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A Divided Spatial and Temporal Context Network for
Remote Sensing Change Detection

Nian Shi , Keming Chen , and Guangyao Zhou

Abstract—In recent days, change detection has become one of
the central tasks for remote sensing image analyses. Due to the
powerful discriminative abilities, various convolutional-based ap-
proaches have been applied and shown favorable performance in
change detection. However, these approaches either require nu-
merous parameters to obtain refined features or cannot make full
use of the global context information, which is crucial for change
detection. Motivated by the recently proposed visual transformers,
we introduce a divided spatial and temporal context modeling
network to tackle such shortcomings, which is tokens-based and
passes the global context by well-modeled tokens. Specifically, to
model the spatial context, we first use a spatial self-attention to
make each token implicitly incorporate the spatial information of
the corresponding image. Then, a followed temporal self-attention
is used to model the temporal context. Together with the spatial self-
attention, it makes the learned tokens contain the global context and
become more representational and suitable for change detection.
Finally, a prediction head is used to output change detection results
over the token space without additional transformer decoder or
skip connections between features and tokens, thus reducing the
model parameters and computational costs. Thanks to the superior
global context modeling capabilities of the proposed method, we
further develop a simplified variant with much smaller parame-
ters but only a slight drop in F1 and IoU scores. Our proposed
method has shown competitive performance and surpasses several
state-of-the-art methods according to our experiments.

Index Terms—Change detection, convolutional neural networks,
self-attention, spatial-temporal transformer.

I. INTRODUCTION

CHANGE detection is defined as the process of labeling
the pixel- or region-level differences of an object or phe-

nomenon in remote sensing images that are acquired on the same
location but different times [1]. As one of the most significant
tasks for remote sensing image analyses, change detection has
contributed significantly to Earth observation, such as urbaniza-
tion investigation [2], resource exploration [3], [4], and disaster
assessment [5].

In recent years, due to the powerful discriminative abil-
ities and strong feature representation capabilities, various
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convolutional-based approaches have been successfully ex-
plored and shown promising performance in change detec-
tion [6], [7]. These convolutional-based methods are designed
to extract refined features while the global context, consisting
of spatial context and temporal context, is not fully exploited,
which is also critically important for change detection. We
summarize existing challenges and corresponding research into
three aspects, feature design, spatial, and temporal modeling.

First, many existing change detection methods are de-
rived from well-performing segmentation networks, such as
U-Net [8]. They mainly apply a Siamese backbone to extract
features [7], [9] from multitemporal images, and adopt some
mathematical operations to fuse features, such as concatenation
and difference [10], often coming with attention mechanisms
over channels, space, and time to improve the quality of extracted
features [6]. These methods are highly feature-dependent and
require a well-designed structure to obtain refined features,
which introduces much more parameters. However, unlike seg-
mentation tasks, change detection is mainly concerned with
whether the pixels in input multitemporal images have changed
or what kind of change has occurred, rather than which specific
category they each belong to. Therefore, highly refined features
may be redundant, and what we demand are the representations
with more semantic relevance to changes. The encoder–decoder
structure is mostly adopted in recently proposed supervised ap-
proaches to obtain advanced semantically relevant features [7],
[11], but it always comes with some down-sampling operations
and thus reduces the resolution of features, which is crucial in
change detection [12]. To fuse the high-resolution features, the
model needs to add some skip connections or complex decoders,
which in turn increases the number of parameters. For more
parameters mean more difficulties in practical applications, ef-
ficient and effective representations are still active demands for
change detection. The global context has been proved one of
the most suitable representations for change detection in recent
studies [9], [13], [14]. And global context modeling is also what
we are investigating in this work.

Second, although the changes refer to temporal changes, the
spatial context can still greatly help to improve the results [15].
As shown in Fig. 1, the brightness, contrast, and spatial textures
of the same objects are always different among input image pairs
due to different imaging conditions, and thus make it difficult to
compare the patches to obtain the change map directly. Although
existing methods can extract unified features from different
images with deeper networks and additional constraint designs,
with this comes an increase in the number of parameters. While
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Fig. 1. Illustration of the spatial and temporal context. (a) is a paired input
images used for change detection and we select four pairs of patches for
illustration. These selected pairs of patches are zoomed in for better view in
(b). As shown in (b), the patches with the same color in the same row mean that
they are from the same image but at different positions. The patches with the
same number in the same column mean that they are at the same position but
from different images. For patch #1, its spatial context are patches #2, #3,
and #4. Its temporal context is #1.

the patches in the same image are similar in properties and easy to
compare, then the idea comes as no surprise that using the spatial
context to help to model the global context. To fully leverage the
spatial context, Mou et al. [16] tried to get more representational
features by integrating the spatial information into a recurrent
neural network. Sun et al. [15] first proved that a single patch
could be approximately rebuilt by some other related patches in
the same image, and then introduced the patch similarity graph
matrix to obtain change maps. Chen et al. [13] used spatial atten-
tion to help to transfer extracted feature maps into a collection
of tokens, which are vectors embedded from image patches, and
generated the weighed feature maps for change detection with a
transformer structure. In addition, some multilevel approaches
were also designed to exploit the spatial context [9], [17]. If we
can make full use of the spatial context, then we can reduce the
number of parameters by eliminating much of the design effort
spent on extracting comparable features. Therefore, it is pretty
essential to further explore the utilization of spatial context in
the change detection task.

