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Multisource Domain Transfer Learning Based
on Spectral Projections for Hyperspectral

Image Classification
Bin Yang , Shunshi Hu, Qiandong Guo, and Danfeng Hong , Senior Member, IEEE

Abstract—Hyperspectral image classification is an important
topic for hyperspectral remote sensing with various applications.
Hyperspectral image classification accuracy. It has been greatly
improved with the introduction of deep neural networks, while
the idea of transfer learning provides an opportunity to solve the
problem even with the lack of training samples. In this article, we
propose an effective transfer learning approach for hyperspectral
images, projecting hyperspectral images with different sensors and
different number of bands into a general spectral space, preserving
the relative positions of each band for spectral alignment, and
designing a hierarchical depth neural network for shallow feature
transfer and deep feature classification. The experiments show that
the proposed method can effectively preserve the source domain
features, especially for the scenarios with very few samples in the
target domain, which can significantly improve the classification
accuracy and reduce the risk of model overfitting. Meanwhile, this
strategy greatly reduces the requirement of source domain data,
using multisensor data to jointly train a more robust general feature
model. The proposed method can achieve high accuracies even with
few training samples compared to currently many state-of-the-art
classification methods.

Index Terms—Classification, convolutional neural network
(CNN), generalized feature extraction network (GFEN),
hyperspectral imaging, spectral projection, transfer learning.

I. INTRODUCTION

HYPERSPECTRAL images can capture tens or even hun-
dreds of bands for the object to be measured, with

nanometers spectral resolution ranging from the visible light
bands to the near-infrared bands, which makes the analysis of
remote sensing data can be jointly carried out in both spatial
and spectral dimensions, greatly enriching the applications of
remote sensing and expanding its use cases [1]. Hyperspectral
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image classification is a classical problem in hyperspectral
applications. The continuous bandwidth obtained by hyper-
spectral remote sensing is generally within 10 nm, which can
distinguish the surface materials with diagnostic spectral char-
acteristics in sufficient spectral resolution. Thus, the materials
that are hard to be identified in multispectral images can be
distinguished in hyperspectral images. Because of these features,
hyperspectral imageries are well suited for automatic feature
identification at the pixel level in large scenes [2]–[8].

With the great success of applying deep learning in the field
of computer vision, a large number of scholars have introduced
deep neural networks into the hyperspectral imagery analysis
[2], [4]. Deep neural networks can extract knowledge from
large-scale data. Their multilayer network structure implies
that higher level semantic information of the samples can be
obtained. There are many deep learning models for hyperspectral
image classification, among which convolutional neural net-
works (CNNs) as the main classification models, have achieved
impressive performance. Specifically, one-dimensional (1-D)
CNN [9] classifier based on the spectrum of a single image
element, while 3-D CNN [10], [11] combined both spatial and
spectral information and incorporates the influence of neigh-
boring pixels on the category. SSRN [12] added a residual
module to the CNN to guarantee that the network can reach
deeper depths. Moreover, various optimizations to improve the
network’s adaptability and increase its operational efficiency
[13]–[19]. All these methods can achieve a satisfactory clas-
sification accuracy with sufficient training samples. How-
ever, for deep neural networks, the dense spectral and
spatial features require a large number of labeled sam-
ples to ensure that the network is adequately trained. Ob-
taining accurate labeling of features in hyperspectral im-
ages is usually time-consuming and expensive. Thus, the
needs for a high volume of training samples have been
an important obstacle to the performance of deep learning
models.

