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Boosting Climate Analysis With Semantically
Uplifted Knowledge Graphs

Jiantao Wu , Fabrizio Orlandi, Declan O’Sullivan , Enrico Pisoni , and Soumyabrata Dev , Member, IEEE

Abstract—Nowadays, the fast expansion of heterogeneous cli-
mate data resources accessible on the Internet has led to substan-
tial data fragmentation on the web. For example, station-based
sensor data from different sources are likely to be interrelated
but may be stored in disparate formats, such as CSV, JSON, and
XML. To address the data isolation problem, several semantically
uplifted knowledge graphs are proposed for climate data exchange.
While these knowledge graphs improve data interoperability, the
advancement in multisource data interchange is limited to data
included inside knowledge graphs. As a result, the exclusive inter-
operability of current climatic knowledge graphs hampers the flow
of data into typical climate analysis workflows in contexts, where
analytical models often need data in nonknowledge graph formats.
This article addresses this issue by focusing on enhancing climate
analysis workflows within the context of the Python machine learn-
ing environment, with a preference for tabular data. We propose an
analysis workflow able to automatically integrate remote climate
knowledge graph data with local tabular data so as to enhance
the data usability with respect to certain climate analysis tasks.
To underscore the importance of our study, we illustrate how the
workflow streamlines the access to multisource climatic variables
in the Python environment from a semantic perspective. The ad-
ditional knowledge graph data have the potential to augment local
datasets in the climate domain, as evidenced by an improvement
in accuracy of up to 10% for machine learning geared on rainfall
detection.

Index Terms—Climate data, knowledge graphs (KGs), linked
data, machine learning, semantic webs.

NOMENCLATURE

CA Climate analysis.
CCTL Climate change timeline.
KG Knowledge graph.
KNN K-nearest neighborhoods.
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LOD Linked open data.
LoG Linked OntoGazetteer.
NOAA National Oceanic and Atmospheric Administration.
PCC Pearson correlation coefficient.
PM2.5 Fine particulate matter.
PRCP Precipitation.
RDF Resource description framework.
RF Random forest.
SNWD Snow depth.
SOSA Sensor, observation, sample, and actuator.
SPARQL SPARQL protocol and RDF query language.
SVC Support vector classifier.
TAVG Average temperature.
TMAX Maximum temperature.
TMIN Minimum temperature.

I. INTRODUCTION

THE RDF is a W3C-recommended standard paradigm for
data exchange on the web. It enables the data interoper-

ability by allowing them to be merged even when the underly-
ing schemas vary and also allows schema development over
time without needing all the data consumers to be updated.
RDF datasets constructed based on the semantic model are
called as KGs in the modern way. By integrating nodes and
edges in a semantic model, the KGs conceive information,
such as events and connections between things in an intelli-
gent manner, for example, KG could be used to derive new
information based on semantic rules. From this perspective,
KGs have been constructed for a number of different uses. For
example, by using KGs as its databases, Google1 was able to
enhance the intelligence of its search engine. Wikidata2 and
DBpedia3 are encyclopedia databases that are built with the
help of KGs. However, there are many sectors that produce
enormous quantities of data but are underexplored in terms
of using KG to develop intelligence on top of the data [1].
One such area is climate, which has made large quantities of
sensor data publicly available. Numerous research works have
utilized semantic technologies to mitigate the data isolation
problem in the climate domain. For instance, Wu et al. [2]
propose CA ontology for transforming CSV-formatted NOAA4

climate sensor observations into RDF-formatted data that are

1[Online]. Available: https://developers.google.com/knowledge-graph
2[Online]. Available: https://www.wikidata.org/
3[Online]. Available: https://www.dbpedia.org/
4[Online]. Available: https://www.ncdc.noaa.gov/
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then stored in their climate KG—Link-Climate [3]—which are
utilized to provide the different linked data sources of climate
data to climate communities. Pileggi developed a knowledge
base of climate-change-related facts organized chronologically
using their CCTL ontology [4]. Surya et al. [5] incorporate so-
ciogeological considerations into their climate change ontology
model. Research in the semantic web community is more likely
to develop ontology models for climate data based on specific
use cases, which transforms the data schema into an ontology,
potentially increasing data interoperability. They are, however,
less focused on the intelligent use of climate KG data (e.g.,
allowing the semantic data augmentation on the tabular machine
learning data feed).