Third, the input images for change detection are generally
time-series dependent, so how to model the temporal context
to achieve better results is undoubtedly essential. The most
common approach is to fuse features of different images to
obtain final change maps [10], [18], and there are also some
attention mechanisms applied to reweight the fused temporal
features/images [19]. These deep learning-based methods either
directly concatenate/add/differ the obtained temporal features or
perform attention mechanisms with much more parameters [7].
These methods can achieve good change detection results as
they have been well trained to extract refined features. However,
when the spatial context modeling is done, as we have mentioned
before, the performance of these methods will be degraded
since the modeled tokens cannot be compared in these ways.
In addition, most methods are not easily adjusted when there are

more than two images as input. Although the transformer-based
methods have been introduced to change detection [13], the
tokens from multitemporal images are also simply concatenated
and then fed to the encoder, while the temporal context remains
under-explored. Therefore, how to model temporal context for
better change detection results is still a challenge worthy of
further investigation.

To address the problems mentioned above, a new global
context modeling network for change detection is introduce
in this work. Motivated by the successful application of visual
transformers, we adopt a modified transformer to model global
context over the embedded token space. To further improve
the representational capabilities of tokens and better model
the temporal context, we separate the temporal attention from
spatial-temporal attention and use two cascaded multihead self-
attention (MSA) blocks to model spatial and temporal context
one after the other. The spatial self-attention block will first
make each token implicitly contain the information of the cor-
responding image. Then, the temporal self-attention block is
used to model the temporal context and make the tokens more
semantically relevant to changes. The visualization analysis also
indicates that these well modeled tokens are representational
enough for change detection. Besides, the high resolutions of
features/tokens will be maintained in our proposed method since
we have removed some down-sampling operations in the feature
extractor. Therefore, we do not need additional transformer de-
coder or skip connections between tokens and features. Change
detection results are directly generated over the token space in
an efficient and effective manner. In addition, considering the
limitations of parameters for practical applications, we propose
a variant model with much smaller parameters but only a slight
drop in F1 and IoU scores.

In this work, we do not pay much attention on extract-
ing refined features but mainly explore how to model global
context effectively and efficiently from multitemporal remote
sensing images. As shown in Fig. 2, we first simply apply
several convolutional layers as the feature extractor and em-
bed the extracted features into tokens spatially and temporally.
Then, these tokens will be fed to the modified encoder to
model global context with cascaded MSA blocks. Finally, a
prediction head is used to directly output change detection
results from tokens. The main contributions of our work are as
follows.

1) Our proposed method is mainly token-based, and no
complex decoder or skip connection is applied between
features and tokens. The change detection results are
directly obtained from tokens, which is more effective and
efficient.

2) By introducing the transformer into modeling the global
context, a novel framework for change detection is
proposed in this work, which can fully leverage the
spatial and temporal context of multitemporal images.
After the global context is modeled, the tokens will
become more representational and suitable for change
detection.

3) The proposed network is highly scalable and easy to make
a tradeoff between accuracy and efficiency. For example,



SHI et al.: DIVIDED SPATIAL AND TEMPORAL CONTEXT NETWORK FOR REMOTE SENSING CHANGE DETECTION 4899

Fig. 2. Illustration of the proposed CDViT for change detection. We first use a feature extractor, consisting of several convolutional layers, to extract features X
and then embed them into tokens z. Here, we use the squares with different colors to represent the tokens from different images. The context modeling is mainly
based on the MSA modules. The spatial context modeling is performed over the spatial tokens and the temporal context modeling is performed over the temporal
tokens. The spatial MSA, temporal MSA, and a feed-forward network consist of a layer of the modified transformer encoder. Finally, a prediction head is used to
output the change detection result.

after reducing the token size and encoder depths, there
will be a slight drop (1.0% and 1.4%) in terms of F1
and IoU scores but a considerable decrease in parameters
(20.9 M), which also demonstrates the robustness of the
network. Experiments on two change detection datasets
also demonstrate the efficiency and effectiveness.

The rest of this article is organized as follows. Section II
describes some related works of change detection and recent vi-
sual transformer techniques. Section III introduces the proposed
method in detail. The quantitative comparisons and analyses are
shown in Section IV. Finally, Section V concludes this article.

II. RELATED WORK

A. Deep Learning-Based Change Detection

Due to the extraordinary performance in classification, seg-
mentation, and other vision tasks, deep learning technology
has become a research hotspot in designing advanced change
detection approaches [20], [21]. Beyond the remote sensing,
there are also some deep learning-based methods, which have
made a great contribution to change detection [22]–[24]. For
example, Alcantarilla et al. [23] proposed a deconvolutional
network architecture, consisting of a contraction network and
a expansion network for street change detection. For remote
sensing change detection, Daudt et al. [10] proposed to use
Siamese structure for feature extraction and introduced three
fully convolutional neural network into change detection. They
simply early concatenated the images to the encoder or passed
the concatenation/difference features to the decoder. To improve
the quality of extracted features, some attention-based mech-
anisms are introduced to the network. For example, in each

block of the deeply supervised image fusion network proposed
in [9], the channel and spatial attention are first performed over
the concatenated features and then a deeply supervised differ-
ence discrimination network is used to generate final change
maps. Fang et al. [7] combined Siamese network and Nested
U-Net [25] to propose a new structure for change detection.
They first extracted features at different semantic levels from
input paired images using a Siamese encoder, and then fused
two branches of features with plenty of skip connections and
convolutions. Finally, for different semantic levels of features,
they introduced the ensemble channel attention module to refine
features and generate better change detection results. To further
enhance the feature representations, Liu et al. [26] used the
spatial and channel attention to construct a dual attention mod-
ule, and then implemented it to build the dual-task constrained
network consisting of two segmentation and a change detection
networks.

