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Generative Feature Extraction From Sentinel 1 and 2
Data for Prediction of Forest Aboveground
Biomass 1n the Italian Alps

Parth Naik *“, Michele Dalponte

Abstract—Aboveground biomass (AGB) is an important forest
attribute directly linked to the forest carbon pool. The use of
satellite remote sensing (RS) data has increased for AGB prediction
due to their large footprint and low-cost availability. However,
they have been limited due to saturation effect that leads to low
prediction precision. In this article, we propose an innovative and
dynamic architecture based on generative neural network that
extracts target oriented generative features for predicting forest
AGB using satellite RS data. These features are more resilient to
mixed forest types and geographical conditions as compared to the
traditional features and models. The effectiveness of the proposed
features was assessed by experiments performed using multispec-
tral, synthetic aperture radar, and combined dual-source datasets.
The proposed model achieved best performance in terms of pre-
cision, model agreement, and overfitting as compared to the other
conventional models for all analyzed datasets. The t-distributed
stochastic neighbor embedding scatterplots of the generative fea-
tures clearly show one dimension of the feature space associated
with the target AGB. Feature importance analysis indicated that
the produced generative features were more significant than the
conventional analytical features. Also, the model provided a robust
framework for homogeneous fusion of multisensor features from
satellite RS data for predicting AGB.

Index Terms—Aboveground biomass (AGB), feature extraction,
feature fusion, generative features, variational autoencoder.

1. INTRODUCTION

HE extraction of effective features and precise training data

from remote sensing (RS) images is crucial for accurately
quantifying and mapping various ecological parameters includ-
ing the carbon stored in forests [1]-[5]. The quality of these
extracted features directly affects the response of the modeling
algorithm to predict the target parameter [6]—[8]. Conventional
features from RS data are primarily based on specific indices
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derived by analytical formulations (i.e., arithmetic operations
performed on spectral bands, radar backscatters, or elevation
statistics of lidar point clouds) [9]-[11]. In the literature, these
analytical features are frequently used for different applications
like analysis of vegetation, crops, and soil properties [12]. Their
effectiveness is found to be highly data dependent [13], [14].
Three-dimensional (3-D) airborne lidar data are very effective
in modeling forest parameters. Features such as height and
intensity percentiles, height bins, and density metrics are used
for the prediction of forest aboveground biomass (AGB) with
lidar [15]. However, the effectiveness of such analytical features
depends on the point density and the footprint of the laser
pulse [16], [17]. Moreover, the limited availability of lidar
data and the high cost for finer specifications discourages its
use in many operational scenarios. In this context, satellite
RS data proves to be a more feasible choice for the forest
applications.

Studies performed with satellite multispectral (MS) and syn-
thetic aperture radar (SAR) data used vegetation indices (e.g.,
normalized difference vegetation index (NDVI), soil adjusted
vegetation index (SAVI)), vegetation biophysical features (e.g.,
leaf area index, chlorophyll concentration), textural features
(e.g., entropy, variance), and SAR polarimetric indices for the
prediction of forest AGB [18]-[20]. A prominent limitation
identified with MS data was a high variation in response of the
extracted features that depended on the time of acquisition and
the spatio-spectral specifications [19], [21]. The main causes of
such reduced prediction precision were linked to the seasonal
variation of the spectral responses from the forest. Moreover,
the radiometric characteristics of different satellite sensors also
affects the performance of the models. In [19], it was observed
that MS sensors with different radiometric specifications for an
identical spectral range produce nonidentical responses. A few
other studies that used Sentinel-2, RapidEye, and PlanetScope
data on different forest types also indicated such prediction
precision problems that can be traced back to variations in
spectral responses and radiometric specifications of sensors [34],
[35]. Pham et al. [22] discussed a series of opportunities and
challenges regarding the prediction of forest AGB using various
RS data (optical, SAR, hyperspectral, and lidar) for mangrove
forests. Despite these identified challenges, a dedicated attention
on extracting target-oriented features from satellite MS and SAR
data can greatly increase the prediction precision and provide an
economical source for forest parameter estimation.
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Fig. 1.

The ease of access to data is an important aspect for regional
and global level mapping of forest AGB [23], [24]. Lidar data are
mostly acquired from airborne platforms and are available for
only limited geographical locations. Most studies that attempt
to map forest AGB on a regional or national scale use satellite
remote sensing data that includes SAR and MS data [24]-[27].
SAR can penetrate and gather information from the trunks and
branches of the trees which are prime components of AGB [25].
SAR-based studies indicate that long wavelength data (P and L
bands) have a higher correlation with AGB [28]-[31]. However,
long wavelength open-source SAR data are not available and
the cost of commercial SAR data is relatively high. Sentinel-1
satellites provide a huge open-source repository of C-band SAR
(short wavelength) data that however are characterized by low
penetration into the canopy and features that rapidly saturate for
AGB modeling [32], [33]. Different studies have suggested that
a synergetic use of SAR and MS data can provide additional
features and reduce model saturation caused due to either short
wavelength (C-band) or limited spectral channels of the data.
This has been particularly observed for Sentinel-1 and Sentinel-2
data [36], [37].

Different machine learning (ML) algorithms (such as random
forest (RF), neural networks (NN), and Gaussian processes) have
been used in the literature to model forest AGB using various
multisensor RS data [41]-[43]. Some of these ML algorithms
(e.g., RF, NN, and SVM) have also been used in combination
via ensemble learning for further improving AGB prediction
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Fig. 2.
element (C11) of Sentinel-1(right) for the summer season of the study area.

False color composite of Sentinel-2 (left) and Polarimetric matrix

accuracy as compared to single ML algorithms [44], [45]. The
recent advances in ML and artificial intelligence have provided
different methodologies based on generative and reinforcement
learning to extract and engineer data-driven target-oriented fea-
tures [38]-[40]. Deep neural networks are capable of extracting
high level abstract features from complex distribution underly-
ing various RS data [46], [47] by generating an optimal feature
space for modeling a given problem. Such abstract features have
delivered improved performances in various RS applications
[5], [48]-[50]. However, the use of such abstract features for
regression problems has been less studied as compared to other
applications in the field of RS [51]-[53]. In recent papers, sev-
eral effective approaches using generative adversarial networks
(GAN) and conditional GAN have been developed to learn
and productively engineer features from the data [54]-[59],
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TABLE I
ACQUISITION DATES (YYY-MM-DD) OF SENTINEL-2 AND SENTINEL-1 IMAGES

- Dates of Acquisition (YYYY-MM-DD)
) Sentinel-2 Sentinel-1
Spring 2016-3-10 2016-3-04
Summer 2016-6-28 2016-6-28
Autumn 2016-9-06 2016-9-08
Winter 2016-12-28 2016-12-29
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Fig. 3. Framework of the proposed generative model.

[76]. This has led to the use of generative neural networks
to effectively disentangle the latent space of the network to
explain specific factors of variation in a target variable, thus
showing a high potential to solve regression problems [60]—
[64]. Unlike traditional approaches that used a conventional
multilayer perceptron or stacked sparse autoencoder [65]-[67],
a generative neural network can be used to conditionally dis-
tribute the feature space on a target variable, consequently
improving the accuracy, and generalization of a regression
model.

In this article, we consider dual source (MS and SAR)
satellite RS data and use advanced generative neural networks
for modeling forest AGB. In particular, we propose a dynamic
framework based on a generative variational autoencoding to
engineer abstract form of target-oriented features. The network
aims to generate a highly ordered feature space that can poten-
tially minimize the problem of variability of features for AGB
prediction. The network also reduces the input dimensionality
to produce a low dimensional feature space reducing the model
complexity. The proposed model also adjusts the number of
network parameters as per the dimension of the input data
to quickly optimize the network and learn effectively. Thus,
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Fig. 4. Dynamic architecture of the proposed generative network. IR": Net-

work layer of dimension “n”; D: Dense network connection; A: Reparametriza-
tion function; (z, r): Sampled latent vectors; (t, 0,): Mean and variance of “z”;
(y, oy): Mean and variance of “r”.

we propose an approach that performs target-oriented feature
engineering and models AGB using a single dynamic neural
network architecture.