Unfortunately, one major issue that accounts for the limited
use of KGs for intelligent applications is that contemporary
climate KGs, like ours, are the devoid of data exchange between
KGs and machine learning pipelines frequently used in the
PyData environment. Certain researchers still prefer to build
machine learning models directly on a fixed dump of tabular
data [6], which is often limited in terms of variety and amount.
A significant disadvantage is that it may not be capable of devel-
oping highly reliable forecasting, since meteorological phenom-
ena, such as rainfall, maybe highly reliant on a huge number of
factors other than a local dataset. We offer a method for applying
machine learning techniques with the easy combination of our
climate KG by bridging our KG to PyData environment and,
thus, simplify the collection of climate data within the PyData
environment for machine learning workflows in this article. In
contrast to other climate KGs, the additional data communi-
cation channel created for machine learning pipelines enables
users to perform machine learning on climate-associated tasks
automatically employing our KG climate dataset. Especially,
the machine learning pipelines can advance the users’ fixed
climate tabular data (e.g.,CSV) by combining our remote climate
KG data. When applied to the NOAA original CSV dataset
and enhanced with our climate KG atmospheric sectors, some
common machine learning classification models offer many
advantages over current weather prediction and classification
tasks in terms of increased accuracy (up to 10% for rainfall
detection), dependability, and reusability. A summary of the
contributions of this article5 to the climatic analysis field is listed
as follows.

1) A well-documented open climatic KG is created by us
to supply online multisource climate data for data con-
sumers. The KG now covers weather, atmospheric, and
air quality data and is continuously being enriched with
more data in the climate areas.

2) Our climatic KG complies with linked data principles,
which enables a wider data accessibility to other linked
data. For example, we pair our weather stations with
geographical context from Wikidata and DBpedia, which
enables connections with other linked data through the
geographical entities.

5In the spirit of reproducible research, all the source code is [Online].
Available: https://github.com/futaoo/kg-climate-analysis.

3) We bridge the interoperability advance of our climatic
KG to PyData machine learning pipelines, allowing an
easy obtainment of multisource climate data to boost
climatic analysis with semantics that eliminates the need
of handling data heterogeneity.

4) We perform a real machine learning case study w.r.t. the
rainfall detection based on the NOAA tabular data to
demonstrate the effectiveness of our article in terms of
advantages in multisource data preprocessing and machine
learning performance improvement (up to 10%) with the
additional use of our climatic KG.

II. RELATED WORK

Owing to the diversity of sensor data gathered globally, in-
cluding air pollution, weather, and satellite reanalysis, these data
are heterogeneous and supplied in a number of data formats (e.g.,
CSV, JSON, and NetCDF) [7]. It is challenging to enhance the
data intelligence from these separate datasets [8], [9]. A widely
accepted idea in recent research is to create a web of data by
linking various disparate data sources. This requires that data ad-
here to four linked data principles [10]: 1) use uniform resource
identifiers (URIs) as names for things; 2) use HTTP URIs so that
people can look up those names; 3) when someone looks up a
URI, provide useful information, using the RDF standard; and 4)
include links to other URIs. Numerous studies have made strides
in integrating various data sources into KGs complying with
linked data principles in the climate domain. Typically, the aim
is to provide more detailed information for specific applications.
LoG [11] is an ontological gazetteer built from a collection
of open KGs [e.g., GeoNames,6 DBpedia] in order to provide
additional KG-based underlying context for reference data used
in textual geographical information retrieval. In addition, the
KGs produced by researchers from diverse disciplines may be
approved for publication on the LOD cloud,7 to bolster the
collection of linked datasets. Until May 2020, the LOD cloud
has 1301 datasets with 16 283 links, and the number of datasets
continues to increase rapidly. Despite the fact that the LOD
cloud is an effort aimed at providing researchers with globally
interoperable data, the data quality is debatable. Debattista et
al. [12] presented an assessment measure to evaluate the LOD’s
data quality; however, their findings indicate that the average
score is less than 60%, which represents the current state of
LOD’s data quality in any discipline (including the climate). On
the other hand, since the schema (or ontology) for RDF triples
is not standardized, documentation should be provided by KGs
to assist users in either updating data or formulating SPARQL
queries. This, however, is often overlooked by research.