Transfer learning provides an important means to solve the
abovementioned hyperspectral image classification problem.
Transfer learning proposed to learn knowledge from existing
classification tasks (source domain) and applied it to new sce-
narios (target domain). The deep networks designed by transfer
learning methods aimed to make full use of source domain data
to solve the problem of sparse training samples in the target
domain, while cross-domain classification models can better
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extract invariant features and improve network generalization
ability. In recent years, some hyperspectral image transfer learn-
ing methods have been proposed. Zhang et al. [20] used 3-D
CNN structure to learn parameters using hyperspectral images
of different sensors and RGB images. He et al. [21] combined
deep networks with an attention mechanism to migrate VGG
deep networks to hyperspectral classification domain. However,
transfer learning works only if there are similarities between the
source and target domains, and the network needs to effectively
use these similarities to apply the source domain knowledge to
the target domain. It is well known that hyperspectral images
acquired by different scenes and sensors vary significantly,
and how to reduce interdomain differences is a key issue to
improve the effectiveness of transfer learning. Lin et al. [22]
extracted significant samples from source and target domains
and fine-tuned the network layer to layer by analyzing inter-
domain correlations. Deng et al. [23] proposed a cascaded sparse
self-encoder to learn joint spectral space features and migrate
them to the target domain. Qu et al. [24] proposed a domain
adaptation method based on a shared abundance space to reduce
the differences between source and target domains. Hong et al.
[25] believed that in remote sensing image classification, the
combination of multimodal deep learning brings better effect.
Hang et al. [26] proposed a multitask generative adversarial
network to undertake the hyperspectral reconstruction and clas-
sification task. In [27] and [28], LiDAR and hyperspectral data
are fused for multisource classification. All of these methods
have achieved solid results.

When studying the invariant characteristics among hyper-
spectral images, it is worth noting that the central wavelengths
(bands) of the spectral values of the features acquired by what-
ever sensors are known, and there are specific reflection patterns
for various features in different bands. It is the mechanism of
hyperspectral remote sensing to investigate the reflection charac-
teristics of various features in specific spectral bands. However,
in the existing transfer learning models for hyperspectral image
classification, few models that take advantage of this known
information. In order to use this information, this article presents
the following work accomplished.

1) A spectral preprocessing approach was used, i.e., a
spectral mapping (resampling) of hyperspectral im-
ages acquired by different sensors to a manually
selected high-dimensional space. By analyzing the sen-
sor’s parameters and available bands of typical hyper-
spectral datasets, a common spectral space containing
different sensors’ bands is constructed. Then, the hyper-
spectral data is projected into this high-dimensional space,
with no data or removed bands filled with 0 values to
achieve the effect of spectral position preservation and
alignment.

2) Corresponding to this preprocessing approach, a hierarchi-
cal deep neural network was designed for transfer learning
and classification. The shallow layer of the network was
used for the extraction and migration of general diagnostic
spectral features of hyperspectral images, and the deep one
was used for further mining of exclusive features of objects
to be classified.

3) Experimentally validate the classification efficiency of
the network, compare and analyze the transfer learning
performance on different datasets.

4) Use multiple datasets to train the generic feature extraction
network together with multitask learning. Then, build a
multisource domain integrated network with generaliza-
tion capability for future classification applications using
fewer samples.

The rest of this article is organized as follows. Section II
describes proposed spectral projection strategy and introduces
the detailed architecture of deep neural network. The experiment
design and results are reported in Section III. Finally, Section IV
concludes this article.

II. METHODOLOGY

A. Spectral Projection Strategy

The ability of hyperspectral remote sensing to effectively
identify objects stems from the fact that it has sufficient spectral
resolution to acquire diagnostic spectra of targets. However,
when using hyperspectral images as input, the exact location
distribution of the bands in the spectrum is rarely considered.
This produces no performance loss when the classifier is trained
and used independently, because a well-designed classification
network can find and utilize these features automatically. Thus,
there is no significant performance difference in the trained
classification model between a dataset with ordered spectra and
with randomly disordered spectra (as long as the training and test
sets have the same bands). However, using a trained network for
new data with different band alignments will make it difficult to
conduct the feature extraction.

On the other hand, neural networks usually require the same
dimensional input, and existing transfer learning for hyperspec-
tral image classification either uses dimensionality reduction,
such as principal component analysis or independent component
analysis, or adds additional adaptive layers to have the same
dimensionality. Either way is difficult to satisfy the plain idea of
maintaining the original spectral segment position.