II. MATERIALS AND STUDY AREAS
A. Study Area Description and Field Data

The study area consists of three sites,—Lavarone, Pellizzano,
and Cembra. These sites are diverse in terms of species/forest
type and all are located in the Province of Trento, Italy. The
forestin Lavarone consists of coniferous species such as Norway
spruce (Picea abies (L.) Karst.) and Silver fir (Abies alba Mill.)
in majority and a minor population of European beech (Fagus
sylvatica L.), European larch (Larix decidua Mill.), and Scots
pine (Pinus sylvestris L.). The forest in Pellizzano consists of
coniferous Norway spruce (Picea abies (L.) Karst.) as a domi-
nant species and a trace population of few broadleaves species
(Populus tremula L., Betula spp.). The forest in Cembra mainly
consists of broadleaves species such as European beech (Fagus
sylvatica L.) and few coniferous species. The geographical
locations of the study area sites are shown using detailed maps
in Fig. 1.

The field data consist of 115 circular plots with fixed radius
of 15 m (see Fig. 1). The plots were surveyed in summer 2014
for Pellizzano and summer 2016 for Lavarone and Cembra.
A total of 47 plots in Pellizzano, 48 plots in Lavarone, and
20 plots in Cembra were measured using a random sampling
design. Coordinates of the plot centers were recorded using a
survey-grade GPS unit. In each plot, the diameter at breast height
(DBH), height, species and relative positions of all trees having
DBH above 7 cm were recorded. The positions were measured
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with a Laser criterion 400 and DBH was measured with a caliper
in two orthogonal directions and the average among the two
measurements was considered as DBH value. The height was
measured with a vertex hypsometer and the trees for which the
height was difficult to measure, it was estimated using species
specific allometric equations [74]. The volume of each tree was
estimated using species specific equations [74] with a mean
absolute error of 2% for trees with DBH higher than 17 cm.
The AGB was obtained by multiplying the volume with species
specific conversion factors [75]. Both height and AGB equations
were specifically developed for the tree species present in the
Autonomous Province of Trento. Appendix A reports the used
AGB equations. The plot AGB was obtained by summing the
AGB of each tree inside a given plot. The field estimated plot
level AGB values ranged from 1.07 Mg ha~! to 655.14 Mg ha™'
(1Mgha~! =0.1 kg m~2). In order to test the performance of the
proposed model over an independent dataset that was not used
in the model training part, we used 55 plots surveyed in 2016
over different sites in the area of the Autonomous Province of
Trento. The AGB of these plots used for offsite-validation was
in the range of 11.30-711.41 Mg/ha.

B. Remote Sensing Data

This article was performed using multitemporal images
acquired by ESA’s Sentinel-2 and Sentinel-1 satellite
constellations. Four images per satellite constellation were
considered, one for each season (see Table I). Sentinel-2 images
are characterized by 13 spectral bands of which ten bands
were used, i.e., four bands (R, G, B, and NIR) at 10 m spatial
resolution and six bands (three Red-Edge, Narrow NIR, and
two SWIR) at 20 m spatial resolution. The downloaded data
was L1C-level and was acquired from the Planet Labs portal.!
The Sentinel-2 tiles were acquired with a 10% cap on cloud
coverage, although we ensured that the study area covered in
each tile and especially the reference plot locations were cloud
free for each image. The Sentinel-1 data was acquired from
the NASA’s Earth Data portal.> Level-1 single look complex
(SLC) data comprising complex imagery with amplitude and
phase captured in the IW mode were used. The resolution of the
data (range X azimuth) ranges from (2.7x22 m to 3.5x22 m)
and the pixel spacing (range X azimuth) is 2.4x14.1 m with
1x 1 number of looks. The acquired SLC product has all bursts
in all subswaths and is resampled to a common pixel spacing
grid in range and azimuth. The Sentinel-2 and Sentinel-1
images of the study area for the summer season are shown in
Fig. 2.

III. PROPOSED GENERATIVE MODEL FRAMEWORK AND
ARCHITECTURE
A. Generative Model Framework

The proposed generative neural network model adopts a vari-
ational autoencoder based modeling framework with a dynamic

![Online]. Available: https://www.planet.com/explorer/
2[Online]. Available: https://urs.earthdata.nasa.gov/
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architecture. A traditional variational autoencoder consists of
two main component networks—an encoder and a decoder. The
additional two networks added to this traditional architecture
are—a latent generator and a regressor network. Unlike tradi-
tional approaches that separately trains a feed-forward regressor
network, the proposed approach has an integrated regressor
network connected to the reparametrized latent space via a latent
generator network. All these networks are interassociated with
a combination of three loss functions, as shown in Fig. 3.

The probabilistic encoder network (g(s|i)) learns the distri-
bution from the input data (i) and generates a reparametrized
latent space (s) using a conditional prior of the target parameter
(7) instead of a traditional Gaussian prior. The dimension of the
input data is compressed by the encoder network to the dimen-
sion of the latent space and the latent generator (p(s|t)) captures
the target specific prior of the latent representations. In this
process, the decoder network (p(i’|s)) captures the nonlinearity
of the latent generator via the generated latent representations
and attempts to reconstruct the input. The reconstructed form
of the input data is given as (i’). The conjoined feed-forward
neural network (g(t|i)) is a probabilistic regressor, which predicts
outputs along with the bias in prediction (standard deviation).


https://www.planet.com/explorer/
https://urs.earthdata.nasa.gov/
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TABLE II
ANALYTICAL FEATURES FROM MS SENTINEL-2 DATA AND THEIR EQUATIONS

Analytical MS Features Equations
Canopy Chlorophyll Content Index NIR — RedEdge
ceer = NIR + RedEdge
- NIR—-R
NIR +R
Chlorophyll Index Red Edge _ _NR
CIRE = RedEdge !
i R
Chlorophyll Vegetation Index CVI = NIR &
Green Atmospherically Resistant vegetation Index GARI = NIR — (G — (B —R))
" NIR-(G+ (B—R))
Green Leaf Index LI = 2G-R-B
: T 2G+ % 3 B
Log Ratio logR = logT
Normalized Difference Vegetation Index NDVI = NIR —R
NIR + R
Normalized Burn Ratio NBR = NIR — SWIR
" NIR+ SENIR :
Green Blue NDVI _ NIR-(G+B
GBNDVI= NiR +(G + B)
Green Red NDVI _ NIR-(G+R
GRNDVI= iR +(G + R)
Red Blue NDVI _ NIR-(R+B
RENDVI= iR+ R+B
Green NDVI _NIR-G
GNDVI = SR +dG S
Red Edge NDVI _ NIR — RedEdge
NDVIre = IR+ RedEdge
Pan NDVI _ NIR-(R+G+B)
PNDVI= NR+R+G+B
Visible Index Green Viereen = G-R
& GER
Norm of X (X =R, G, NIR) Norm X = =
-Wi i i 0.1 xNIR—-B
Blue-Wide Dynamic Range Vegetation Index BWDRVI = *
0.1N*i é\IIR +B
Chlrophyll Index Green Clgreen = = 1
Green Difference Vegetation Index GDVI = NIR - G
i i NIR - B
Blue Normalized Vegetation Index BNDVI =
NIR + B
Redness Index RI= R-G
" R+G
Difference Vegetation Index or Vegetation Index DVI = NIR
Number R
Modified Simple Ratio %
MSR = R
= !
Specific Leaf Area Vegetation Index _ NIR
SLAVE= R SWIR

R = Red; G = Green; B = Blue; NIR = Near Infrared; RedEdge = Red-Edge; SWIR = Short-wave infrared.

