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Abstract—Wildfires are considered as one of the most disturbing
factors in forest areas and high-density vegetation regions. The
mapping of wildfires is particularly important for fire prediction
and burned biomass estimation. Therefore, accurate and timely
mapping of burned areas is of great importance and has a key
role in disaster management. Estimation of burned areas from
multispectral datasets is challenging, because of the complexity of
the background and the different reflections of wildfires on the
targets. To this end, this study presents a novel burned-area map-
ping framework based on the fusion of multitemporal Sentinel-1
coherence imagery and post-event Sentinel-2 imagery. The pro-
posed framework uses hybrid quadratic morphological (QM) op-
erations and convolution layers for deep feature extraction. The
proposed architecture is known as the QMDNN-Net, where the
overall framework of QMDNN-Net is based on a deep Siamese
network. QMDNN-Net has double streams for extracting deep fea-
tures from multitemporal coherence data and Sentinel-2 imagery.
The streams are similar to each other and have the same number of
group-dilated convolution blocks and QM layers. QMDNN-Net is
defined based on quadratic dilation and erosion, and then it takes
the average of these as output. The results of wildfire mapping
with QMDNN-Net are evaluated here with two real-world wildfire
datasets based on Sentinel-1 and Sentinel-2 imagery. The results
show that QMDNN-Net achieves an overall accuracy and Kappa
coefficient of 95.5% and 0.9, respectively, and outperforms other
state-of-the-art methods.

Index Terms—Burned area, convolutional neural networks, deep
learning, morphological operator, sentinel-1, sentinel-2.

I. INTRODUCTION

DUE to a number of factors such as climate change and hu-
man activities, wildfires have been occurring with greater

frequency throughout the world [1]–[3]. Wildfires can damage
the environment in different ways, such as through soil erosion
and emission of greenhouse gases [4], [5]. Therefore, accu-
rate and timely wildfire burned-area mapping is essential for
further consequential analysis, such as wildfire prediction and
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estimation of burned biomass. Mapping of burned areas can be
achieved according to two categories: traditional methods and
remote-sensing satellite imagery. The use of earth-observation
satellites is generally more popular because it has a number of
advantages.

In recent decades, remote sensing has had a key role in the
monitoring of the Earth for many applications [6]. Remote-
sensing imagery can help with accurate and timely mapping
at minimum cost and with large coverage. The diversity of
remote-sensing imagery has resulted in its use in a wide range
of applications, such as classification [7]–[9], change detection
[10], [11], wildfire mapping [12], [13], and climate change [14],
[15]. Among these, wildfire burned mapping (WFBM) is one
of the important applications of remote-sensing imagery [16].
Many studies have included WFBM, such as for greenhouse-gas
estimation from wildfires, burned-biomass estimation, wildfire
damage assessment, and active wildfire detection [17].

With the increasing availability of remote-sensing imagery,
WFBM has become a hot research topic, with many studies
carried out to date (e.g., [18]). Burned-area mapping based on
remote-sensing imagery can be applied to three main scenarios
here:

1) bitemporal post/pre-event datasets;
2) post-event datasets;
3) fusion of heterogeneous datasets [19]–[21].
WFBM based on bitemporal datasets uses the change detec-

tion framework, with the similarities of pixels in the first and
second datasets measured, and the generation of the WFBM
based on a similarity value[16]. WFBM based on only post-
events focuses on the difference in the spectral signatures of the
pixels in the scene to detect “burned” pixels. The fusion scenario
combines different types of remote-sensing imagery to detect
burned pixels, which can then be applied based on combining
previous scenarios [22].

A. Bitemporal Change-Detection-Based WFBM

Bitemporal change-detection-based WFBM is applied based
on the detection of changes across prewildfire and postwild-
fire datasets. For instance, Hardtke et al. [23] designed a
semi-automatic burned-area mapping framework in semi-arid
ecosystem regions using time-series moderate resolution imag-
ing spectroradiometer (MODIS) imagery. This framework was
applied in three main steps:
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1) generation of the time-series normalized burned ratio
(NBR);

2) detection of potentially burned pixels using change detec-
tion by image differencing between time (n)th and (n-1)th;

3) segmentation in a region-growing manner, then visualisa-
tion and vectorisation of the detected wildfire areas.