For this reason, this article designs a spectral reprojection
method, which constructs a common spectral space containing
different sensor bands by analyzing the band wavelength of
popular sensors, arranges the bands from different sensors in
the ascending order of their central wavelengths, and merges
the bands with wavelength differences less than 2 nm. Taking
AVIRIS and Hyperion sensors as an example, there are 224
original bands of AVIRIS and 242 original bands of Hyperion,
and the total number of bands after merging is 421, including
45 shared (merged) bands. As shown in Fig. 1(a) and (c) is the
original spectral data, and Fig. 1(b) and (d) is the waveforms after
spectral projection. The spectral bands obtained by different
sensors after projection are aligned. The data-free places are
filled with zero values to obtain equal-length sparse spectra.

B. Generalized Feature Extraction Network

From the abovementioned image after spectral projection,
this article designs a hierarchical depth neural network named
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Fig. 1. Spectral projection example diagram. (a) AVIRIS raw data spec-
trum, 200 bands. (b) AVIRIS Post-projection spectrum. (c) Hyperion raw data
spectrum, 145 bands. (d) Hyperion postprojection spectrum.

generalized feature extraction network (GFEN). The network
is based on the architecture of a residual 3-D convolutional
network, and is divided into universal feature extraction layer,
depth feature extraction layer, neighborhood feature fusion, and
output layer. Its workflow is shown in Fig. 2.

The network input is a 7 × 7 neighborhood size spectral data
centered on the image element to be divided, i.e., a 7× 7×B size
tensor is input to the input layer, and B is the number of bands.
The first layer uses 128 (1 × 1× B) 3-D convolution kernels to
perform global convolution on the input tensor. Considering the
influence of spectral projection deviation and spectral shift of
the data itself, the global convolution kernel is allowed to make
a little sliding operation, so the size of the convolution kernel is
adjusted to 1 × 1 × (B-2), i.e., three-step sliding convolution.
The second layer uses 128 (1 × 1 × 1) 3-D convolution kernels
to combine the feature spectral segments and generate 128 (7 ×
7× 3) feature tensor. The third layer is the transition layer, which
uses 24 (1× 1× 1) 3-D convolution kernels to bring the number
of combined features down to 24 for subsequent deep learning.
Unlike a large number of image classification networks that
extract image features with smaller convolution kernels sliding
(especially in the field of machine vision), the authors believe
that hyperspectral images after spectral projection, which have
stable positions of shallow spectral dimensional features and do
not require sliding to extract repeated features, can extract global
features in the spectrum more effectively by directly convolving
in the depth direction with 3-D convolution kernels of equal or
approximate length to the number of bands (with little sliding to
cope with errors). The global features and local features (when
the convolution kernels are sparse) are extracted more effectively
using the proposed method.

The deep feature extraction layer uses N feature extraction
modules with the same structure, each module contains two
layers of 24 kernels of (1 × 1 × 1) 3-D convolution opera-
tions, and the residual calculation is performed once after each
module execution. The introduction of the residual operation

TABLE I
PARAMETERS OF GFEN NETWORK

can effectively deepen the network structure to avoid gradient
disappearance and explosion problems, while a deeper network
structure can accommodate more parameters and improve the
depth feature extraction capability. Considering the performance
and arithmetic power, the number of modules N used in this
article is set to 5, i.e., the depth feature extraction layer consists
of 5 feature extraction modules in series, containing 10 layers of
convolution, and the output is still 24 (7 × 7 × 3) feature tensor.

The neighborhood feature fusion layer first uses a (1 × 1 × 3)
convolution kernel to merge spectral dimensional features for
final feature classification. Before classification, a 2-D Gaussian
convolutional kernel with fixed parameters is designed for the
fusion of spectral features in the 7 × 7 domain range

G (x, y) =
1

2πσ2
e−(x2+y2)/2σ2

. (1)

Equation (1) represents the generating function of the Gaus-
sian convolution kernel, where x, y denotes the distance from
the centroid and σ is the variable variance. A higher σ means
a flatter distribution, while a lower σ means a more prominent
center. We experimentally tried different σ values, and finally
set sigma to the empirical value 7.