All the four networks are regularized by a loss mechanism
that optimizes the model to learn targeted representations from
the data and accurately predicts the target parameter. The latent
generator with the decoder network accounts for the “generative
parameters” and the encoder network with the regressor net-
work accounts for the “inference parameters”. This is because
the reconstructed data is assumed to be generated from its latent
representation, which is dependent on the target parameter that
makes the latent generator and the decoder network function as
a “generative model”. The “inference model” consists of the
probabilistic encoder that determines the latent representation
from the data and a probabilistic regressor that predicts the target

parameter using the latent features. The total loss £(7) of the
proposed generative neural network can be stated, as shown in

L (i) = —Dgr (q(t]i) || p(t))
+ ]Eq(s|i) [log p (Z‘S)]
—Eqi) [Drer (g () | | p(s]t))] - (1)

In the given (1), the total loss £(i) is a sum of three dif-
ferent loss terms associated with regularizing the inference
and generative parameters of the proposed network. Particu-
larly, g(t|7) is a conventional feed forward regression network
that produces bias (standard deviation) as an additional output
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TABLE III
ANALYTICAL FEATURES FROM SENTINEL-1 SAR DATA AND THEIR EQUATIONS

Analytical SAR Features Equations
Radar Vegetation Index RVI = 4o\y
ovy + oV

Degree of Polarization

P P
(Tr(C2))?

Dual-pol Radar Vegetation Index DpRVI = (1 — DOP)

)‘1
AN+ A
Polarimetric Radar Vegetation Index PRVI = (1 — DOP) * o¥y

USH = Cross-polarized backscattering coefficient; USV = Co-polarized backscattering
coefficients; Co = Covariance matrix; Tr = Matrix Trace Operator; 11, Ao = Eigen
values of Cs.

(therefore a probabilistic regressor). The first term represents
the KL (Kullback—Leibler) divergence loss that regularizes the
prediction of target with a prior. The second term represents
reconstruction loss that emphasizes the reconstructed data to
resemble to the input data and the third term represents the label
loss that emphasizes the encoder (posterior - g(s|7)) to resemble
to the target-specific prior p(s|t).

B. Proposed Generative Network Architecture

The dynamic architecture of the generative neural network
shown in Fig. 4 consists of an encoder network with an input
layer of dimension “n” connected to two intermediate hidden
layers of dimensions n-2 and n-4 with “tanh” activation function
where “n” is the number of input features. The resultant features
from the hidden layers were independently connected to two
other dense layers of same dimensions (n-6, n-6) that character-
ize the mean and diagonal covariance of the latent space. The
probabilistic regressor network shared the two hidden layers
of the encoder network and consisted of a simple dense layer
to produce predicted mean and standard deviation of the target
parameter. A standard reparametrization trick was applied to use
the mean and variance as arguments to return sampled vectors
(zandr) enabling backpropagation through the network. A latent
generator of dimension “n-6" was used to condition “z” on “r”’ by
the means of KL divergence loss function. Finally, the decoder
network was built with an exact inverse structure of the encoder
network for the reconstruction of data from the reparametrized
latent space.

IV. APPROACH FOR AGB PREDICTION

The flowchart of the AGB prediction approach is shown in
Fig. 5. In the following sections each part of the flowchart is
described in detail. The data preprocessing of MS and SAR
data is described in Section IV-A. The process of computing
analytical features from both preprocessed data and the steps
for suitable data preparation as model input are stated in Section
IV-B. Finally, the implementation of the developed generative
model and performed experiments are described in Section IV-C.

A. Data Preprocessing

The Sentinel-2 images were acquired in Level-1C (Top of
the atmosphere reflectance) format and converted to Level-2A

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

(Bottom of the atmosphere reflectance) format including atmo-
spheric and terrain correction using the Sen2cor processor [69].
The spectral bands at spatial resolution 10 and 20 m were used in
this article and those at 20 m spatial resolution were resampled
at 10 m for spatial consistency and for performing computations.

The acquired Sentinel-1 SLC product swath was split with
selected bursts into a separate product. The orbit file was
acquired and precise orbits are applied to the split Sentinel-1
product. The resultant product was radiometrically corrected
and the calibrated SAR images were produced with pixel
values that truly represent the radar backscatter of the reflecting
surface. The bursts of the product were merged in the azimuth
direction for a seamless image and the debursted split products
of different subswaths were merged to form a single image. A
subset was clipped from the single merged image of the area of
interest (study area). In order to produce a polarimetric analysis
ready data (ARD), we generated C2 polarimetric matrix—an
incoherent polarimetric representation of second order partial
polarimetric scattering matrix elements. Multilooking and
speckle filtering were performed on the resultant ARD product
to reduce speckle noise and generate ground range square pixels.
Finally, the range Doppler terrain correction was performed to
geocode and produce a final product of 10 m spatial resolution.
The entire Sentinel-1 data preprocessing was performed using
sentinel application platform version 8.0 software.?

B. Computed Features and Input Data Preparation

The preprocessed data for each season were used to compute
analytical features, i.e., 25 vegetation indices from Sentinel-
2 (see Table II) data and four radar vegetation indices from
Sentinel-1 data (see Table III). The numerous vegetation indices
consist of discrete information from the spectral and backscatter
data. These vegetation indices reduce the effect of environmental
conditions and compensate for atmospheric distortions. More-
over, they maximize the sensitivity to biophysical properties and
minimizes topographical effects. Therefore, they can be used as
input for engineering target-oriented generative features with the
proposed framework.

The analytical features from Sentinel-1 data were computed
using a QGIS plugin - SAR Tools [70]. In addition to the stated
analytical features, ten reflectance bands of Sentinel-2 data and
four polarimetric matrix elements (Ci1, Ci2, Ca1, Cos) of the
Sentinel-1 data were also considered for the input dataset. These
polarimetric matrix elements are second order scattering infor-
mation generated from the spatial averaging of the scattering
vector k = [Syv, Sv H]T, as stated in (2). All these computed
analytical features, reflectance bands, and polarimetric matrix
elements acted as a precursor for engineering abstract and
target specific features using the proposed generative neural
network

Cy = Ci Ciz| _ ISvv]® SyvSiy @)

Ca1 Cag SvuSyy 1Sval® |
Reference plot sized buffers of radius 15 m were applied at
each plot location to extract mean value from the computed

3[Online]. Available: https:/step.esa.int/
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VALIDATION STATISTICS FOR MODEL PERFORMANCE

Accuracy statistics

Equations

Validation Aspect

Mean Absolute Error

Root-mean-squared differences

Coefficient of determination
(cross validation)

R2Ratio

n
MAE = Z|preicv — obs;|/n

i=1

SSCV
RMSD =
n

R, =1— SS%/SS,,:

R2R = R)?it/Rév

Prediction Accuracy
(scale dependent)

Prediction Precision

Prediction Agreement

Overfitting

n: total number of samples; pregv: prediction value of sample ‘i* obtained by cross validation; obs;: observed value of sample ‘i’;
S.SCV: sum of squared differences between observed and predicted values by cross validation; SS;,¢: sum of squared differences

of each observation from overall mean; Rg\,

via Residuals (without cross validation).

: Coefficient of determination via Cross Validation; R2

TABLE V

Tt Coefficient of Determination

LIST OF SELECTED ANALYTICAL FEATURES POST A-L.1 REGULARIZATION

Selected MS features Selected SAR features  Selected DS features
1. BWDRVI march 1. Cii_december 1. BWDRVI march
2. GLI march 2. Ci2_december 2. GLI march

3. normG_march 3. Cy1_december 3. normG_march

4. Vigreen march 4. Ci2_june 4. CIRE3 march

5. CIRE3 march 5. Cy1_june 5.NDVIrel march
6. NDVIrel march 6. PRVI june 6. NBR2 march

7. NDVIre2 march 7. Ci2_march 7. GLI june

8. NDVIre3 march 8. Cy1_march 8. normG_june

9. NBR1 march 9. PRVI march 9. Vigreen june

10. NBR2_march 10. Ci2_september 10. CCCI1_june
11. GLI june 11. Cy1_september 11. NBR2 june

12. normG_june

12. Vigreen september

13. Vigreen june

13. RI september
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Fig. 6. Regression scatterplots of the proposed model for single source and DS data.