These purely convolutional and attention-based methods are
mainly designed for obtaining more refined features and such
networks tend to have more parameters, which is unsuitable
to practical applications. Compared to refined features, global
context modeling may be more important for change detection.
It is because that the actual scene across time and space and
associated changes are always complex, and the global context
can significantly help us focus on the changes of interest in
multitemporal images. Once the global context is well modeled,
we can eliminate many extra designs on feature extraction and
use the well-modeled tokens for change detection, which thus
reduces the number of parameters.

The global context in change detection mainly consists of
spatial and temporal context, as shown in Fig. 1. To better
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model spatial context, several enhanced approaches have been
employed, such as spatial attention [26], deeper backbone [6],
and dilated convolution [27]. To model the temporal context,
the existing methods include using channel attention to reweight
features [17], [26], utilizing self-attention to explore time-related
context [6], adopting nonlocal technics to exploit global rela-
tionships among pixels in space-time [6], etc. However, these
methods either treated the attention mechanics as enhancing
feature modules or simply used attention to update the features
in different dimensions [13]. They are still struggling to explore
more sophisticated features despite the high computational com-
plexity and growing parameters.

In our proposed method, to reduce the parameters and obtain
more appropriate representations, we do not focus on the features
but the tokens which attend to be more semantically relevant
to changes. We integrate the global context into the semantic
tokens with a modified transformer encoder and make them
contain high-level semantic information while not reducing the
spatial resolution. This means that we do not need additional
complex decoder or skip connections to update the features, and
the change detection results can be directly generated from token
space.

B. Self-Attention in Change Detection

Self-attention, sometimes called intraattention is an attention
mechanism relating different positions of a single sequence in or-
der to compute a representation of the sequence [28]. It is the core
component of the widely used structure, transformer, in natural
language processing (NLP) and has shown great potential for
extensive use in AI applications [29]. Since it is greatly exploit
in transformer [28], many variants such as bidirectional en-
coder representations from transformers (BERT) [30], robustly
optimized BERT pretraining [31], and generative pretrained
transformer v1–3 [32] have been exploited and demonstrated
exemplary performance on a broad range of language tasks.
Undoubtedly, such a great breakthrough in NLP has prompted
many researchers’ interest in different visual tasks.

Specifically, for change detection task, many self-attention-
based methods have also been proposed. For example,
Chen et al. [14] introduced the self-attention mechanism into
change detection task and designed a Siamese structure with
spatial-temporal attention to fully exploit the corresponding
spatial-temporal relationships. Besides, the self-attention mech-
anism is also used to help extract more refined and discriminative
features from input multitemporal images with a multiple scales
structure in [14]. Furthermore, the transformer structure, which
is entirely based on self-attention, has also been explored in
change detection. For example, Zheng et al. [42] proposed a deep
multitask encoder–transformer–decoder architecture (Change-
Mask) for Semantic change detection, which is trained with
not only the binary changed labels but also the semantically
changed labels. Although the spatial and temporal context are
well modeled in ChangeMask, this requires additional semantic
change information as guidance, which is not available in most
change detection datasets. Besides, Chen et al. [43] used bitem-
poral image transformer (BiT), a transformer-based method to

model the context within the bitemporal input images. They
first embedded the extracted features of different images into
tokens and then used a transformer encoder to model the global
context within the concatenated tokens. After that, a transformer
decoder was applied to refine the extracted features using the
modeled tokens [13]. Bandara et al. [33] proposed the Change-
Former, which replaced the commonly used convolutional-based
backbone with a hierarchical transformer encoder to render
multiscale long-range details for better change detection results.
Although the transformer decoder was removed in Change-
Former, the multiscale features of bitemporal images were also
simply fused with several difference modules and the temporal
context was not fully exploited. However, these methods still
tried to extract more sophisticated features with the self-attention
mechanisms but ignored the temporal context modeling, which
is very important for change detection.

In this article, we do not focus on using the self-attention to
extract more refined features or modify the extracted features
from input images, but mainly explore how to effectively and
efficiently apply the self-attention into modeling global context
to obtain more semantically relevant tokens for the change
detection task.

III. METHODOLOGY

The overall architecture of the proposed method, namely
CDViT, is shown in Fig. 2. First, a shallow feature extractor
is used to extract features from a multitemporal image. These
features will be divided into nonoverlapped patches and then
embedded into tokens. After that, these tokens will be passed to
two cascaded MSA modules for spatial and temporal context
modeling successively, followed by a feed-forward network.
Finally, these tokens will be reshaped to features and passed to
a prediction head to generate the final change detection result.

In the following sections, we first describe how the tokens
are embedded from input multitemporal images. Then, we give
our motivation starting with the basic MSA. After that, we
introduce how the spatial and temporal context are modeled.
Finally, we present some details of the proposed CDViT for
better reproduction.