It can be found that the present model makes extensive use of
(1 × 1 × 1) 3-D convolution kernel, and the spectral features of
each pixel in the 7 × 7 neighborhood are extracted separately,
while the use of Gaussian convolution kernel can calculate the
influence on the central image element by the spatial distance
of the neighboring spectral features. As shown in Fig. 2, this
Gaussian kernel convolves and merges the 128 feature sub-
channels extracted by the network separately to finally obtain
the depth spectral feature of the central image element. The
spectral features are flattened, and the output is activated using
the soft-max function with a fully connected network as the
output layer. Each convolutional layer of this model is connected
with a batch normal layer and a Relu activation layer, and the
input hyperspectral data is normalized by demeaning in a band.
The parameters of the network are shown in Table I.
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Fig. 2. Schematic diagram of GFEN structure.

Fig. 3. (a) Single-source domain learning. (b) Multisource domain learning.
(c) Parameter transfer with target domain learning.

C. Network Transfer Approach

The transfer learning using this model aims to train a robust
classification network using hyperspectral data in the source
domain containing a large number of training samples, and
migrate the network model to the target domain with only a
small number of samples for relearning and classification. The
shallow layer of the network acquires generic spectral features,
and the deep layer contains object-specific depth features in the
target domain.

1) Training the source domain classification network: The
training can be performed with a single source domain or, with
multiple source domains of data sharing the middle layer of the
network for joint training of multiple tasks, as shown in Fig. 3(a)
and (b).

2) Target domain migration learning: We will compare two
migration approaches. First, the network parameters obtained
from the source domain training are migrated to the target
domain model, while the shallow layer of the network is frozen
(orange part in Fig. 3 and Table I), and the deeper network
is fine-tuned with the target domain samples only to reacquire
the features exclusive to the target task. Second, based on the
network obtained from the previous training step, the shallow
network is unfrozen and fine-tuned again to classify the required.
The second step is to thaw the shallow network based on the
network trained in the previous step, and repeatedly fine-tune
the shallow features required for classification to improve clas-
sification accuracy.

III. EXPERIMENT RESULTS AND ANALYSIS

A. Experimental Data

In this article, three popular datasets collected by two hyper-
spectral sensors are used for the experiments.

1) Indian pine dataset: This dataset was collected by the
AVIRIS sensor at the Indian pine test site in northwestern
Indiana, it consists of 145×145 pixels and 224 spectral reflection
bands in the wavelength range of 400–2500 nm. Due to data
quality, bands 1, 33, 97, 161, and 20 water vapor absorption
bands ([104–108], [150–163], 220) were removed, and 200
bands were finally retained. The dataset contains 10249 samples
with labels, which are classified into 16 feature categories, and
the specific sample distribution is shown in Table II.

2) Salinas dataset: Also collected by the AVIRIS sensor, 204
bands were retained after excluding the water vapor absorption
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TABLE II
INDIAN PINE DATASET SAMPLE DISTRIBUTION

TABLE III
SALINAS DATASET SAMPLE DISTRIBUTION

bands ([108–112], [154–167], 224). This data contains 512 ×
217 pixels with a spatial resolution of 3.7 m. It has 54 129
samples, divided into 16 types of features, as shown in Table III.

3) Botswana dataset: This data was acquired by the Hyperion
sensor on NASA EO-1 satellite. The raw data has 242 bands,
again covering the spectral range of 400–2500 nm with a spectral
resolution of less than 10 nm and a spatial resolution of 30 m.
To mitigate the effects of sensor calibration errors and equip-
ment anomalies, only 145 of these bands ([10–55], [82–97],
[102–119], [134–164], [187–220]) were used as candidate fea-
tures in the dataset. The dataset contains 1476 × 256 pixels
with 3248 tagged samples divided into 14 categories as shown
in Table IV.

In the abovementioned three datasets, the first two datasets are
collected from the AVIRIS sensor, but contain slightly different
bands. The last dataset is collected from the Hyperion sensor, and
the number of bands and the spatial resolution are significantly
different, which can be used for transfer verification of data

TABLE IV
BOTSWANA DATASET SAMPLE DISTRIBUTION

Fig. 4. Hyperspectral image classification dataset with pseudocolor images of
some regions and classification maps.

from different sensors. Fig. 4 shows the pseudocolor images
and classification maps for some areas of the three datasets.