TABLE VI
PERFORMANCE METRICS OF MODELS DEVELOPED USING MS, SAR, AND DS DATA

MS SAR DS

Models | R%y | RMSD% | R2R | MAE | R%y | RMSD% | R2R | MAE | R%, | RMSD% | R2R | MAE

Proposed | 0.53 37.8 1.3 83.1 | 0.37 38.9 1.4 | 87.1 | 0.63 34.6 1.3 | 73.6

MLP 0.15 72.9 1.9 | 162.5 | 0.08 75.4 1.8 | 172.7 | 0.21 74.6 1.9 | 165.7

GLM 0.44 46.7 1.4 | 8.9 | 0.19 51.7 1.8 | 117.6 | 0.45 36.9 1.5 | 82.7

XGBoost | 0.34 39.6 2.5 | 8.2 |0.18 53.1 43 | 117.3 | 0.36 39.6 26 | 919

RF 0.44 39.7 1.8 | 8.3 | 0.1 47.66 12.4 | 107.9 | 0.45 37.16 1.8 | 83.5
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Fig. 7. Regression scatterplots of MLP model for single source and DS data.

vegetation indices and a plot level training dataset is prepared.
The missing values (if any) in the dataset were replaced using the
median operator and the range of observations in each dataset
were standardized using a standard scaler that subtracts the
mean and scales to unit variance. The prepared dataset was
exported to standard binary file format that stores the shape
and information necessary for performing operations with the
proposed generative neural network model. In order to reduce
the model complexity, adaptive L1 (A-L1) regularization was
applied to the prepared dataset to limit the number of input
variables. The entire process was carried out to prepare three
separate sets of data based on the data source, i.e., MS dataset,
SAR dataset, and DS dataset. Finally, a clean, standardized and
regularized input dataset was fed to the developed generative
neural network.

C. Model Implementation and Experiments

The developed architecture of the proposed generative neural
network is dynamic and depends on the number of analyti-
cal features selected post A-L1 regularization. Therefore, the

number of network filters for each layer change for each of the
three datasets based on the schema of the dynamic architecture
shown in Fig. 4. The developed generative neural network was
trained with a batch size of 10 and a total of 500 epochs. The
dense layers of the network were L2 regularized to keep the
weights and biases small and reduce the likelihood of overfitting.
The network was trained by using a K-fold stratified cross-
validation method with five folds. The model was implemented
using open-source software library “TensorFlow” on a Python
API. The training of the network was performed on a 134 GB
RAM NVIDIA GeForce RTX 3090 GPU on a Linux based OS. A
pseudocode of the proposed model can be accessed from GitHub
repository using the link.*

The experiments were designed to quantify the improvement
in AGB predictions and the refinement in the quality of feature
space achieved using the proposed model. We used multiple
models based on different techniques such as linear, bagging,
boosting, and neural networks to compare the results with
the proposed model. In particular, we used generalized linear

4[Online]. Available: https://github.com/parth-unitn/RSGenFeatures.git
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Fig. 8. Regression scatterplots of GLM model for single source and DS data.

model (GLM), RF, extreme gradient boosting (XGBoost), and
a multilayer perceptron model (MLP) for comparing model
performance. The structure of the MLP model was same as
structure of the regressor unit used with the proposed model to
quantify the improvement delivered by the generative process
in model performance (i.e., improvement achieved by the prob-
abilistic regressor network as compared to a nonprobabilistic
regressor network with same structure). All the comparative
models were fine-tuned for optimal performance according to
respective requirements using random hyperparameter search
(for RF), early stopping (for XGBoost, MLP), and adaptive
moment optimization (for MLP). All the comparative models
were 5-fold cross validated and trained using A-L1 regularized
features.

Model prediction agreement were evaluated using cross val-
idated R-squared score (RZ.,), prediction precision was es-
timated using the root mean squared percentage difference
(RMSD), model overfitting was quantified using the R-squared
ratio (R2R) and scale-depended prediction accuracy was mea-
sured using the mean absolute error (MAE). The equations of
these statistical performance metrics and the respective vali-
dation aspect are given in Table IV. In order to compare the
quality of the feature space, we used the t-SNE (t-distributed

stochastic neighbor embedding) technique and visualized the
A-L1 regularized analytical features (input for GLM, RF, XG-
Boost, MLP) and the generative features from latent space (input
for the probabilistic regressor of the proposed model) on a
2-D plane color-coded with field estimated AGB. The t-SNE
visualization were used to analyze the orientation of the latent
space with respect to the field estimated AGB. These analytical
and generative features were scored using feature importance
derived from an independent gradient boosting machine (GBM)
algorithm for quantitative assessment of their feature contribu-
tion. The GBM-based feature importance scores were computed
using a standard permutation feature importance algorithm.
Finally, we also generated an AGB map of the Trentino region
using the best proposed model and performed correlation anal-
ysis using 55 additional reference AGB plots for independent
site validation.

V. RESULTS
A. Analytical Features Selected Post A-LI Regularization

The list of the selected analytical features post A-L1 regular-
ization is given in Table V. The regularized datasets consisted
of 26 features for MS, 11 features for SAR, and 33 features for
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Fig. 9. Regression scatterplots of XGB model for single source and DS data.

the DS dataset. The 26 features of the regularized MS dataset
consisted of ten features from the spring season, six features
from the summer season, 7 features from the autumn season, and
three features from the winter season. Thus, the regularization
showed different degree of relevance for different seasons for the
MS dataset. A major contribution of the red-edge spectrum (nine
features) and short wave infrared spectrum (four features) was
observed in the regularized MS dataset. The 11 features of the
regularized SAR dataset mainly consisted of polarimetric matrix
elements (Cq2, Co) from all seasons, C1 from the winter season
and PRVI from summer and autumn season. The 33 features of
the regularized DS dataset consist of 17 MS features and 16 SAR
features.

B. Predictive Analysis and AGB Mapping

The regression scatterplots for the Proposed, MLP, GLM, XG-
Boost, and RF model representing field estimated AGB versus
the predicted AGB are shown in Figs. 610, respectively. The
five-fold cross-validated model performance metrics for model
agreement (R2.,), prediction precision (RMSD%), overfitting

(R2R), and prediction bias (MAE) for all developed models and
different datasets are given in Table VL.

The proposed model delivered best results with respect to
all considered performance metrics for all the three datasets.
Particularly, the proposed model obtained the best performance
on DS data with an agreement score R%., = 0.63 and least
overfitting score R2R = 1.3. The model also delivered the
best prediction precision RMSD% = 34.6 and least prediction
bias MAE = 73.6 Mg/ha. The proposed model achieved better
prediction precision (RMSD% = 34.6—38.9) and less overfitting
(R2R = 1.3 - 1.4) as compared to MLP (RMSD% = 72.9-75.4
and R2R = 1.8-1.9) in spite of an identical neural structure of
the regressor unit of the proposed model and the MLP. Also, the
analytical features had a higher dimensionality (n) compared
to the generative features (n-6) but the latter improved model
performance metrics for all the three datasets.

With respect to the datasets considered, all examined models
performed least accurately on SAR data (RMSD = 38.9-75.4
and MAE = 87.1-172.7). This result was anticipated as C-band
data are characterized by low canopy penetration. However, the
proposed model assisted in improving the model predictions



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

RF Model - SAR data

S |
©
RZ,=0.1

£ /
o
2 §_ ] ®e
° o e ©
R R
k-] c"‘. “ 5. B
2 8 - o @ o b
a «

o

T T T T T
0 200 400 600 800

Field estimated AGB (Mg/ha)

RF Model - Dual Source data

400 600 800

Field estimated AGB (Mg/ha)

4766
RF Model - Multispectral data
o
S | 2
R, =0.44
T o
£ S -
a ©
- /
o [ ]
oq® L .
2 8- Vo S A
s o 2% Oog [
2 WP e o0,
° o LA 4
5 -
e 8 ' e %o
& ] oo® o
L]
o -
T T T T T
0 200 400 600 800
Field estimated AGB (Mg/ha)
=3
N 2
R2,=0.45
T o
£ S -
E, ©
£
& o
< S 7
° °
£ * el it
T o (TS
e S ° Iy
o N '. °
LX)
o
T T
0 200
Fig. 10. Regression scatterplots of RF model for single source and DS data.

with SAR data (RMSD = 38.9 and MAE = 87.1). The predic-
tion bias was reduced by the proposed model (MAE = 87.1)
as compared to the conventional models despite the intrinsic
wavelength dependent limitations of the SAR data. All models
performed better with MS data as compared to SAR data but
the combined DS data delivered highest model performances in
terms of precision (R%., = 0.63, RMSD% = 34.6, R2R = 1.3,
and MAE = 73.6). Thus, the proposed model demonstrated a
successful and more effective approach for seamless data fusion
for modeling AGB.