A. Tokens Construction

The input multitemporal images I are expected to be of size
T × C ×H ×W , where T is the number of images. C, H , and
W are the number of channels, height, and width of each image,
respectively. As illustrated in Fig. 2, we use several shallow con-
volutional blocks to extract featuresX = {Xt|1 ≤ t ≤ T} from
multi-temporal images whereXt ∈ RC ′×H ′×W ′

.C ′,H ′, andW ′

are the number of channels, height, and width of feature maps,
respectively. In addition, considering that the attention modules
in transformer encoders are always highly computational, we
reduce the channels of input features by a convolutional block
with kernel size 1× 1 from C ′ to C ′′. Thus, the parameters of
the model can get reduced. Following the operation in ViT [34],
we decompose features of each image into N nonoverlapping
patches with a size of C ′′ × P × P where N = H ′W ′/P 2.
Then, these patches will be flattened and linearly projected into
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Fig. 3. Architecture of MSA.

embedding vectors z = {z(t,n)|1 ≤ t ≤ T, 1 ≤ n ≤ N}, where
z(t,n) ∈ RD, and D is the length of flattened patches x(t,n).
For a flatten patch vector x(t,n) ∈ RC ′′P 2

, the corresponding
embedding z(t,n) can be calculated as follows:

z(t,n) = Ex(t,n) + p(t,n) (1)

wherep(t,n) is the learnable positional embedding and the linear
projection operation E ∈ RD×C ′′P 2

is also learnable. Besides,
similar to ViT, a learnable vector z(0,0) is added to serve as the
image representation [34]. After embedding input images into
tokens z ∈ RT×N×D, we can obtain T tokens at each position
and N tokens at each time.

B. Multihead Self-Attention

MSA [28] plays a significant role in our proposed CDViT and
is also an essential component in recently proposed transformer-
based methods. In a transformer encoder with L encoding
blocks, the output of the �th block can be calculated as follows:

z′(�) = z(�−1) +MSA
(

LN
(
z(�−1)

))
(2)

z� = z′(�) + FFN
(

LN
(
z′(�)

))
(3)

where LN denotes LayerNorm [35]. Feed-forward network
(FFN) will be described later. Here, we start with the basic MSA
and then introduce how to perform spatial and temporal context
modeling step by step.

The basic architecture of an MSA module is shown in Fig. 3.
Taking the embedded tokens of a single image as input, MSA
enables the model to pay attention to the information at different
positions. However, for temporal input images, the tokens are
simultaneously in both temporal and spatial dimensions so that
they cannot be directly fed to the MSA module. A simple way
is to flatten the tokens z ∈ RT×N×D into y ∈ RTN×D then
perform spatial-temporal MSA over the flattened tokens y. If
so, at each head of the �th encoder block, the query, key, and

value can be calculated as follows:

Q(�) = LN
(
y(�−1)

)
W�

Q (4)

K(�) = LN
(
y(�−1)

)
W�

K (5)

V(�) = LN
(
y(�−1)

)
W�

V (6)

where W�
Q, W�

K , and W�
V ∈ RD×Dh are the learnable param-

eter matrices. Dh is the dimension of each attention head and
it is set to Dh = D/Nh, where Nh is the number of heads in
MSA. However, this approach is computationally intensive and
unsuitable for change detection task that mainly pay attention
to temporal changes. Different from this way, in a BiT [13], the
tokens from different temporal images are first concatenated
then fed to a transformer encoder to model global semantic
information. However, the concatenation operation cannot make
full use of the temporal information of tokens and an additional
transformer decoder is also needed to refine the features from
different temporal images in BiT. For this reason, as shown in
Fig. 2, we highlight and separate the temporal attention and
perform the spatial MSA and temporal MSA one after the other
in the proposed CDViT.

C. Spatial Context Modeling

As shown in Fig. 2, we use different colors to represent the
tokens embedded from different temporal images. The spatial
MSA will be performed over the tokens of each input image,
i.e., each token will be compared with all the tokens in the same
image but different positions. In the �th layer, the query, key, and
value of each head can be generated from the tokens z

(�−1)
t ∈

RN×D in the time t as follows:

Q
(�)
t = LN

(
z
(�−1)
(t)

)
W�

Qt
(7)

K
(�)
t = LN

(
z
(�−1)
(t)

)
W�

Kt
(8)

V
(�)
t = LN

(
z
(�−1)
(t)

)
W�

Vt
(9)

whereW�
Qt

,W�
Kt

, andW�
Vt

∈ RD×Dh are learnable parameter
matrices. Then, the spatial attention α�

t for each head in spatial
MSA can be calculated as follows:

α�
t = Softmax

(
Q

(�)
t K

(�)�
t√

Dh

)
V

(�)
t . (10)

After the spatial attention of each head are calculated, they
will be first concatenated and the final output of spatial MSA will
be generated with a learnable parameter matrix WO

t as follows:

MSA�
t

(
Q

(�)
t ,K

(�)
t ,V

(�)
t

)
= Concat

(
α�

t,1, . . . ,α
�
t,h

)
WO

t .

(11)
According to the spatial MSA, the token at each position will

implicitly contain the information of the whole image and is
more representational for making comparisons over time.
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D. Temporal Context Modeling

After the tokens processed by the spatial MSA, the temporal
MSA will be used to model the temporal information. Similarly,
in the �th layer, we can get Q(�)

n , K(�)
n , and V

(�)
n ∈ RD×D from

the tokens z(�)n ∈ RT×D in the position n where the tokens z(�)n

are reshaped from the output of spatial MSA in the position n.
Then, the temporal attention β�

n for each head and the temporal
MSA can be calculated as follows:

β�
n = Softmax

(
Q

(�)
n K

(�)�
n√

Dh

)
V(�)

n (12)

MSA�
n

(
Q(�)

n ,K(�)
n ,V(�)

n

)
= Concat

(
β�
n,1, . . . ,β

�
n,h

)
WO

n .

(13)

The temporal MSA can fully utilize the temporal information
and model the global context together with spatial MSA, making
the tokens more semantic suitable for change detection. Al-
though an MSA layer has more parameters than a convolutional
layer, we can extract comparable tokens with two spatial and
temporal MSA layers, whereas for convolutional-based meth-
ods, many convolutional layers are needed to achieve the same
purpose. This also means that we can achieve competitive results
with smaller parameters.