Hawbaker et al. [24] proposed burned-area detection to
produce the “Landsat burned-area essential climate variable
product” using dense time-series data. They applied the algo-
rithm using a gradient-boosted regression model to estimate
the probability of burned areas in scenes from Landsat data.
Next, the maximum burned probability value was generated
by compositing the burned probabilities with the time-series
dataset. The final binary burned map was generated using the
segmentation process and thresholding. Jakimow et al. [25]
presented a fire-detection and tillage-events framework based
on dense time-series Landsat-7 and Landsat-8 datasets. This
procedure was applied in four main steps:

1) extraction of three clear Landsat observation sequences (at
the acquisition date, and before and after the acquisition
date);

2) model parameterisation and classification based on a ran-
dom forest algorithm;

3) aggregation of random forest class probabilities for each
year, to estimate the class score;

4) derived annual layers summarised as single annual maps
that show the burned and tilled areas.

Giglio et al. [26] proposed a burned-area mapping framework
based on a daily time series MODIS dataset. This method was
applied in a series of steps:

1) extraction of daily surface reflectance and active fire
masks;

2) generation of change/fire-related composites;
3) extraction of temporal texture, which uses the local stan-

dard deviation;
4) selection of training sample based on a cumulative active-

fire composite;
5) extraction of conditional probability densities for burned

and unburned sample data using a Gaussian kernel esti-
mator;

6) separability test applied for burned and unburned con-
ditional probability distributions, to ensure they differ
considerably;

7) prior probabilities that establish spatially explicit prior
burned probabilities;

8) posterior burned probability used to give the observed
change in a vegetation index;

9) initial classification to generate the experimental classi-
fication of burned or unburned;

10) final classification based on additional contextual infor-
mation and a majority filter.

Roteta et al. [27] developed a two-stage burned-area mapping
system based on bitemporal Sentinel-2 imagery and the MODIS
MCD14ML fire product. Initially, the burned areas were detected
based on a fixed threshold for the spectral burned indices, and
then this was overlaid with the MCD14ML hotspots at the
same time. The burned areas obtained by the first step were

used to estimate tile-dependent statistical thresholds for each
predictive variable, which were applied in a two-step manner.
Lizundia-Loiola et al. [28] developed a global burned-area
mapping procedure by combing near-infrared reflectance bands
and active fire information that originated from MODIS. This
method was applied in two phases: detection of high potential
burned pixels based on the thresholding of spectral indices
by mixing the thermal and reflectance bands, and growth of
the contextual region for reducing the omission errors and
detection of the burned patches. Pinto et al. [29] proposed a
deep-learning-based burned-area detection method based on the
visible infrared imaging radiometer suite (VIIRS) dataset. The
proposed framework was based on U-Net architecture that used
the three-dimensional convolution layers and long short-term
memory in the encoder parts. Furthermore, the transpose convo-
lution and temporal convolution layers were used in the decoder
part. Liu et al. [30] presented a burned-area detection model
based on time series Landsat data and harmonic model fitting.
This method was initially applied to the “Breaks for the Additive
Season and Trend” monitor for segmentation of stable periods.
Then, the harmonic model was fitted for a stable period using
the time series burned-area index. Burned-area detection was
achieved by comparing the predicted value by the model and the
observed value based on a threshold. Seydi et al. [16] presented a
burned-area mapping framework based on bitemporal Sentinel-2
imagery using Google Earth Engine cloud computing. This
framework was applied in three stages:

1) extraction of spectral and spatial features for the bitempo-
ral dataset;

2) change detection based on image differencing;
3) burned-area detection based on binary classification using

a random forest algorithm.
Llorens et al. [31] proposed a burned-area detection method

using Sentinel-2 imagery based on the detection of changes by
NBR indexing and thresholding. The threshold values were de-
fined by the European Forest Fire Information Service algorithm.
Furthermore, this method can generate the burned severity level
according to the separability index.