Among the considered tree based models (RF and XGBoost),
the RF model achieved better overall agreement (R%., = 0.45)
than XGBoost (R?., = 0.36). Also, XGBoost produced higher
overall prediction bias (MAE = 91.9) than RF (MAE = 83.5) for
all datasets. Overall, RF model performed better than XGBoost
in the tree based model category. Finally, in the neural network
category, the MLP model delivered inaccurate predictions and
showed higher overfitting compared to the GLM and the pro-
posed model. The MLP model produced the least agreement
for SAR data (R?., = 0.08) with overall high prediction errors
(MAE >160). Although, the proposed model provided an im-
proved model performance as compared to the conventional neu-
ral network model (MLP) w.r.t all assessment metrics. Overall,
the proposed generative neural network performed better than

considered conventional models such as GLM and tree-based
algorithms.

Fig. 12 shows the AGB map obtained by the proposed model
on the analyzed area. A strong correlation can be observed
among prediction of the proposed model and 55 additional
reference data plots (locations shown in Fig. 12). Fig. 13 shows
the correlation scatter plot and the computed Pearson correlation
coefficient (R). The Pearson correlation coefficient for the 55
reference plots and the mapped AGB values was R = 0.66. Thus,
a high correlation achieved for these independent reference
plots (not used for training — testing experiments) indicated a
robustness of the proposed model on new data or potentially on
different sites.

C. Two-Dimensional t-SNE Visualization of Feature Spaces
(Analytical and Generative) and Feature Importance

The t-SNE scatterplots of generative features and analytical
features for MS, SAR, and DS datasets are shown in Fig. 11. The
t-SNE scatterplots for all three datasets indicated that the latent
space of the proposed model depicting generative features is
highly ordered as compared to the input feature space depicting
analytical features. The 2-D t-SNE visualization of a higher
dimensional latent space indicated that the arrangement of the
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generative features was directional and oriented towards the
target AGB. However, the 2-D t-SNE visualization of input
feature space was nondirectional and showed no specific ori-
entation towards AGB. The directional orientation of generative
features w.r.t target AGB values improved the generalization
of the proposed model by decreasing model overfitting and
prediction bias simultaneously (R2R = 1.3 — 1.4 and MAE =
73.6 —83.1).

The t-SNE scatterplots of the input feature space for all
datasets (see Fig. 11 — Left) show an unordered distribution and
produced no AGB associated variations. Although, the t-SNE
scatterplots of latent space for all datasets (see Fig. 11 — Right)
have one dimension clearly associated with variability of target
AGB. Also, a greater degree of target association was observed
for MS and DS latent space as compared to SAR latent space.
A few observations from the SAR latent space from the range
of 0 tol00 Mg/ha were at the point (x, y) = (00) that had
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TABLE VII
COEFFICIENTS OF THE ALLOMETRIC EQUATIONS OF [74] AND WD FROM
(IPCC 2003) [75]. THE WD Is EXPRESSED IN KG/M?>

WD a Y 6 dy

Abies alba 400 0.000163 1.70656  0.941905 3.69465
Broadleaves 580 0.000055 1.942089 1.00642  4.0091

Larix decidua 460 0.000108 1.407756 1.341377 3.69465
Picea abies 400  0.000177 1.564254 1.051565 3.69465
Pinus cembra 420 0.000188 1.613713 0.985266 3.69465
Pinus nigra 420 0.000129 1.763086 0.938445 3.69465
Pinus sylvestris 420 0.000102 1918184 0.830164 3.69465

higher frequency of observations from mid-range AGB (300
to 400 Mg/ha). These disassociated observations explained the
inferior results for SAR data as compared to the other data using
the proposed model.

The plots of scaled feature importance versus the ten most
important analytical and generative features are shown in Fig. 14.
The slope of the feature importance trend line for analytical
features is greater than that for generative features. The relative
feature importance of analytical features scaled down at higher
rate as compared to generative features. This is because only a
few among all the analytical features significantly contributed
to the accurate prediction of AGB. However, in case of genera-
tive features, a greater number of features provided significant
contribution (see Fig. 14) for an accurate AGB prediction as
compared to the analytical features. This indicated that the
overall feature importance of generative features was higher as
compared to that of analytical features. This also explains the
role of generative features in delivering better prediction results
from the performed experiments.

VI. DISCUSSION

In this article, we proposed a generative neural network with a
dynamic architecture that has been used on satellite MS and SAR
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remote sensing data for modeling plot level forest AGB. The key
elements of modeling consisted of operationalizing the triple
loss mechanism, producing target oriented generative features,
and using a probabilistic regressor to perform predictions. This
framework was proposed for dealing with the various issues
identified in the literature related to the use of satellite remote
sensing data for forest AGB mapping. The results achieved from
the performed experiments have been analyzed with respect to
the contemporary literature in this section.

Studies that used satellite remote sensing data for AGB
prediction highlighted a common drawback in terms of data
saturation and low prediction precision [18], [26], [71]. Our
article analyzed multiple models for different datasets and found
two effective ways to reduce the bias and data saturation. The
first proposed way is fusion of multisensor data as this increases
the number of features (and, hence, the information) that can
reduce saturation for predicting higher AGB values. The second
proposed way is by extracting targeted features. In case the
multisensor data are not available, engineering features to induce
targeted properties in the feature space can also reduce the
saturation and increase prediction precision with satellite remote
sensing data. In this article, we quantitatively proved that the
two stated ways are effective for increasing prediction precision
and reducing saturation. The metric RMSD% was significantly
better for the proposed approach indicating the increased pre-
diction precision. Moreover, a better concurrence achieved by
the proposed model for a higher range of AGB values indicated
reduced model saturation. This was quantitatively reflected by
a higher r-squared score and can be graphically observed with
regression scatterplots that show greater agreement for higher
AGB values.
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The analysis performed in [18] suggested calibration of the
model within the range of AGB values to minimize the risk
of induced prediction bias and recommended a need for AGB-
oriented sensors. Forest are diverse in terms of species, density,
type and distribution. Thus, designing AGB-oriented sensors
for satellites would be complex and not an economically viable
solution. However, designing methods to effectively engineer
data and features to orient them for AGB prediction is a viable
solution. This aspect was presented in the form of a probabilistic
regressor network that tracks the label loss and coordinates
with the latent generator to produce AGB-oriented features
reducing the need for AGB-oriented sensors. In addition to
regularization and dimensionality reduction of the data, our
article showcased a disentanglement procedure that orients one
dimension of the features to display target specific variance and
thereby improving the performance of the model. Moreover, the
fusion of optical and SAR data for modeling forest AGB is also
a challenging task. The proposed model provided a mechanism
for high-level feature fusion that generated homogenous and
compressed fusion features at the latent space.