To ensure a higher quality of climate data and sufficient
context information to assist nonexperts in navigating the com-
plex process of requesting climate KG data, our recent research
developed an online portal8 supplying a detailed documentation
for our climate KG to assist researchers in comprehending the
CA ontology and easily locating climate data that meet their

6[Online]. Available: http://www.geonames.org
7[Online]. Available: https://lod-cloud.net/
8[Online]. Available: http://jresearch.ucd.ie/linkclimate/

https://github.com/futaoo/kg-climate-analysis
http://www.geonames.org
https://lod-cloud.net/
http://jresearch.ucd.ie/linkclimate/


4710 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

data requirements [13], [14]. In addition, we provide linked
geographical context for our KG’s spatial entities using only
high-quality linked data from LOD sources, such as Wikidata
and DBpedia, to guarantee that the data remain alive and useful
over time. Despite the fact that our climate KG provides a
broader range of data for climate studies, mining information by
connecting various data sources to KGs and the requirement for
automated KG data input into machine learning models (prefer-
ring tabular format), which are increasingly being explored for
increased artificial intelligence [15], is hardly met by the climate
KG. Currently, some relevant research works have concentrated
on the integration of KGs with machine learning. Li et al. [16]
use external KGs to augment machine learning prediction tasks
for students’ mental health condition. Lei et al. [18] propose to
constrain optimization goals with KGs [17] to guide the model’s
learning for illness classification. Annervaz et al. [19] train deep
learning models to obtain “world knowledge” from KGs and
integrate them in sequent models for downstream tasks.

Unfortunately, to the best of our knowledge, the interoperable
combination of machine learning and online climate KGs for
climate-related tasks has been studied seldom if ever. Those
studies, however, tend to download the whole dumps of KG data
(i.e., with minimum interoperability). For instance, Annervaz et
al. [19] used a couple of KG dumps, including Freebase 15K
(FB15k),9 WordNet18 (WN18)10 and DBpedia ontology,11 as
the raw data feed. A critical disadvantage of the data dump is
its inability to be processed dynamically to suit a variety of
requirements, such as the dynamic acquisition of KG data [11].
In addition, consider a scenario that someone questions if a
subset of the KG data is adequate to enable the models to perform
promisingly in the Annervaz’s experiment and tries to derive
a number of subgraphs to make comparisons. All of the data
dumps will, then, be loaded into memory and parsed as graphs
in order to extract the subgraphs.

A current research trend in relation to this issue is to create a
framework directly integrating machine learning pipelines with
the SPARQL endpoints, which interfaces the online KGs by
providing programmable query services. RDFFrames [20] is a
framework written on the Python code to implement imperative
programming in replace of SPARQL declarative programming
to obtain the KG data. Using RDFFrames, users are able to
formulate queries within a PyData ecosystem, and the queries
will be translated into equivalent SPARQL queries to get the KG
data. Another recent framework is kgextension [21], which
focuses on integrating KG with the popular Python data mining
pipelines—Scikit− Learn to enable tabular data readily to be
linked to a remote KG so as to increase the data variety for local
data. Typically, it contains a range of entity linking methods
(e.g., DBpedia’s Spotlight Entity Linking12) to facilitate the
identification of entities to those equivalents in a remote KG.
The common feature is that they all achieved the querying, ma-
nipulating, and selecting of KG data in a highly programmable

9[Online]. Available: https://paperswithcode.com/dataset/fb15\;k
10[Online]. Available: https://paperswithcode.com/dataset/wn18
11[Online]. Available: https://www.dbpedia.org/resources/ontology/
12[Online]. Available: https://www.dbpedia.org/resources/spotlight/

manner, and the returned data are all formatted with the popular
Pandasdataframe.