B. Post-Event-Based WFBM

WFBM can be applied based on an investigation of the re-
flection of the burned area. Thus, burned areas have different
characteristics compared to unburned areas. Therefore, WFBM
methods are designed to detect burned areas based on compar-
isons of spectral features of burned areas with the background.
For example, Urbanski et al. [32] presented a burned-area de-
tection method that combined a VIIRS active fire and burn scar
identification model. This framework was applied in two steps:
1) use of a burned-scar detection model based on the spectral ra-
tio of the top of atmosphere reflectance VIIRS infrared M-bands,
to detect the high potential burned-scar pixels; and 2) use of a
contextual filter to refine the classified pixels based on VIIRS
I-band active fire detection. Furthermore, Cabral et al. [33]
considered the potential of genetic programming methodologies
for burned-area mapping using the Landsat ETM+ imagery.
They compared the results of burned mapping with two classical
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methods: maximum likelihood classification and classification
and regression tree analysis. The results of the mapping showed
that genetic programming had a high efficiency compared to the
other two methods. Additionally, Çömert et al. [34] designed
an object-oriented burned-area mapping procedure based on
multiresolution segmentation and a random forest algorithm.
They applied the proposed framework to Landsat-8 satellite
imagery. Furthermore, they used the spectral burned indices (i.e.,
burned-area index, normalized burned index) and vegetation
indices (i.e., normalized difference vegetation index [NDVI], en-
hanced vegetation index) to enhance their burned-area mapping
results. Moreover, Brand and Manandhar [35] used a seman-
tic segmentation-based method for burned-area mapping with
mono-temporal Sentinel-2 imagery. The U-Net-based segmenta-
tion deep learning framework has also been used for burned-area
mapping. The performance of the proposed method was tested
in different areas, and the accuracy assessment showed that
the proposed method had high generalization despite highly
diverse objects. In addition, Sertel and Alganci [36] evaluated
the performance of a pixel-based and object-based burned-area
detection method using the SPOT-6 dataset. They used the
spectral bands and NDVI for the classification of burned areas.
A rule-based classifier was used to classify the segments, and
a maximum likelihood classifier was used for pixel-based clas-
sification. The results of this classification showed that object-
based classification has high efficiency compared to pixel-level
classification. Ngadze et al. [37] evaluated the contribution of
spectral bands on the performance of burned-area mapping using
a random forest classifier. They used post-fire Sentinel-2 and
Landsat-8 satellite imagery to map burned areas. The outcome
of this burned-area mapping was illustrated using four spectral
bands (i.e., blue, red, red-edge, near-infrared) and had a high
contribution to the of mapping burned areas. Moreover, Dragozi
et al. [38] investigated the impact of spectral/spatial features
on burned-area mapping using a very high-resolution IKONOS
dataset. They conducted the experiments in two steps: pixel-
level classification and object-level classification. They used the
“fuzzy complementary criterion” to select the features and a
support vector machine algorithm as a classifier. The results of
this mapping showed that object-level classification has greater
accuracy than pixel-level classification. Furthermore, the feature
selection method can improve the results and reduce the compu-
tational costs. Ba et al. [39] developed a burned-area mapping
framework based on spectral indices and a back-propagation
neural network. This framework was applied in three
phases

1) sample data generation as five classes (i.e., vegetation,
cloud, bare soil, burned area, shadow) based on an em-
pirical formula method, a multithreshold technique, and a
visual interpretation algorithm;

2) Spectral characteristics analysis based on separability in-
dex M to assess the burned and unburned classes;

3) a back-propagation neural network for mapping burned
areas using the sample data generated.