E. Details in Network

1) Feature Extractor: We use the first three layers of
ResNet18 [36] as the feature extractor in the proposed network.
Different from the original network structure of ResNet18, we
remove the pooling operation in the first layer to ensure a better
resolution of feature maps. In other words, when the input
images are 256× 256 pixels, the extracted feature maps will
be 64× 64 pixels after two max pooling operations. In addition,
a convolutional layer with a kernel size of 1× 1 is also added to
reduce the number of channels, thereby reducing the parameters
in the model.

2) FFN: A feed-forward network is mainly composed of two
linear projection layers, between which is a GELU [37] activa-
tion layer. Taking the token z

′(�)
(t,n) processed by the preceding

MSA module as input, the output of FFN is

FFN(z
′(�)
(t,n)) = W2 · σ

(
W1z

′(�)
(t,n) + b1

)
+ b2 (14)

where W1 ∈ RD′×D in the first linear layer and W2 ∈ RD×D′

in the second linear layer are the learnable weights, b1 ∈ RD′

and b2 ∈ RD are the learnable biases, and σ denotes the GELU
layer. The first layer maps each token into a higher dimension
D′ to obtain a high-dimensional representation, and the second
layer maps the tokens into the original dimension D as the input
for the next encoder block.

3) Prediction Head: Although the tokens are initially gener-
ated with a local manner, after the global context is modeled
with the spatial and temporal MSA, the tokens will capture
global-level information and be representational enough for the
change detection task according to our visualization analysis on
section IV-F. Therefore, we directly use several convolutional

layers to output the final change map from these tokens. Differ-
ent from other methods, there are no transformer decoders or
skip connections between features and tokens in our proposed
CDViT, which also makes the model more efficient for change
detection. Specifically, the feature maps will be first recon-
structed from the modeled tokens. Then, they will be upsampled
to the original image size. Finally, a two-channel probability
map P ∈ R2×H×W will be output by two convolutional layers.
In the inference phase, the binary change detection results are
generated with a pixelwise argmax operation over the channel.

IV. EXPERIMENTS

We conduct four experiments on two change detection
datasets.

1) To validate the effectiveness of CDViT, we carry out some
comparison experiments with several SOTA methods, in-
cluding purely convolutional-based, attention-based, and
transformer-based methods.

2) To validate the efficiency of CDViT, we conduct some
analytical experiments on parameters for the naive CDViT
and a simplified variant model, named as CDViT_S.

3) To investigate the effect of some model hyperparameters,
we conduct some ablation studies on CDViT, including
the depth of transformer encoders, size of tokens, and size
of patches.

4) To explore how the spatial and temporal MSA work in
CDViT, we perform visualization analyses on the features
and tokens.

A. Datasets Description

We conduct our experiments on two different change detec-
tion datasets, WHU-CD and LEVIR-CD.

WHU is a remote sensing dataset including multisource im-
agery for multiple tasks, of which WHU-CD is dedicated to
change detection. WHU-CD consists of a pair of very high
resolution (0.2 m) aerial images. Two images are registered
and the image size is 32507× 15354 pixels. To fully utilize
the GPU memory for training, we cut the whole image pair
into smaller patches with a size of 256× 256 pixels. Then, we
can get a total of 7620 patches. Following the random dataset
split (training/validation/test) in [13], we can get 6096/762/762
pairs of patches, respectively. Although this dataset split cannot
strictly make sure the areas of training/validation/test are spa-
tially separated, it has been retained for consistency with the
results of our compared methods.

LEVIR-CD is a remote sensing dataset for building change
detection with 637 pairs of very high resolution (0.5) optical
images. The size of each registered image pair is 1024× 1024
pixels. Similarly, to make a fair comparison with existing meth-
ods, we adopt the dataset split and patch processing in [13].
After that, we can get 7120 patches for training and 1024/2048
patches for validation/test.

Notably, since no general dataset split scheme is available for
WHU-CD, we randomly repeat the split operation four times and
take the mean values of different metrics as results. To ensure
the reliability of the results, we repeat each experiment with four
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different random seeds. We will take the mean values of four
experiments for evaluation. In addition, it should be pointed that
as there is no public available multitemporal dataset, we have
only conducted experiments on the bi-temporal dataset.

B. Experimental Setup

1) Loss Function: We take the most commonly used binary
cross entropy loss (BCELoss) as the optimization goal during
the training process. The BECLoss between target T and P is
calculated as follows:

Lbce(T,P) = − [T · logP+ (1−T) · log(1−P)] (15)

where T ∈ R2×H×W is the one-hot encoded ground-truth.
2) Implemental Details: The proposed method and afore-

mentioned experiments are implemented with PyTorch and
trained using 8 NVIDIA GTX 1080Ti. Some regular data aug-
mentation is applied to the input temporal images, including
flipping, rotating, rescaling, and bright contrast adjustment. The
stochastic gradient descent with momentum is used to optimize
the model during training. The values for weight decay and
momentum are set to 0.0005 and 0.9. The poly scheduler is
used to adjust the learning rate with a power of 0.9. We set the
initial learning rate to 0.05, and it will reduce to 0.000001 after
80 000 steps of the training process. To reduce the training time,
we initialize the first three layers of the feature extractor with
the weights of pretrained ResNet18 on ImageNet.