The regression algorithm used for modeling predominantly
affects the prediction accuracy of the model. Multiple com-
parative studies that used different machine learning regression
algorithms for the prediction of forest AGB from satellite RS
data produced diverse results [26], [66], [72]. The comparison
of these studies in literature for determining the best suitable
regression algorithm is difficult due to different initial conditions
(data, samples, features). The number of samples used and
the type of features selected can also affect the performance
of a model. Thus, the same model can perform differently by
changing the initial conditions. Accordingly, the identification
of the baseline model remains an issue for AGB modeling. In
simple terms, it is difficult to have one baseline model that can
perform best for all initial conditions. Also, the study in [66]
compared a few standard machine learning algorithms and a
stacked sparse autoencoder (feed forward neural network) to
prove the superiority of the latter. However, the article had used
random splitting of dataset (3:1) and our article that used strat-
ified cross-validation found that feed forward neural networks
are highly prone to overfitting. This problem was resolved by
the idea of a robust and integrated probabilistic regressor that
encourages the posterior to resemble to the AGB specific prior
that can reduce the prediction bias induced by the initial condi-
tions. This can be specifically observed from Fig. 13, where the
model was applied to additional field plot samples that were not
used during training of the model. The correlation plot showed
that prediction bias slightly increases for extreme values of AGB
but the model overall retained a strong correlation between the
predicted and field estimated AGB. This shows that the proposed
approach can be effectively replicated on new data or potentially
new sites.

Another important aspect of this article has been to automate
the process of balancing the bias-variance tradeoff of the pre-
diction algorithm. In this article [73], eight-machine learning
models were evaluated for the prediction of forest AGB using
satellite remote sensing data. The article outlined the problem
of stabilizing the prediction bias with change in the forest types,
sampling methods, and dependence of feature importance on the
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deployed model. The article used 13 features for modeling and
observed a high variance in the importance of the same feature
for different models. The article also highlighted that the process
of hyperparameter optimization for each model and selection of
the best model was time consuming. Also, the entire process was
automated for achieving optimal results with a less complex and
time efficient computations.

Overall, our article effectively deals with various problems
identified in the literature by providing a robust solution in
form of a generative modeling architecture. However, a prime
limitation of the proposed model is that it uses a neural network
based regressor unit and cannot be replaced by any other contem-
porary regression algorithm (e.g., Random Forest or XGBoost).
The generative architecture requires a neural network unit to
update weights and produce targeted generative features. Thus,
it reduces the scope of testing other regression algorithms with
the proposed architecture. Moreover, the architecture of the pro-
posed model is complex with separate inference and generative
parameters. Therefore, it is difficult to use a neural architecture
search algorithm to optimize the number of filters and layers
of the model. This limits the strategy of determining the most
optimal architecture of the proposed model.

VII. CONCLUSION

This article has proposed a generative approach for mod-
eling forest AGB using satellite RS data. The results demon-
strated the superiority of generative features over conventional
analytical features extracted from satellite RS data for AGB
prediction. The proposed dynamic architecture and the triple
loss mechanism generate target specific features that showed
improvement for all prediction metrics (agreement, precision,
and overfitting) in our experiments. Moreover, the proposed
model also demonstrated its effectiveness in efficient feature
fusion and compression. It was conclusive from experiments
that it is difficult to completely eliminate the factor of data sat-
uration but the proposed model substantially reduced it thereby
increasing the reliability of satellite RS data for AGB prediction.
The future work of this article may aim at testing the proposed
framework to predict other forest biophysical variables and
parameters from a different RS application. Moreover, the aspect
of model saturation can be studied in more detail for all such bio-
physical variables including AGB using the proposed features.
The proposed framework could also be modified and used for
classification tasks such as tree species or land-use land-cover
classification.

APPENDIX A

The allometric equations used for the estimation of the AGB of
each tree are based on the equations published in [74] multiplied
by the wood density (WD) of each species (IPCC 2003) [75]. The
resulting equation for the estimation of tree AGB in kilograms
is given by

AGB = WD« * (DBH — dg)” * H® (A1)

where DBH is the diameter in centimetres and H the height in
meters. The coefficients used for the different species are given
in Table VII.



4770

(1]

(2]

(3]

(4]

[3]

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

REFERENCES

U. B. Gewali, S. T. Monteiro, and E. Saber, “Gaussian processes for
vegetation parameter estimation from hyperspectral data with limited
ground truth,” Remote Sens., vol. 11, no. 13, Jul. 2019, Art. no. 1614,
doi: 10.3390/rs1113161.

B. Petrovska, E. Zdravevski, P. Lameski, R. Corizzo, 1. gtajduhar, and
J. Lerga, “Deep learning for feature extraction in remote sensing: A
case-study of aerial scene classification,” Sensors, vol. 20, no. 14, 2020,
Art. no. 3906, doi: 10.3390/s20143906.

J. Heaton, “An empirical analysis of feature engineering for predictive
modeling,” in Proc. SoutheastCon, IEEE, Piscataway, NJ, USA, 2016,
pp. 1-6, doi: 10.1109/secon.2016.7506650.

P. Naik and A. Kumar, “A stochastic approach for automatic col-
lection of precise training data for a soft machine learning algo-
rithm using remote sensing images,” in Advances in Intelligent Sys-
tems and Computing. Berlin, Germany: Springer, 2021, pp. 285-297,
doi: 10.1007/978-981-16-2712-5_24.

P. Sivaraj, A. Kumar, S. R. Koti, and P. Naik, “Effects of training parameter
concept and sample size in possibilistic c-Means classifier for pigeon pea
specific crop mapping,” Geomatics, vol. 2, no. 1, pp. 107-124, Feb. 2022,
doi: 10.3390/geomatics2010007.

C. Poultney et al., “Efficient learning of sparse representations with an
energy-based model,” in Proc. Conf. Adv. Neural Inf. Process. Syst., 2006,
pp. 1137-1144.

D. E. Rumelhart and G. E. Hintont, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533-536, Oct. 1986,
doi: 10.1038/323533a0.

M. Monteleone, “NooJ local grammars and formal semantics: Past partici-
ples vs. adjectives in Italian,” Commun. Comput. Inf. Sci., vol. 607, no. 8,
pp. 83-95, 2016.

S. Mohanty and G. Singh, “Fully polarimetric synthetic aperture radar
indices for scintillation observation,” in Proc. URSI Asia-Pacific Radio
Sci. Conf., 2019, pp. 1-4.

N. G. Silleos, T. K. Alexandridis, I. Z. Gitas, and K. Perakis, “Veg-
etation indices: Advances made in biomass estimation and vegetation
monitoring in the last 30 years,” Geocarto Int., vol. 21, no. 4, pp. 21-28,
2006.

L. C. G. David, R. A. Pula, C. N. Cabaccan, B. J. J. Esguerra, and A.
H. Ballado, “Assessment of LiDAR-derived height metrics for mapping
mangrove forest using object-based method,” in Proc. 37th Asian Conf.
Remote Sens., 2016, pp. 796-805.

J. Xue and B. Su, “Significant remote sensing vegetation indices: A review
of developments and applications,” J. Sensors, vol. 2017, pp. 1-17, 2017,
doi: 10.1155/2017/1353691.

G. De Luca, J. M. N. Silva, S. Di Fazio, and G. Modica, “Integrated
use of sentinel-1 and sentinel-2 data and open-source machine learning
algorithms for land cover mapping in a Mediterranean region,” Eur. J.
Remote Sens., vol. 55, no. 1, pp. 52-70, 2022.

E. Halme, P. Pellikka, and M. Méttus, “Utility of hyperspectral compared
to multispectral remote sensing data in estimating forest biomass and
structure variables in finnish boreal forest,” Int. J. Appl. Earth Observ.
Geoinf., vol. 83,2019, Art. no. 101942.

R.D. Sheridan, S. C. Popescu, D. Gatziolis, C. L. S. Morgan, and N. W. Ku,
“Modeling forest aboveground biomass and volume using airborne LiDAR
metrics and forest inventory and analysis data in the Pacific Northwest,”
Remote Sens., vol. 7, no. 1, pp. 229-255, 2015.

L. A. Ruiz, T. Hermosilla, F. Mauro, and M. Godino, “Analysis of the
influence of plot size and LiDAR density on forest structure attribute
estimates,” Forests, vol. 5, no. 5, pp. 936-951, 2014.