Knopp et al. [40] presented a semantic segmentation-based
method based on U-Net architecture for mapping burned ar-
eas. They used the post-fire mono-temporal Sentinel-2 satellite

imagery to map the burned areas. They also assessed the ef-
ficiency of the spectral bands to map burned areas, whereby
visible, near-infrared, and shortwave infrared provided high
contributions to the mapping of the burned area. Wang et al.
[41] developed super-resolution burned-area mapping based on
space–temperature information and Sentinel-2 satellite imagery.
The space–temperature information had two elements: a space
element that used a random walker algorithm to obtain the space
element with highly detailed space information and a tempera-
ture element that provided rich temperature information that was
obtained by calculating the NBR index. These elements were
then integrated to generate an objective function with space–
temperature information. Finally, a particle swarm optimization
algorithm was used to optimize the objective function, and then
the burned-area mapping result was generated.

C. Fusion-Based WFBM

Fusion-based WFBM focuses on multimodal datasets and
takes advantage of the different datasets to provide high effi-
ciency. For example, Zhang et al. [42] proposed a deep-learning-
based framework for mapping burned areas using the synergy
of the Sentinel-1 and Sentinel-2 imagery. The proposed deep-
learning-based framework was based on Siamese self-attention
architecture that uses a self-attention module and a convolution
layer. For mapping burned areas, this method uses bitemporal
Sentinel-2 imagery, time-series coherence and backscatter (γ0),
and bitemporal NDVI. Additionally, Boschetti et al. [22] fused
MODIS and Landsat ETM+ to map burned areas on a large
scale, with a spatial resolution of 30 m. This method was applied
in three main steps

1) detection of high potentially burned pixels based on
decision-tree-based semantic change detection, by exam-
ination of a spectral category time series using Landsat
imagery;

2) generation of candidate burned objects based on segmen-
tation of detected high potential pixels using temporal and
spatial proximity criteria;

3) making a decision on candidate burned objects by exam-
ination of the contemporaneous 1 km MODIS active fire
detection.

Moreover, Alonso-Canas and Chuvieco [43] developed a
two-step global burned-area mapping method using time series
of the “medium resolution imaging spectrometer” data and
thermal information derived from the MODIS hotspot product.
This method used cumulative distribution functions to separate
burned pixels. In the next step, a contextual criterion was used
to enhance the spatial detection of the burned patches from the
seed pixels. Furthermore, Roy et al. [44] designed a burned-
area mapping algorithm based on combining the Landsat-8 and
Sentinel-2 datasets. The fusion process was applied by random
forest change regression that was trained with synthetic data built
from laboratory and field spectra and used a spectral model of fire
effects on reflectance. The random forest algorithm was applied
to each pixel on a temporal rolling basis considering 3 months of
sensor data, to map the central month. A temporal consistency
check was used to minimize commission errors derived from
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nontarget changes. Furthermore, a region-growing technique
was used to handle omission errors. In addition, Belenguer-
Plomer et al. [45] designed a detection-based framework to
map burned areas using Sentinel-1 and hotspots originating
from MODIS and VIIRS sensors. This framework used the
Reed-Xiaoli detector algorithm to detect anomalous changes in
the backscatter coefficient dataset. These changes were over-
laid with hotspots, which helped to enhance the burned-area
mapping. Furthermore, a random forest classifier was used
for some areas where ancillary data were not available. Also,
a land-cover map was used to improve the performance of
the Reed-Xiaoli algorithm. Crowley et al. [46] presented a
wildfire progression system based on multisensor datasets (i.e.,
MODIS, Sentinel-2, Landsat-8). This method initially generated
the provisional classifications by change detection based on the
bitemporal NBR index. Then, Bayesian updating of a land cover
algorithm was used to combine the results of the burned classi-
fication maps, which were derived from multisensors. Finally,
Belenguer-Plomer et al. [47] designed a deep-learning-based
framework for the mapping of burned areas using Sentinal-1
and Sentinel-2 imagery. They used the multitemporal γ0 of the
Sentinel-1 dataset and the multitemporal spectral indices of the
Sentinel-2 dataset as inputs for convolutional neural networks
(CNNs).

Although many studies have designed several algorithms for
mapping burned areas and have developed them for specific
types of satellite imagery (e.g., MODIS, Landsat, VIIRS, Sen-
tinel), many limitations remain, as follows.