In this article, we combine Link-Climate preferably with
kgextension, which can help us deal with the cases that users
want to use Link-Climate graph data to be integrated with their
local tabular data.

III. METHODOLOGY

In this section, we demonstrate how to utilize kgextension13

and our climate KG to create a workflow that can help users
easily benefit from the gain on climate machine learning tasks
by integrating our climate KG with other datasets (such as CSV
and other KGs). An overview of the workflow is shown in Fig. 1,
where the area in gray color stands for the KG components of the
workflow, and the blue area stands for components in relation to
the PyData environment. The steps are ordered by the sequential
numbers.

A. Leveraging Link-Climate KG as the Auxiliary Data Source

Link-Climate is a climate KG that we built as a derived work
of many online climatic data services, such as NOAA online
climate data14 and PurpleAir’s atmospheric data15 in certain
European cities. Link-Climate adopts the RDF triple store as
the database implementation and has conformed to linked data
principles. This enables that other RDF triple stores’ facts linked
to Link-Climate can be accessed conjointly through federated
SPARQL queries [22]. We added geographical context for spa-
tial entities in the Link-Climate from DBpedia and Wikidata,
allowing users to utilize federated queries to query more infor-
mation from these contextual KGs through the linked entities.
Hence, Link-Climate not only offers the additional data for
climate studies but also allows for the expansion of the existing
meteorological data via federated queries to other usable linked
datasets.

Various datasets transformed into Link-Climate are structured
with the same set of ontologies. In contrast to schemas that are
designed independently for multiple data sources, ontologies
are generic semantics that are not tied to particular datasets.
This enables the organization of multisource data at the general
concept level in reference to only human knowledge in an
interoperable manner. Considering the scenario when people
want to find atmospheric data from NOAA and PurpleAir, they
will unable to do so until they identify the exact meaning of
the data from two distinct data sources. They may need to
read a number of dataset-specific documentations since NOAA
and PurpleAir do not organize their data in the same manner
(e.g., different name conventions). However, if the datasets
have been uplifted by shareable ontologies and transformed into
Link-Climate KG, people can easily find and manipulate NOAA
and PurpleAir data using SPARQL queries. In machine learn-
ing practice, the benefit of shareable ontologies can be further
explored for feature selection. To illustrate this, we begin with

13[Online]. Available: https://github.com/om-hb/kgextension
14[Online]. Available: https://www.ncdc.noaa.gov/cdo-web/
15[Online]. Available: https://www.purpleair.com/
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Fig. 1. Sketch of our proposed workflow.

a part of the ontology model for the Link-Climate atmospheric
data being used for the following KG-augmented experiments.
We use the data transformed from PurpleAir-hosted worldwide
sensors as an example covering measurements of PM2.5, air
humidity, air pressure, and temperature. The model’s primary
ontology is SOSA.16 Along with SOSA, we developed climate
domain-specific vocabulary in order to manage the resources
associated with PurpleAir’s sensor data. To keep things simple
and focused, two components of the ontology model will be
presented through graphical views17: the modeling of the PM2.5
index (see Fig. 2) and the modeling of the associated air sensor
(see Fig. 3).

A short description of some of the main semantic classes and
properties used in our model (and in the above figures) is given
as follows:

Classes:
sosa:Observation—a measurement to the value of a property

of a feature of interest;
sosa:Sample—a sample representative of a feature of inter-

est;
sosa:ObservableProperty—an observable property of a

feature of interest;
sosa:Sensor—a device, agent to conduct a procedure which

determines how observations will be made;

16[Online]. Available: https://www.w3.org/TR/vocab-ssn/
17Note: Ontology vocabularies in the figures are already associated with

web addresses (to meet the linked data principles) and comply with the form
{prefix}:{literal term}, i.e., the name spaces are prefixed to the literal names of
the node (the prefix starts with “:” means the name space defined by this work).

Fig. 2. Ontology modeled PurpleAir’s PM2.5 observation (node
“:?sensorid=26695&var=pm25&time=1620379531”), and uncolored nodes
are literals of different data types.