Z. Wu, D. Dye, J. Stoker, J. Vogel, M. Velasco, and B. Middleton,
“Evaluating LIDAR point densities for effective estimation of aboveground
biomass,” Int. J. Adv. Remote Sens. GIS, vol. 5,no. 1, pp. 1483-1499,2016.
N. Jha et al., “The real potential of current passive satellite data to map
aboveground biomass in tropical forests,” Remote Sens. Ecol. Conserva-
tion, vol. 7, no. 3, pp. 504-520, 2021.

P. Naik, M. Dalponte, and L. Bruzzone, ‘“Prediction of forest aboveground
biomass using multitemporal multispectral remote sensing data,” Remote
Sens., vol. 13, no. 7, Mar. 2021, Art. no. 1282, doi: 10.3390/rs13071282.
T. T. C. Tuong, H. Tani, X. Wang, N. Q. Thang, and H. M. Bui, “Combina-
tion of SAR polarimetric parameters for estimating tropical forest above-
ground biomass,” Polish J. Environ. Stud., vol. 29, no. 5, pp. 3353-3365,
2020.

P. Naik, M. Dalponte, and L. Bruzzone, “A comparison on the use of
different satellite multispectral data for the prediction of aboveground
biomass,” in Proc. Image Signal Process. Remote Sens. XX VI, Bellingham,
WA, USA, 2020, Art. no. 1153315, doi: 10.1117/12.2572807.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[33]

[34]

[35]

[36]

[39]

[40]

[41]

[42]

T. D. Pham, N. Yokoya, D. T. Bui, K. Yoshino, and D. A. Friess, “Re-
mote sensing approaches for monitoring mangrove species, structure, and
biomass: Opportunities and challenges,” Remote Sens., vol. 11, no. 3,
p. 230, 2019.

Y. Zhang, S. Liang, and L. Yang, “A review of regional and global gridded
forest,” Remote Sens., vol. 11, no. 23, 2019, Art. no. 2744.

S. Abbas, M. S. Wong, J. Wu, N. Shahzad, and S. M. Irteza, “Approaches of
satellite remote sensing for the assessment of above-ground biomass across
tropical forests: Pan-tropical to national scales,” Remote Sens., vol. 12,
no. 20, 2020, Art. no. 3351.

S. Sinha, C. Jeganathan, L. K. Sharma, and M. S. Nathawat, “A review of
radar remote sensing for biomass estimation,” Int. J. Environ. Sci. Technol.,
vol. 12, no. 5, pp. 1779-1792, 2015.

Y. Li, M. Li, C. Li, and Z. Liu, “Forest aboveground biomass estimation
using Landsat 8 and Sentinel-1A data with machine learning algorithms,”
Sci. Rep., vol. 10, no. 1, pp. 1-12, 2020.

P. Naik, M. Dalponte, and L. Bruzzone, “A disentangled variational
autoencoder for prediction of above ground biomass from hyperspectral
data,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Piscataway, NJ,
USA, 2021, pp. 2991-2994, doi: 10.1109/igarss47720.2021.9554415.

G. Sandberg, L. M. H. Ulander, J. E. S. Fransson, J. Holmgren, and T. Le
Toan, “L- and P-band backscatter intensity for biomass retrieval in hemi-
boreal forest,” Remote Sens. Environ., vol. 115, no. 11, pp. 2874-2886,
2011.

M. A. Tanase, R. Panciera, K. Lowell, J. Hacker, and J. P. Walker, “Esti-
mation of forest biomass from L-band polarimetric decomposition compo-
nents cooperative research centre for spatial information, the University
of Melbourne Airborne Research Australia, school of the environment,
Flinders University department of Ci,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., Jul. 2013, pp. 949-952, doi: 10.1109/igarss.2013.6721318.
S.- Umed, L. M. H. Ulander, E. Blomberg, and M. J. Soja, “Measurements
of forest biomass change using L-and P-band SAR backscatter,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., 2017, pp. 5818-5821.

M. Schlund and M. W. J. Davidson, “Aboveground forest biomass estima-
tion combining L- and P-band SAR acquisitions,” Remote Sens., vol. 10,
no. 7, 2018, Art. no. 1151.

M. L. R. Sarker, J. Nichol, H. B. Iz, B. B. Ahmad, and A. A. Rahman,
“Forest biomass estimation using texture measurements of high-resolution
dual-polarization C-band SAR data,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 6, pp. 3371-3384, Jun. 2013.

R. J. L. Argamosa et al., “Modelling above ground biomass of mangrove
forest using sentinel-1 imagery,” ISPRS Ann. Photogrammetry Remote
Sens. Spatial Inf. Sci., vol. 4, no. 3, pp. 13-20, 2018.

N. N. Askar, W. Phairuang, P. Wicaksono, and T. Sayektiningsih, “Esti-
mating aboveground biomass on private forest using sentinel-2 imagery,”
J. Sensors, pp. 1-11, 2018, doi: 10.1155/2018/6745629.

A.B. Baloloy et al., “Estimation of mangrove forest aboveground biomass
using multispectral bands, vegetation indices and biophysical variables de-
rived from optical satellite imageries: Rapideye, planetscope and Sentinel-
2 ISPRS Ann. Photogrammetry Remote Sens. Spatial Inf. Sci., vol. 4,
no. 3, pp. 29-36, 2018.

M. E. J. Cutler, D. S. Boyd, G. M. Foody, and A. Vetrivel, “Estimating
tropical forest biomass with a combination of SAR image texture and
Landsat TM data: An assessment of predictions between regions,” ISPRS
J. Photogrammetry Remote Sens., vol. 70, pp. 6677, 2012.

J. Chang and M. Shoshany, “Mediterranean shrublands biomass estimation
using sentinel-1 and Sentinel-2,” in Proc. Int. Geosci. Remote Sens. Symp.,
2016, pp. 5300-5303.

J. Lei, X. Song, L. Sun, M. Song, N. Li, and C. Chen, “Learning deep
classifiers with deep features,” in Proc. - IEEE Int. Conf. Multimedia Expo.,
2016, pp. 2-7.

X. Y. Tong, G. S. Xia, F. Hu, Y. Zhong, M. Datcu, and L. Zhang,
“Exploiting deep features for remote sensing image retrieval: A systematic
investigation,” I[EEE Trans. Big Data, vol. 6,no. 3, pp. 507-521, Sep. 2020.
L. Xu, Y. Chen, S. Srinivasan, N. de Freitas, A. Doucet, and A. Gret-
ton, “Learning deep features in instrumental variable regression,” in
Proc. 9th Int. Conf. Learn. Representations, Virtual Event, Austria, 2021,
doi: 10.48550/ARX1V.2010.07154.

N. T. Ha, M. Manley-Harris, T. D. Pham, and I. Hawes, “The use of radar
and optical satellite imagery combined with advanced machine learning
and metaheuristic optimization techniques to detect and quantify above
ground biomass of intertidal seagrass in a New Zealand estuary,” Int. J.
Remote Sens., vol. 42, no. 12, pp. 47164742, 2021.

S. Vafaei et al., “Improving accuracy estimation of forest aboveground
biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A
imagery and machine learning: A case study of the Hyrcanian forest area
(Iran),” Remote Sens., vol. 10, no. 2, p. 172, 2018.


https://dx.doi.org/10.3390/rs1113161
https://dx.doi.org/10.3390/s20143906
https://dx.doi.org/10.1109/secon.2016.7506650
https://dx.doi.org/10.1007/978-981-16-2712-5_24
https://dx.doi.org/10.3390/geomatics2010007
https://dx.doi.org/10.1038/323533a0
https://dx.doi.org/10.1155/2017/1353691
https://dx.doi.org/10.3390/rs13071282
https://dx.doi.org/10.1117/12.2572807
https://dx.doi.org/10.1109/igarss47720.2021.9554415
https://dx.doi.org/10.1109/igarss.2013.6721318
https://dx.doi.org/10.1155/2018/6745629
https://dx.doi.org/10.48550/ARXIV.2010.07154

NAIK et al.: GENERATIVE FEATURE EXTRACTION FROM SENTINEL 1 AND 2 DATA FOR PREDICTION OF FOREST

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

H. Su, W. Shen, J. Wang, A. Ali, and M. Li, “Machine learning and
geostatistical approaches for estimating aboveground biomass in Chinese
subtropical forests,” Forest Ecosyst., vol. 7, no. 1, pp. 1-20, Dec. 2020.
R. C. Sharma, “Ensemble learning of multi-source satellite sensors dataset
for estimating forest biomass in New England region,” MDPI Preprint,
2021, Art. no. 2021020338, doi: 10.20944/preprints202102.0338.v1.