1) Most methods have used the active fire products, while
there is strong uncertainty in mapping active fires. More-
over, the accuracy of the methods mentioned depends
absolutely on the quality of the hotspot maps, and the
hotspot products generally have low spatial resolution that
might not be detected by the algorithm.

2) Spatial resolution is the most important challenge among
these methods. However, coarse spatial resolution for
mapping burned areas over wide coverage is not of great
importance, but for small areas, it is the most important
factor. Therefore, mapping burned areas for small areas
using coarse resolution datasets is a big challenge and can
even be impossible.

3) Change-detection-based methods require more considera-
tion because the changes can be derived from other factors,
such as vegetation growth, tree felling, and agricultural
harvesting. Moreover, due to some environmental condi-
tions (e.g., cloudy) and poor temporal resolution, finding
a pre-event dataset can be very difficult.

4) Most methods are based on manual features generation
based on spectral features (e.g., NBR, NDVI), while they
ignore the potential of spatial features in the mapping
of burned areas. Additionally, manual feature generation
and selection of suitable features are time-consuming,
especially for large-scale areas.

5) Most methods have used conventional classifiers, such as
random forest or maximum likelihood classifiers, while
advanced classifiers can guarantee that reliable results will

be obtained. These above-mentioned methods are based on
thresholding spectral indices or original spectral bands.
A single threshold value is, however, not effective, due
to the complexity of the background and the ecosystem
characteristics.

To minimise these challenges, the present study presents
a novel framework for mapping burned areas. This frame-
work can cover the limitations of current burned-area mapping
methods. This proposed method is termed the QMDNN-Net
method, and it is applied based on the fusion of Sentinel-1
and Sentinel-2 datasets, which have many advantages compared
to other state-of-the-art methods. The QMDNN-Net method
combines multiscale convolution blocks and learnable mor-
phological layers, and it can extract the linear and nonleaner
deep features to improve the results of burned-area map-
ping in more complex areas. These advantages mean that the
QMDNN-Net method can map burned areas with high accu-
racy and low error rates. Also, the efficiency of the fusion of
the synthetic aperture radar (SAR) and optical datasets into
a single dataset gains the maximum advantage of the fusion
datasets.

Deep-learning-based methods that can automatically extract
deep features by convolution layers have provided promising
results, which has converted this into a hot topic research area.
Convolution layers have a key role in the generation of the
deep features, such that many kinds of convolution layers have
been developed (e.g., standard convolution, dilated convolu-
tion). However, standard convolution layers do not have a high
capacity for capturing scaled or rotated objects, while this can
be provided by data augmentation. One advanced deep-feature
extractor method is learnable morphological scale-space layers.
Unlike standard convolution layers, the morphological scale-
space operators can also extract nonlinear features, and they
are equivariant to some transformations (e.g., rotation, affine
transformation, scaling). The efficiency of morphological scale-
space operators to increase the generalisation of deep-learning
methods has been shown. Recurrently, the morphological neu-
ral network is taken into consideration, as this can provide
promising results for some applications. Here, we combined
the quadratic morphological (QM) operations with a standard
convolution layer to enhance the performance of the network
for solving nonlinear burned-area mapping in highly complex
areas.

The main contributions of this research are following.
1) We deeply revisit WFBM methods and their problems

and propose a novel deep-learning framework that com-
bines the morphological learnable scale-space opera-
tions (i.e., quadratic dilation, quadratic erosion) and
the group-dilated-convolution (GDC) block for the first
time.

2) We introduce a QM empirical mode (QMEM) based on
two morphological operators for greater exploration of
deep features.

3) We take advantage of the temporal coherence map and
post-event optical datasets for accurate mapping of burned
areas.
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Fig. 1. Locations of the two study areas for the burned-area mapping.

4) We evaluate the potential of the multispectral and mul-
titemporal coherence SAR datasets for mapping burned
areas and compare the results with state-of-the-art meth-
ods.

The rest of this article is organized as follows. Section II
introduces the study areas and the datasets. Section III gives
the details of the QMDNN-Net for burned-area mapping. The
evaluation results are provided in Section IV and are discussed
in Section V.