3) Evaluation Metric: To quantitatively and comprehen-
sively assess the change detection results of different methods,
some metrics are adopted for evaluation in our experiments.
Concerning the changed pixels, the true positive (TP) represents
the number of pixels that are both included in change detection
results and the reference map. The true negative (TN) denotes the
number of pixels that are neither included in change detection
results nor the reference map. Similarly, the false positive (FP)
means the number of pixels that are only included in change de-
tection results, and the false negative (FN) indicates the number
of pixels that are only included in the reference map [38]. Then,
we mainly use overall accuracy (OA), precision (Pr), recall (Re),
F1, intersection over union (IoU), and kappa coefficient (KC) for
evaluation. They can be calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
(16)

Pr =
TP

TP + FP
(17)

Re =
TP

TP + FN
(18)

F1 =
2Pr · Re
Pr + Re

(19)

IoU =
TP

TP + FP + FN
(20)

KC =
OA − PRE
1− PRE

(21)

where PRE denotes the proportion of expected agreement
between the ground-truth and predictions with the given class

distributions and it is calculated by PRE = ((FP + FP)(FP +
FN) + (FN + TN)(FP + TN))/(FP + TN + FP + FN)2 [39].

C. Compared With SOTA Methods

We compare the proposed CDViT with eight SOTA methods,
and these methods are summarized as follows.

1) The fully convolutional early fusion ( FC-EF) net-
work [10] is a purely convolutional-based method. It first
concatenates input images and then feeds them to the fully
convolutional network.

2) The fully convolutional Siamese difference ( FC-Siam-
Di) network [10] is a purely convolutional-based method.
It first extracts features from input images with a Siamese
structure and then uses the feature difference as the input
of a decoder to get the change detection results.

3) The fully convolutional Siamese concatenation ( FC-
Siam-Conc) network [10] is a purely convolutional-
based method. Different from FC-Siam-Di, FC-Siam-
Conc passes concatenated, rather than subtracted, features
to the decoder.

4) The dual-task constrained deep Siamese convolutional
network (DTCDSCN) [26] is an attention-based method.
To obtain more representative features, it performs spatial
and channel attention over the extracted features.

5) The spatial-temporal attention-based neural network
(STANet) [14] is an attention-based method. It adopts
the self-attention module to model the spatial-temporal
relationships among input images to obtain more repre-
sentative features.

6) The deeply supervised image fusion network ( IFNet) [9]
is an attention-based method. It introduces an addi-
tional difference discrimination network with a multi-
level structure. At each level, it first makes a difference
between paired features, and then performs spatial and
channel attention to refine the features according to the
labels.

7) The combination of Siamese network and Nested U-Net
(SNUNet) [7] is an attention-based method. For the fea-
tures at different semantic levels, it first uses the ensemble
channel attention to refine them and then takes the con-
catenated features for change detection.

8) The BiT [13] is a transformer-based method. First, it
projects the bitemporal images into some semantic tokens
and uses a transformer encoder to model the context
within them. Then, a transformer decoder is used to refine
original features, followed by a prediction head to output
final change detection results. In addition, we give the
parameters and scores of its simplified variant BiT_S3 for
a comprehensive analysis and comparison.

9) ChangeFormer [13] is a transformer-based Siamese net-
work. It unifies hierarchically structured transformer en-
coder with multilayer perception decoder in a Siamese
network architecture to efficiently render multiscale long-
range details required for accurate CD [33].

Among these methods, the FC series, including FC-EF,
FC-Siam-Di, and FC-Siam-Conc, are purely convolution-based
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TABLE I
CHANGE DETECTION RESULTS OF DIFFERENT METHODS ON TWO DATASETS WITH ALL SCORES EXPRESSED IN PERCENTAGE

Note: Highest scores are marked in bold.

methods. DTCDSCN, STANet, and IFNet are attention-based
methods. BiT is a recently proposed transformer-based method.
Note that we directly use the experimental results in [13] to make
a comparison.

1) Results on WHU-CD: Table I presents comparison results
of these mentioned methods on WHU-CD. In terms of Pr scores,
the IFNet gets the highest score of 96.91%, followed by the
CDViT with 94.97%. However, the Re score of IFNet is much
lower than other methods, which, thus, decreases the F1 score.
For F1 scores, the CDViT achieves the highest score of 92.35%,
that is, 8.37% higher than the followed BiT. Besides, the CDViT
also obtains the highest IoU score of 85.80% and OA score
of 99.37%. Moreover, for IoU scores, CDViT can get 13.41%
higher than other methods. In addition, CDViT achieved a KC
score of 92.02% on WHU-CD, which is a fairly high score
compared to other methods.

2) Results on LEVIR-CD: The change detection results of
different methods on LEVIR-CD are shown in the right side of
Table I. According to the results in Table I, the CDViT achieves
83.61% and 99.10% in terms of IoU and OA scores, respectively,
which is 2.75% and 0.18% higher than compared methods. For
Pr scores, IFNet also achieves the highest score of 94.02%,
which is 1.59% higher than the followed CDViT. The highest
Re score of 91.00% is obtained by the STANet, followed by the
CDViT with 89.75%. However, in terms of F1 scores, CDViT
can obtain the highest F1 value, which is 1.76% higher than
compared methods. In addition, CDViT gets 90.6% KC scores
on LEVIR-CD.

3) Experimental Analysis: Similar to the transformer-based
BiT [13], there are no complicated structures in our proposed
method, and only several convolutional blocks are used to extract
features from multitemporal images. In addition, there are no
skip connections or transformer decoders added between fea-
tures and tokens in CDViT. The compared results in Table I
demonstrate the effectiveness of the proposed CDViT, and we
attribute it to the better spatial and temporal modeling capabili-
ties of global context.