Fig. 3. Ontology model for a PurpleAir’s sensor (node “:sensor?id=26695”).

geo:SpatialThing—a class for representing anything with a
spatial extent, i.e., size, shape, or position;

geo:lat—the latitude of a spatial thing;

https://www.w3.org/TR/vocab-ssn/
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geo:long—the longitude of a spatial thing.
Properties:
sosa:hasSimpleResult—a simple value of an observation;
sosa:madeBySensor—linking an observation to the sensor

that generates it;
sosa:resultTime—denoting the time when the observation

is made;
: hasOwner—linking a sensor to its host organization;
ca-proerty:isLocatedIn—the property used in CA ontology

to denote the administrative division where a thing is located in.
As shown in the ontology model for PurpleAir’s air sensor

data, the ontology model makes use of a variety of human-
readable vocabulary (e.g., “hasSimpleResult” and “madeBySen-
sor”) to demonstrate the semantic connections between data. To
use the ontology models for feature selection from datasets, data
consumers must be acquainted with the ontology vocabulary in
order to manipulate the Link-Climate KG. We direct visitors
to the data portal18 for a better understanding of the various
ontology models utilized in Link-Climate. Given an expert of the
Link-Climate ontology model, we assume that the expert is in-
terested in only atmosphere variables of Link-Climate in Dublin
for the downstream experiments. The following SPARQL query
pattern can be formulated to precisely locate the data of in-
terest. Furthermore, this pattern is not dataset specific prior to
transformation into Link-Climate, allowing for the selection of
semantically identical data across many datasets. This stage
is critical for removing irrelevant data from machine learning
tasks and speeding up the feature selection procedure. To further
completing a full cycle of feature selection, e.g., to determine
each feature importance in relation to a particular machine
learning task, we propose tunneling Link-Climate into PyData
ecosystem and conducted a real rainfall detection experiment,
as illustrated in the following sections.

Listing 1. A SPARQL query that retrieves available atmospheric variables in
Dublin.

B. Connecting Link-Climate in PyData Ecosystem

The PyData ecosystem includes a significant variety of ver-
tically scalable and simple-to-use solutions such as Pandas,

18[Online]. Available: http://jresearch.ucd.ie/linkclimate/

NumPy, and Scikit-Learn that are popularly used by
climate studies for analytical workflows creation. The Link-
Climate KG, on the other hand, provides a SPARQL interface
for acquiring additional climate data. Typically, the solutions
to “SELECT”-oriented data queries are in the tabular forms
formatted with CSV or JSON. To allow potential climate studies
to enhance their data by adding data from remote Link-Climate, a
difficulty being worth addressing is to transform query solutions
to be consistent with local data and then combine and feed it into
the analytical workflows. As far as we know, numerous Python
machine learning pipeline implementations require that the in-
put data are in the Pandas Dataframe format. Given the
growing popularity of Pandas Dataframe as a data feeding
format for machine learning, we attempt to allow kgexten-
sion to submit SPARQL queries to the external Link-Climate
KG rather than our private SPARQL endpoint service. The
advantage is that kgextension automatically converts the re-
sults of SPARQL queries to Pandas Dataframe. It removes
the need for data transformation when using machine learning
models implemented by Python code. Listing 2 is a piece of trial
code developed in the kgextension programming functions
that connects the remote Link-Climate KG, submits the query,
and converts the query solution to a Pandas Dataframe.

Listing 2. A piece of trial code to connect the remote Link-Climate KG.

IV. CASE STUDY ON RAINFALL DETECTION

In this section, we demonstrate how to use Link-Climate KG
within PyData environment to enhance a local NOAA daily sum-
mary dataset via thekgextensionpipeline. The enhancement
effect will be evaluated with respect to rainfall detection and see
if the inclusion of Link-Climate data can improve NOAA daily
summary data for daily rainfall detection tasks.