X. Li, M. Zhang, J. Long, and H. Lin, “A novel method for estimating
spatial distribution of forest above-ground biomass based on multispectral
fusion data and ensemble learning algorithm,” Remote Sens., vol. 13,
no. 19, 2021, Art. no. 3910.

X. X. Zhu et al., “Deep learning in remote sensing: A review,” I[EEE
Geosci. Remote Sens. Mag., vol. 5, no. 4, pp. 8-36, Dec. 2017.

L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep learning
in remote sensing applications: A meta-analysis and review,” ISPRS J.
Photogrammetry Remote Sens., vol. 152, pp. 166—-177, 2019.

G. Tsagkatakis, A. Aidini, K. Fotiadou, M. Giannopoulos, A. Pentari, and
P. Tsakalides, “Survey of deep-learning approaches for remote sensing
observation enhancement,” Sensors (Switzerland), vol. 19, no. 18, 2019,
Art. no. 3929.

A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised deep feature
extraction for remote sensing image classification,” I[EEE Trans. Geosci.
Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.

S. Ghosh, L. Bruzzone, S. Patra, E. Bovolo, and A. Ghosh, “A context-
sensitive technique for unsupervised change detection based on hopfield-
type neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3,
pp. 778-788, Mar. 2007.

J. E. Ball, D. T. Anderson, and C. S. Chan, “Comprehensive survey of
deep learning in remote sensing: Theories, tools, and challenges for the
community,” J. Appl. Remote Sens., vol. 11, no. 4, 2017, Art. no. 042609.
M. Zhu, Y. He, and Q. He, “A review of researches on deep learning in
remote sensing application,” Int. J. Geosci., vol. 10, no. 1, pp. 1-11, 2019.
T. Hoeser, F. Bachofer, and C. Kuenzer, “Object detection and image
segmentation with deep learning on earth observation data: A review-part
II: Applications,” Remote Sens., vol. 12, no. 18, p. 3053, 2020.

L.Zhu, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Generative adversar-
ial networks for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 9, pp. 5046-5063, Sep. 2018.

X. Liu, Y. Wang, and Q. Liu, “Psgan: A generative adversarial network for
remote sensing image pan-sharpening,” Proc. - Int. Conf. Image Process.,
vol. 14, no. 8, pp. 873-877, 2018.

V. Betina, “(Improved PPF)Going further with point pair features,” Neo-
plasma, vol. 16, no. 1, pp. 23-32, 2016.

Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks in
computer vision: A survey and taxonomy,” ACM Comput. Surv., vol. 54,
no. 2, pp. 1-41, 2021.

C. Li, K. Xu, J. Zhu, and B. Zhang, “Triple generative adversarial nets,”
Adv. Neural Inf. Process. Syst., vol. 2017, pp. 4089—4099, 2017.

B. Rodriguez-Sudrez, P. Quesada-Barriuso, and F. Argiiello, “Design of
CGAN models for multispectral reconstruction in remote sensing,” Remote
Sens., vol. 14, no. 4, p. 816, Feb. 2022, doi: 10.3390/rs14040816.

Y. Yoo, S. Yun, H.J. Chang, Y. Demiris, and J. Y. Choi, “Variational autoen-
coded regression: High dimensional regression of visual data on complex
manifold,” in Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp- 2943-2952.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

4771

X. Li et al., “Learning disentangled feature representation for hybrid-
distorted image restoration,” Lecture Notes Comput. Sci. (Including Sub-
series Lecture Notes Artif. Intell. Lecture Notes Bioinf.), vol. 12374,
pp. 313-329, 2020.

Y. Liu, F. Wei, J. Shao, L. Sheng, J. Yan, and X. Wang, “Exploring disen-
tangled feature representation beyond face identification,” in Proc. [EEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2080-2089.
C. T. Marx, R. L. Phillips, S. A. Friedler, C. Scheidegger, and S. Venkata-
subramanian, “Disentangling influence: Using disentangled representa-
tions to audit model predictions,” Adv. Neural Inf. Process. Syst., vol. 32,
pp. 1-11, 2019.

A. H. Liu, Y. C. Liu, Y. Y. Yeh, and Y. C. F. Wang, “A unified feature
disentangler for multi-domain image translation and manipulation,” Adv.
Neural Inf. Process. Syst., vol. 2018, pp. 2590-2599, 2018.

F. Del Frate and D. Solimini, “On neural network algorithms for retrieving
forest biomass from SAR data,” IEEE Trans. Geosci. Remote Sens.,vol. 42,
no. 1, pp. 24-34, Jan. 2004.

L.Zhang, Z. Shao, J. Liu, and Q. Cheng, “Deep learning based retrieval of
forest aboveground biomass from combined LiDAR and landsat 8 data,”
Remote Sens., vol. 11, no. 12, 2019, Art. no. 1459.

Z. Shao, L. Zhang, and L. Wang, “Stacked sparse autoencoder modeling
using the synergy of airborne LiDAR and satellite optical and SAR data
to map forest above-ground biomass,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 10, no. 12, pp. 5569-5582, Dec. 2017.

M. Dalponte and D. A. Coomes, “Tree-centric mapping of forest carbon
density from airborne laser scanning and hyperspectral data,” Methods
Ecol. Evol., vol. 7, no. 10, pp. 1236-1245, 2016.

J. Louis et al., “Sentinel-2 SEN2COR: L2A processor for users,” in Proc.
Living Planet Symp., 2016, pp. 1-8.

N. Bhogapurapu, S. Dey, D. Mandal, A. Bhattacharya, and Y. Rao,
“PolSAR tools: A QGIS plugin for generating SAR descriptors,” J. Open
Source Softw., vol. 6, no. 60, 2021, Art. no. 2970.

T. D. Nguyen and M. Kappas, “Estimating the aboveground biomass of
an evergreen broadleaf forest in Xuan Lien Nature Reserve, Thanh Hoa,
Vietnam, using SPOT-6 data and the random forest algorithm,” Int. J.
Forestry Res., vol.2020, pp. 1-13, Aug. 2020, doi: 10.1155/2020/4216160.
C. Wu et al., “Comparison of machine-learning methods for above-ground
biomass estimation based on Landsat imagery,” J. Appl. Remote Sens.,
vol. 10, no. 3, 2016, Art. no. 035010.

Y. Zhang, J. Ma, S. Liang, X. Li, and M. Li, “An evaluation of eight
machine learning regression algorithms for forest aboveground biomass
estimation from multiple satellite data products,” Remote Sens., vol. 12,
no. 24, 2020, Art. no. 4015.

G. Scrinzi, D. Galvagni, and L. Marzullo, I Nuovi Modelli Dendrometrici
per La Stima Delle Masse Assestamentali in Provincia di Trento. Trento,
Italy: Provincia Autonoma di Trento-Servizio Foreste e fauna, 2010.
IPCC, “Good practice guidance for land use, land-use change and forestry,”
in Proc. Nat. Greenhouse Gas Inventories Prog., Kanagawa, Japan,
2013, pp. 1.1-5.76.

N. Hayatbini et al., “Conditional generative adversarial networks (cGANs)
for near real-time precipitation estimation from multispectral GOES-16
satellite imageries-PERSIANN-cGAN,” Remote Sens., vol. 11, no. 19,
2019, Art. no. 2193.


https://dx.doi.org/10.20944/preprints202102.0338.v1
https://dx.doi.org/10.3390/rs14040816
https://dx.doi.org/10.1155/2020/4216160


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