B. Experimental Setup and Validation

The experiments first validated the effectiveness of the GFEN
model proposed in this article for training and classification on
a single dataset, then illustrated the role brought by spectral
alignment in the feature migration process, and then validated
the classification accuracy of migration learning for each of
the three datasets, finally made a design and outlook on the
construction of a multitask classification model. The experi-
ments used overall accuracy (OA), average accuracy (AA), and
Kappa coefficient as performance evaluation metrics. Except
for the first experiment, which used 200 training samples in
order to facilitate performance comparison with other models,
we focused on testing the classification performance in the case
of very small number of samples.

Experiment 1: Single-dataset classification performance test
The single dataset classification experiments were selected to

test the Indian pine and Salinas datasets, with reference to the
four advanced algorithms compared in [21], which are CNN,
SSRN, VGG, HT-CNN-Attention. In this article, the GFEN
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TABLE V
RESULTS OF CLASSIFICATION EXPERIMENTS ON INDIAN PINE DATASET

TABLE VI
RESULTS OF CLASSIFICATION EXPERIMENTS ON SALINAS DATASET

algorithm is compared with the same condition. In total, 200
randomly selected labeled samples were trained for each dataset,
and the remaining samples were used for testing. The test results
are shown in Tables V and VI. The experimental results show
that in the test of Indian Pine data, the OA, AA, and Kappa
coefficients obtained by the GFEN are better than the other four
types of algorithms. In the test of Salinas data, the AA of GFEN
is higher than the other algorithms, but the OA and Kappa are
lower than the HT-CNN with attention mechanism.

We conduct our experiments on a computer with an Intel
Core i7-8700K CPU with 3.7 GHz, 16 GB of DDR4 RAM, an
NVIDIA GeForce GTX 1080Ti GPU. As shown in Tables V–VI,
the training time of GFEN is shorter than SSRN and longer than
other compared models, but the test time of GFEN is the shortest
in five algorithms.

It can be concluded that the GFEN model designed in this arti-
cle has no less than the other excellent networks in hyperspectral
image classification performance.
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TABLE VII
OA TABLE OF THE INDIAN PINE DATASET CLASS A/B TRANSFER LEARNING TEST

Experiment 2: The Need for Spectral Alignment
Usually, when using hyperspectral classification datasets for

model training, the spectral alignment of the training set and the
test set is the same regardless of which bands are selected and
what alignment is taken by the data. Thus, the positions of the
feature spectral bands learned by the model can be effectively
used for feature extraction in the test set. However, inaccurate
spectral positions in transfer learning of different datasets will
greatly reduce the effectiveness of using the transfer model. We
split the same dataset into two copies containing different sample
categories. One is for the source domain learning and the other
is for the target domain. For example, all labeled samples in the
first 1–8 classes in the Indian Pine dataset are used as the source
domain for network training, and the remaining 9–16 classes
are used as the target domain to test the effect of migration
learning. One to five samples of each class in the target domain
are selected as the training set, and the rest are used as the
test set. Two approaches are adopted for training and testing:
a) keeping the source domain data unchanged, i.e., the source
domain band arrangement is highly consistent with the target
domain. b) Randomly disrupting the source domain band order
to represent the case of inconsistent source and target domain
band arrangement.

The experimental results are presented in Table VII. The
experiments show that in the case of insufficient samples in the
target domain, the spectrally aligned source domain model A
can provide effective shallow features, e.g., the frozen shallow
parameters can significantly improve the overall classification
accuracy (>6%) in the case of 1-2 training samples per class,
while the shallow parameters B with different band ordering
have no effect on the performance improvement or even have
the opposite effect (negative transfer). Fig. 5 shows the curves
of classification accuracy with the number of samples. Freezing
the shallow parameters directly provides the best classification
effect when there are only 1-2 training samples in the target
domain, and as the number of own samples increases, unfreezing
the shallow parameters for retraining can further improve the
classification performance. In either case, transfer based on
spectral alignment can achieve a better migration effect.