A. Data Preparation

As a starting point, we manually downloaded daily weather
data for the Dublin Phoenix Park for a one-year period
(from 2019.06.01 to 2020.06.01) from the NOAA, including
daily maximum and minimum temperatures, daily precipitation
amounts, daily average temperatures, and daily snow depth,
which are compiled in a CSV file by the NOAA and used as

http://jresearch.ucd.ie/linkclimate/
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TABLE I
WEATHER INDEXES COVERED BY NOAA CLIMATE DATA; UNITS COMPLY WITH THE INTERNATIONAL SYSTEM OF UNITS

TABLE II
LOD CLOUD’S GEOGRAPHICAL INFORMATION INCORPORATED FOR THE STATION IN TABLE I

TABLE III
dataframe CONTAINS ALL AIR SENSORS OF LINK-CLIMATE KG LOCATED IN DUBLIN

the raw input for the machine learning models. The CSV file is
described in full in Table I. Each variable’s value is recorded in
relation to the date; thus, each variable is a time series with a
basic time step of one day.

B. Station’s Geographical Information Augmentation With
LOD Cloud

The station information in Table I only consists of the name
(NOAA uses the location of the station as the name) and station
code, which is less accessible in a KG as the literals are often
not provided with URIs for identification purpose. Interlinking
the literals to augment data is the least practical. Since the name
is given in natural language by the NOAA, we use DBpedia
Spotlight19 through kgextension to find the equal places
(with URIs) in LOD cloud, which has offered more information
such as geographical information in regarding to the place by
other one’s efforts. We then filter the enriched geographical
information provided by only DBpedia in the LOD cloud. The
enriched station’s geographical information is shown in Table II,
which additionally includes the city location, latitude/longitude
coordinate of the station, and the found entity in DBpedia.

C. Semantically Acquiring Atmospheric Features

As Table I indicates, only a limited number of meteorological
variables can be employed as features for rainfall detection,
despite the fact that some variables may be considered noisy
features for the task. For a machine learning task, the predicting
result may be highly dependent on the number of effective fea-
tures fed into the models. Therefore, we conduct the experiment
with the atmospheric variables data located in Link-Climate
KG as external resources and premise that the some of the
atmospheric variables can improve the rainfall detection task
if they can accompany NOAA climate data as the data input

19[Online]. Available: https://www.dbpedia-spotlight.org/

for machine learning models. To accomplish this, we recap the
power of the ontology as stated in Section III-A and formulate
a SPARQL query as seen in Listing 3 to find available sensors
in the same city of the NOAA station and their associated daily
atmospheric data. During this step, the geographical information
obtained from LOD cloud provides the necessary city location
information (Dublin) to locate the air sensors Table III. To be
short, we directly give the resulted Table IV, which has merged
NOAA climate data and atmospheric data. In the following sub-
sections, we demonstrate that the certain atmospheric variables
have a significant positive impact on NOAA daily climate data
w.r.t. the improvement of the rainfall detection task.

V. BOOSTING RAINFALL DETECTION WITH LINK-CLIMATE

We consider NOAA climate and Link-Climate atmospheric
variables as multiple time variables that affect each other, and
describe the rainfall detection as a binary multivariate time-
series classification problem to which the solution should pre-
dict whether the rainfall occurs or not on a future day. The
probability threshold is set to be 0.5 above which we claim
the rainfall will happen on a future day. Let xt, x ∈ RN be
an n-dimensional vector at time step t. xt = (xt

1, x
t
2, . . ., x

t
N ),

where xt
n denotes an NOAA climate variable or Link-Climate

atmospheric variable at time step t. y ∈ {0, 1} denotes the binary
label and y = 1 (PRCP > 0) means that rainfall occurs. Hence,
a formal definition of rainfall detection on time step t based on
the observations of previous k time steps can be formulated as
follows:

P t(y = 1|(xt−1,xt−2, . . .,xt−k)).

In practice, we choose k = 2 as the number of preceding
time step count. Given the aforementioned CA context and the
merged datasets as Table IV of various Dublin’s air sensors, we
start by examining how the sensor distance from the NOAA

https://www.dbpedia-spotlight.org/
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TABLE IV
SAMPLE OF NOAA’S WEATHER DATA COMBINED WITH ATMOSPHERIC VARIABLES FROM LINK-CLIMATE

station contributes to the NOAA daily summary data for rainfall
detection.

Listing 3. SPARQL query that finds sensors’ atmospheric observations in
Dublin from Link-Climate KG; df_link_station denotes Table II.

