deceiving the SAR target recognition
network.

TABLE XII
FOOLING RATES OF SAR ADVERSARIAL IMAGES GENERATED BY DIFFERENT

METHODS WITH MSTAR DATASET

F. Performance Comparison

A comparative experiment with state-of-the-art methods are
designed to evaluate the performance of the proposed method.
Huang et al. [36] and Li et al. [38], respectively, used the
mainstream methods to attack SAR ATR networks, including
FGSM [38], BIM [36], [38], and DBA [36]. In the experiments,
the shallow SAR ATR model (AConvNet) and deep SAR ATR
model (ResNet) are attacked and compared based on the MSTAR
dataset. After training, the classification accuracy of the ACon-
vNet model reached 97.61% and the classification accuracy of
the ResNet18 model reached 98.39%.

The experimental results are given in Table XII. For shallow
SAR ATR model, the fooling rate of FGSM, BIM, and DBA
are 83.66%, 94.44%, and 88.91%, respectively. The proposed
method achieves a fooling rate of 98.87%, outperforming other
methods by an average of 9.87%. For deep SAR ATR model, the
fooling rate of FGSM, BIM, and DBA are 79.35%, 91.32%, and
83.66%, respectively. The proposed method achieves a fooling
rate of 98.31%, outperforming other methods by an average
of 13.53%. The experimental results show that the proposed
method can implement a better adversarial deception for both
shallow and deep SAR ATR models. In addition, as the depth
of the SAR ATR model increases, the proposed method still
maintains its superior fooling rate.

V. CONCLUSION

Aiming at the shortcomings of deep learning networks that are
susceptible to small perturbation, this article employs MSTAR
and OpenSARship dataset in the SAR ATR network model and
uses a regularization constraint method to generate SAR adver-
sarial images in different modes. Specifically, considering the
speckle and backscattering characteristics of SAR images, three
different constraints, namely, high fooling rate, high confidence,
and small perturbation coverage, are introduced to generate
the SAR adversarial images that can deceive the well-trained
SAR target recognition network. These SAR adversarial images
are deceptive and are more conducive to subsequent physical
disturbance analysis. Not only that, the previous method applied
to the SAR ATR network is compared with the proposed method.
The experimental results show that the proposed method has a
higher fooling rate. In the follow-up work, we will further study
the generation rules of SAR adversarial images and control the
perturbation coverage on the vehicle area and the area around
the vehicle. At last, combining the imaging characteristics of the
SAR, the perturbation can physically realize, thereby forming
the camouflage of the target object.
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