Experiment 3: Same/different sensor data transfer learning
experiment

This experiment focuses on examining the classification ac-
curacy improvement brought by transfer learning. Given that
the SSRN model has stable performance and has been used
as a comparison algorithm in several papers [19]–[21], the

Fig. 5. Classification accuracy curve of Indian Pine data with 1–5 samples per
class.

SSRN is selected as the performance evaluation criterion for the
GFEN model in this experiment. The SSRN, GFEN, frozen shal-
low GFEN transfer learning (F-GFEN), and fine-tuned shallow
GFEN transfer learning (T-GFEN) classification experiments
were performed for each dataset separately.

The shared spectral space of AVIRIS and Hyperion sensors
with a total of 421 bands was constructed, and the Indian Pine,
Salinas, and Botswana datasets were each spectrally projected
into this space. For each dataset, the remaining two datasets
were used as the source domain, using 90% of the samples for
training, and the rest samples were used for the validation set
for the source domain model. For the target domain training,
1, 5, 10, and 15 training samples were randomly selected for
each class of data, and the remaining samples were used as tests.
Tables VIII–X show the overall classification accuracies of the
experiments on the three datasets, with 10 repetitions of each
set, and the mean values are presented in the tables.

The experimental results show that transfer learning can
obtain higher classification accuracy regardless of the datasets
from the same sensor or different sensors. For the Indian Pine
dataset, when transfer learning with frozen shallow layer is
performed, Salinas data obtained from the same sensor as the
source domain can obtain better results, but the fine-tuning after
thawing the shallow layer, the Botswana model brings more
significant accuracy improvement. Similarly, for the Salinas
data, the Indian pine data from the same sensor brings better
migration results. As for the Botswana dataset, although the
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TABLE VIII
OA OF CLASSIFICATION OF INDIAN PINE DATASET

TABLE IX
OA OF CLASSIFICATION OF SALINAS DATASET

TABLE X
OA OF CLASSIFICATION OF BOTSWANA DATASET

TABLE XI
OA OF MULTISOURCE DOMAIN MIGRATION CLASSIFICATION FOR EACH OF THE THREE DATASETS

data used for migration were from different sensors, both had
positive effects on the classification performance improvement.

Experiment 4: Multisource domain transfer learning
Multisource domain transfer learning refers to the use of
multiple datasets to coconstruct source domain networks to
train generic classification features for hyperspectral images.
As shown in Fig. 3(b), a source domain network is constructed
in the form of multitask classification using dual datasets, and
for the three datasets used in this article, two datasets are used as
the source domain and the remaining one as the target domain
for migration experiments. For the two source-domain datasets,
3000 samples are randomly selected for training each; for the
target-domain dataset, only 1, 5, 10, and 15 samples are selected
for each class, and the remaining samples are used for testing.

Table XI shows the classification results of multisource do-
main migration learning for the three target domains. In this

experiment, the transfer approach of freezing the shallow layer
first and fine-tuning, it later outperforms the classification effect
of freezing only the shallow layer, and its final classification
accuracy is between the accuracy of migration using two source
domains alone, but avoids the problem of source domain data
selection.

IV. CONCLUSION

In this article, we propose a spectral projection strategy for
spectral alignment and feature extraction for heterogenous hy-
perspectral data of different scenes, and design a new hyperspec-
tral hierarchical feature extraction network GFEN by combining
this data preprocessing method. Four groups of experiments
are designed to verify 1) the classification capability of the
model, 2) the significance and effect of spectral projection, 3)
the performance improvement brought by migration learning,
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and 4) the significance and results of coconstruction of feature
networks in multiple source domains.

It should be noted that the feature extraction and classification
network designed in this article focuses on solving the problem
of spectral feature migration, and has not yet considered the
migration of spatial features, and therefore, does not consider
the differences in spatial resolution of different sensors. In the
multitask training of multisource domain data, only the cross
entropy of 1:1 for different classification tasks is currently used
as the loss function. In our future work, we will consider more
intelligent processing and analysis methods of hyperspectral
images [29] and add more datasets from different sensors, in-
cluding a large number of UAV hyperspectral data, to establish
a more robust hyperspectral classification model by modeling
the spectral variability and complex noises [30].
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