A. Determining the Importance of Sensor Distance With the
Boruta Algorithm

The Boruta algorithm [23] is a highly successful way for
selecting features in the machine learning field. Its approach is
illustrated as: first, it adds scrambled duplicates of all features as
unpredictability to the dataset. Then, it uses a feature importance
measure such as mean decrease accuracy [24] to this enlarged
dataset (original features + shadow feature) to train an RF
classifier. The Boruta algorithm analyzes each cycle for a higher
priority feature than the best of its shadow features and deletes
elements that are considered highly irrelevant.

Given the algorithm, the proposed strategy to determine most
important sensor can be summarized as a two-stage approach. In
the first stage, we employ the Boruta algorithm independently
on two groups of variables sorted from Table IV: 1) NOAA
climate variables (“PRCP,” “SNWD,” “TMAX,” “TMIN,” and
“TAVG”) and 2) NOAA climate variables plus Link-Climate
atmosphere variables, for each sensor. Three sensors at varying
distances from the NOAA’s Dublin Phoenix Park station are
compared in group 2: the closest sensor is “sensor 26695,
3.7 km,” the middle sensor is “sensor 59111, 8.0 km,” and
the furthest sensor is “sensor 91889, 18 km.” This stage is to

TABLE V
EXAMPLE OF RESULTS GIVEN BY THE CLASSIFIERS

select the most important variables for the following preliminary
rainfall detection experiments in the second stage. Once the
“important features” are selected for NOAA station and each
sensor, we then apply a range of frequently used classifiers to
two groups of “important features” in order to perform compact
classification tasks (without optimizing the models) for rainfall
detection (see Table V for one classification result collection for
sensor “sensor 59111”). Finally, we subtract the classification
results for NOAA features from the classification results for
each classifier for each air sensor in the second group in order to
generate a statistic on the differences between each air sensor’s
data that improves rainfall detection performance. The statistic
for each sensor’s contribute to rainfall detection in addition to
NOAA is shown in a box plot in Fig. 4. According to the box
plot, only sensor “s26695” (i.e., the nearest) is able to enable
most (over 75%) of the classifiers to achieve a positive impact
on the rainfall detection for NOAA data. Moreover, the positive
impact decreases as the sensor distance increases and eventually
tends to converge on zero when the sensor is far from the NOAA
station. Therefore, we conclude that the nearest sensor makes the
most significant contribution to the NOAA data in terms of data
usability for rainfall detection.
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TABLE VI
NOAA WEATHER DATASET ENHANCED WITH LINK-CLIMATE ATMOSPHERIC VARIABLES

Fig. 4. Classification results statistics for sensors.

Fig. 5. Feature importance ranking; important features, unimportant features,
and shadow feature statistics are shown in green, red, and blue, respectively.

B. Analysis of the Atmospheric Features on Rainfall Detection

This section is to demonstrate in depth the positive effects
of Link-Climate atmospheric variables on enhancing NOAA
climate data for rainfall detection. In Fig. 5, recapping the
Boruta algorithm’s approach in Section V-A, we directly pro-
vide the complete feature importance result of the combination
of NOAA and Link-Climate atmospheric variables for rainfall
detection using the sensor nearest to the NOAA station. The most
critical features for rainfall detection, in order of importance,
are “Pressure,” “PRCP,” “Humidity,” and “TAVG” (closest to
the “Max_Shadow” statistics). Following that, we compare the

TABLE VII
PERFORMANCE EVALUATION OF RAINFALL DETECTION ON TWO DATASETS: 1)

NOAA WEATHER DATASET AND 2) NOAA WEATHER DATASET ENHANCED

WITH LINK-CLIMATE ATMOSPHERIC VARIABLES

machine learning performance disparities in two situations based
on the data’s various sources: 1) case 1: NOAA climate variables,
i.e., “PRCP” and “TAVG”; and 2) case 2: case 1 with additional
Link-Climate atmospheric data—“Pressure” and “Humidity.”
The sorted training set for case 2 can be seen in Table VI. To
construct the training and testing sets, we divided the data into
two-thirds for training and one-third for testing, with the ratio
of distinct labels being constant across the training and test sets.
The training and testing sets are prepared in the format in line
with Table VI.