We also display part of the visualization change detection
results for the proposed method on two datasets in Fig. 4,
including small [Fig. 4(a) and (d)], medium [Fig. 4(b) and (e)],
and large [Fig. 4(c) and (f)] objects. For a better view, We

use red, blue, white, and black to denote FP, FN, TP, and TN,
respectively. As shown in Fig. 4(a) and (d), although there are
two pooling operations used in CDViT, the changes of small
objects can still be detected. We infer that this is because the
feature extractor has sufficiently learned the features of the
possible changed objects so that the corresponding changes
can be detected even though the objects are small. For large
objects, due to the global context being better modeled by the
spatial and temporal MSA, the integrity can thus be ensured
in detection results, as shown in Fig. 4(c) and (f). However,
there are still some limitations that need to be improved, such as
blurred boundaries, as shown in Fig. 5. This problem also exists
in some other transformer-based methods [13], and we infer
that it may be caused by the loss of spatial details during tokens
embedding and features reconstructing, which will be included
in our future research. Besides, for our proposed CDViT, this
may also be due to the reduction of spatial size when extracting
features from images.

D. Analysis on Parameters

To verify the efficiency of CDViT, with the same or even fewer
parameters, we propose a variant of CDViT, that is, CDViT_S.
For CDViT_S, the number of encoding blocks and the size of
token are reduced to 1 and 128. Similarly, the sizes of two
convolutional layers in the prediction head are reduced from
64× 32× 3× 3 and 32× 2× 3× 3 to 16× 16× 3× 3 and
16× 2× 3× 3. Table II gives the change detection results of
CDViT_S and CDViT on WHU-CD and LEVIR-CD datasets.
Due to the simplification of the model, we can find that the
number of parameters of CDViT_S gets greatly reduced from
21.98 M to 1.08 M compared to CDViT. Only a slight drop
in F1 scores (i.e., 0.94% and 1.02%) and IoU scores (i.e.,
1.65% and 1.18%) are caused in change detection results on two
datasets. Only with one encoder and a few convolutional layers,
91.41%/90.05% F1 scores and 84.15%/82.43% IoU scores can
be obtained, indicating that the proposed global context model-
ing method is highly competent and well suited for the change
detection task.

Besides, we compare the proposed CDViT with some
attention-based methods and a SOTA transformer-based method
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Fig. 4. Results on WHU-CD and LEVIR-CD datasets of the proposed method. Each sample consists of four images, image 1, image 2, ground-truth, and detection
results. (a) and (d) are the results for small objects. (b) and (e) are for medium objects. (c) and (f) are for large objects. We use red to represent false-positive pixels
and green for false-negative pixels.

Fig. 5. Illustration of the blurred boundaries. We use yellow boxes to mark
part of the blurred boundaries. (a) Some samples of BiT. (b) Some samples of
CDViT.

(BIT_S3 and BIT). Attention-based methods mainly pay atten-
tion to features and require a complex design on convolutional
layers to extract more refined features. Although this allows
attention-based models to obtain better features and thus im-
prove change detection results, the number of parameters gets
heavily increased with many features possibly being redundant.
For transformer-based methods, it is mainly the self-attention
among patches and the modeled contextual information of
temporal images that greatly contribute to detecting changes.

TABLE II
PARAMETRIC ANALYSIS OF DIFFERENT MODELS

Note: The number of parameters (Params), F1, and IoU scores of
different models on two change detection dataset are reported.
The best performance are marked in bold.

Once the global context are well modeled, the transformer-based
methods can detect changes with much smaller parameters. As
shown in Table II, our proposed CDViT_S outperforms the
compared methods both in F1/IoU scores and parameters on
two change detection datasets. Compared with attention-based
methods, CDViT_S can get higher F1/IoU scores with much
smaller (i.e., 10–50 times) parameters. For example, CDViT_S
achieves 7.91%/12.48% higher F1/IoU scores with ten times
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TABLE III
ABLATION STUDY ON DIFFERENT DEPTH OF TRANSFORMER ENCODER WITH

CDVIT ON WHU-CD

Note: All scores are represented in percentage.
The best performance are marked in bold.

smaller parameters than SNUNet. Compared with the efficient
transformer-based method BIT_S3, CDViT_S can obtain better
change detection results in terms of F1/IoU scores with smaller
parameters (i.e., 1.08 M), which further demonstrates the effec-
tiveness of the proposed context modeling approach. Moreover,
in practice, we can easily make a tradeoff between accuracy and
efficiency by adjusting the token size and encoder depth, which
is critically important for practical applications.

E. Ablation Study

1) Depth of Transformer Encoder: Fixing the dimension of
the encoder to 512, we perform an ablation over the depth of the
encoder by 1/2/4/8. Results of CDViT on WHU-CD are shown in
Table III. As the depth of the transformer encoder increases from
1 to 4, F1/IoU/KC scores get 0.79%/1.38%/0.82% improvement.
However, with this comes a noticeable increase in the number
of parameters of the model, from 6.23 to 42.99 M. As shown
in Table III, we can see that despite the encoder depth of 1,
the model can learn the relations between temporal and spatial
patches, and model the global context for change detection.
It is also consistent with the results observed in BiT [13]. In
addition, we also see that the scores decrease when the depth of
the encoder increases from 4 to 8. As proved in [34] and [40],
with the increase of depth and parameters, it will become harder
to train the transformer-based model from scratch. Therefore,
we infer that the decrease in scores is caused by the transformer
encoder not being pretrained on large-scale remote sensing
data.