C. Benchmarking With Machine Learning Approaches

The comparisons across different datasets are made on ma-
chine learning models, namely, RF, SVC, and KNNs, all of
which are excellent at training with a minimal amount of data.
These machine learning models are directly implemented using
sklearn library of Scikit-Learn Python machine learn-
ing pipeline. In Fig. 6, we draw a group of confusion matrix
pictures to show each model’s learning performance across
different datasets. The pictures lined in upper row are models
applied on only NOAA data, and the lower row pictures are
models applied on NOAA and Link-Climate KG data. As seen
in Fig. 6, the recall rates for rainfall and nonrainfall predictions
are significantly higher in the case of models applied on the
NOAA and Link-climate data. To describe the performance
more comprehensively, we direct readers to Table VII where
more detailed criteria, such as precision, F1-score, and accuracy,
are given for rainfall detection (label “yes”). It is clear to see
that all of three models have higher performance in case 2,
where Link-Climate KG data are used to enhance the original
CSV-formatted NOAA data (highlighted with bold numbers).
Especially, for F1-score, the increase is approximately as high
as 10% on average for three machine learning models.
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Fig. 6. Comparison of the performance of different machine learning models using NOAA data with and without Link-Climate KG data.

VI. CONCLUSION

In this article, we demonstrated a workflow that utilizes
Link-Climate KG to improve a given tabular dataset in this
study. The advantage of a KG that adheres to link data standards
is that it can be accessible online through HTTP and readily
obtained for on-demand and programmable data requests from
clients. Because the majority of current machine learning tasks
are performed on a fixed dataset, it is difficult to update the local
data due to the bulked data associated with the fixed data scheme.
However, with Link-Climate, the data structure is built using
ontology, which allows for more flexibility in terms of acquiring
multisource data. Despite the adaptability, worry over the in-
creasing complexity and deteriorating quality of linked data has
increased lately. The Link-Climate KG makes use of a KG portal
to provide users with instructions to the KG manipulations. On
the other hand, KG data are often downloaded beforehand as data
dumps for machine learning researchers to do a range of tasks,
which requires significant data preprocessing effort. The data
dumps do not adhere to the linked data standards and, therefore,
miss the benefits of linked data, which may provide them with
on-demand and even live data. Thus, it should be a primary
objective of linked data researchers to provide a simple method
for bridging the divide between the KG and the contemporary
machine learning environment to allow machine learning algo-
rithms to be benefited with the linked data. To introduce linked
data into popular machine learning pipelines, we need to address
the major problem in regarding to the data exchange between
graph data and tabular data for machine learning input. We
propose using kgextension to bridge this gap in the climate
domain using our Link-Climate KG. The proposed methodology
allows users to convert KG data to PyData in such a way that
popular machine learning pipelines, such as Scikit-Learn,

may be used to analyze the KG data conjointly with local
tabular data in a programmable manner. In addition, tabular data
normally do not represent real-world things. It is sometimes
advantageous to supplement the tabular data with additional
data by using certain helpful entity link technologies to locate
and connect the tabular-data-element-related real-world entities.
A key milestone in our study that demonstrates this benefit is
the DBpeida’s Spotlight linker, which enables us to identify the
geographical locations of NOAA climate observation stations
through LOD cloud. The city information and longitude/altitude
data may help simplify the SPARQL searches that are sent to our
Link-Climate KG. Finally, we show that Link-Climate KG data
complements NOAA data by significantly improving the perfor-
mance of machine learning algorithms for rainfall detection. The
data from Link-Climate KG’s atmosphere monitoring system
may also be utilized to investigate the potential of improving
other climate-related activities.

In the future, we will work on developing an advanced pipeline
with a graphical user interface to assist users in augmenting KG
data for machine learning applications. We want to incorpo-
rate more data domains for climate research into the current
Link-Climate KG, including remote sensing and transportation
data. In addition, we place a high premium on sophisticated
semantic web technologies, such as GeoSPARQL and temporal
RDF, which together may significantly improve the performance
of spatial and temporal computations simply by using high-level
SPARQL queries.
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