2) Token Size: When the height and width of the patch are
determined, as the size of input tokens increases, the tokens will
become more representational [28], [34]. For this reason, we
conduct an ablation experiment on the size of tokens. We test
different token sizes of 128, 256, 512, and 768 on LEVIR-CD
dataset for the transformer encoder. The comparison results are
presented in Table IV. When the token size is set to 128, we can
still get a better change detection result of 90.93% F1 scores
and 82.22% IoU scores. Notably, the proposed model does not
have a skip connection operation between the feature maps and
any outputs of transformer encoders. Therefore, this indicates
that the tokens can characterize the corresponding patch regions
at a specific space and time only with a token size of 128.
When the token size increases from 128 to 768, the change
detection results of the model are also gradually improved, and
the F1 score and IoU score can achieve 91.13% and 83.71%,

TABLE IV
ABLATION STUDY ON DIFFERENT TOKEN SIZES OF CDVIT ON LEVIR-CD

Note: All scores are represented in percentage.
The best performance are marked in bold.

TABLE V
ABLATION STUDY ON DIFFERENT PATCH SIZES OF CDVIT ON LEVIR-CD

Note: All scores are represented in percentage.
The best performance are marked in bold.

respectively. It also illustrates that longer tokens can bring up
stronger representational abilities and better change detection
results. However, considering the efficiency of the model, the
token size is usually set to 512, which is consistent with the
traditional transformer [28].

3) Patch Size: For patch-based change detection meth-
ods [15], [41], patch size generally determines the computa-
tional time and performance of models. Fixing the depth of the
transformer and the token size to 4 and 512, we perform an
ablation study over the patch size of input images on LEVIR-CD
dataset. Notably, since the size of input images is determined, the
number of patches will decrease with the patch size increasing.
For example, when the patch size is reduced by two times, the
number of patches will increase four times. We set the patch size,
width, and height of the patch to 2, 4, 8, and 16, respectively, and
the corresponding results are illustrated in Table V. We can ob-
serve that as the patch size decreases, all the metrics get slightly
increased. For example, when the patch size decreases from 16 to
4, the IoU scores increases from 82.76% to 83.61%. As the patch
size decreases, the same token will represent a smaller region,
and a more fine-grained representation will be fed to the encoder
to get better change detection results. However, when the patch
size continually decreases from 4 to 2, the performance of the
model gets slightly decreased, e.g., the IoU scores decrease from
83.61% to 83.50%. It may be because that using a token with
size 512 to represent a patch with size 2× 2 will contain too
much redundant information and thus make it hard to train a
transformer-based model. Finally, we set the patch size to 4 for
our proposed CDViT.

F. Visual Features in CDViT

To better explain how features are extracted and how the atten-
tion is concentrated on the changed objects with the proposed
CDViT, we give a sample visualization of features maps and
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Fig. 6. Visualization analysis of the feature maps and tokens. Pixels with red represent higher values while blue for lower values. (a) Pair of images in WHU-CD.
(b) Feature maps extracted by the first feature extractor (before global context modeling). (c) Visualization of reconstructed tokens. (d) Feature maps decoded by
the prediction head (after global context modeling). (e) Final two-channel probability map and the binary results which are only generated during the inference.

reconstructed tokens throughout the model in Fig. 6. It should be
pointed that we just sample those features and tokens with more
significant responses to kernels, i.e., larger summation values
for presentation. As shown in Fig. 6(b), the extracted feature
maps correspond to some basic features, such as edges and
colors. After tokens embedding and global context modeling,
the tokens in Fig. 6(c) become more representational and seman-
tically informative. They become concentrated in the specific
objects, such as roads, buildings, and lands. Finally, after feature
reconstruction and prediction head, the features in Fig. 6(d) are
mainly concentrated in the changed buildings. Moreover, the
inference phase can produce binary change detection results
with the argmax operation over the two-channel probability
maps. The visualization results show that the proposed method
can effectively make the model focus on specific objects with
spatial and temporal context rather than heavy convolutional
layers to extract refined features. It is also the reason why
the model can achieve superior performance but with fewer
parameters.

V. CONCLUSION

In this article, we introduce the transformer to the change
detection task and propose an effective and efficient transformer-
based method. CDViT does not require highly refined features
but only uses several convolutional layers as a feature extractor.
The change detection results are directly obtained over the token
space with a prediction head, and there are no additional complex
decoders or skip connections needed between features and to-
kens, which can reduce the parameters and make the model more
efficient. We adopt a divided spatial and temporal transformer
encoder to model the global context. We first use the spatial MSA
to make the tokens implicitly contain the corresponding image
information, then incorporate temporal information into tokens
via the temporal MSA to make tokens more representational
and suitable for change detection. Considering the limitations
for practical applications, we also introduce a simplified variant

CDViT_S only with 1.08 M parameters. Due to the superior
global context modeling capabilities, there is only a slight drop in
F1 scores (i.e., 0.94% and 1.02%) and IoU scores (i.e., 1.65% and
1.18%) compared with CDViT, despite the significant decrease
(i.e., 20.9 M) in the number of parameters. According to our
experiments on two datasets, the CDViT and CDViT_S both
outperform the recently proposed attention- and transformer-
based methods in terms of efficiency and effectiveness. As the
excellent performance of the transformer in change detection, in
future work, we will along CDViT to explore a pure transformer
approach for change detection, i.e., removing all the convolu-
tional layers.
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