II. CASE STUDY AND SATELLITE IMAGES

A. Study Area

This study used two large covered wild wildfire areas located
in different areas. The first study area was located on Evia Island
(Greece), which is the second-largest island (see Fig. 1). This
fire started on 3 August, 2021, and was intensified by strong
winds. The second study area was located in the southern part
of Turkey, in the Antalya province (see Fig. 1). This disaster
began in July 2021, and lasted for many days.

B. Satellite Images

This study used the post-fire Sentinel-2 dataset for map-
ping the burned areas. The Sentinel-2 mission consists of two
satellites (Sentinel-2-A, Sentinel-2-B) that collect data with a
temporal resolution of 5 days. The Sentinel-2 sensors have 13
spectral bands with different spatial resolutions (10, 20, 60 m).
This study used the spectral bands with spatial resolution of
10 and 20 m. Furthermore, the Level-2A product was used
for the next analysis that was preprocessed (i.e., atmospheric
correction).

The Sentinel-1 satellites are equipped with C-band SAR that
captures the data with four operational imaging modes of differ-
ent spatial resolutions. Sentinel-1 has two sensors (Sentinel-1A,
Sentinel-1B) that were launched in April 2014 and April 2016
(respectively). This study used the multitemporal single look
complex with interferometric wide swathe mode for the WFBM.

C. Datasets

This study fused the multitemporal Sentinel-1 SAR dataset
and the post-fire Sentinel-2 optical dataset for mapping the
burned areas. The Sentinel-1 datasets needed to be preprocessed
to generate the multitemporal coherence map. We used the
SANP open-source software for preprocessing the Sentinel-1
data, to produce the coherence map. After preprocessing, and
according to the flowchart presented in Fig. 4, the multitemporal
coherence maps generated two polarisations (VV, VH). Figs. 2
and 3 show the incorporated Sentinel-2 dataset and multitempo-
ral coherence maps generated for the first and second datasets,
respectively.

This study was conducted experimentally in two different ar-
eas with wide coverage. The details of the incorporated datasets
for the two study areas are presented in Table I. The Sentinel-2
dataset includes some spectral bands that had a spatial resolution
of 20 m.

III. METHODOLOGY

The proposed framework for the QMDNN-Net method is
applied in three steps according to the flowchart in Fig. 4. The
first step is the preparation of the data (which have some prepro-
cessing applied) and coherence map generation. The second step
is the training phase, where the model parameters are tuned by
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Fig. 2. Dataset used in the WFBM for the first study area. These included (a) the post-event Sentinel-2 imagery, (b) the coherence maps generated, as VH time-1,
(c) VH time-2, (d) VH time-3, (e) VV time-1, (f) VV time-2, (g) VV time-3, and (h) the ground truth.
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Fig. 3. Dataset used in WFBM for the second study area. These included (a) the post-event Sentinel-2 imagery, (b) the coherence maps generated, as VH time-1,
(c) VH time-2, (d) VH time-3, (e) VV time-1, (f) VV time-2, (g) VV time-3, and (h) the ground truth.
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TABLE I
MAIN CHARACTERISTICS OF THE INCORPORATED DATASETS FOR THE TWO STUDY AREAS

Fig. 4. Overview of the general framework for WFBM.

training and validation data, and then assessed by testing data.
The last phase is the prediction phase, where unlabelled data are
fed to the model to predict the burned areas.

A. Preprocessing

The preprocessing is the first step in the QMDNN-Net
method, which is applied separately to the Sentinel-1 and
Sentinel-2 datasets. The most important preprocessing of the
Sentinel-2 dataset is an atmospheric correction to convert top-of-
atmosphere to surface reflectance. The atmospheric correction
was carried out using the Sen2Cor processer that is available in
the open-source SNAP software [48], [49].

The Sentinel-1 interferometric wide swath mode acquisitions
in the single look complex product format were used for the
WFBM. This product has several main steps of preprocess-
ing: TOPSAR-spilt; apply orbit file; back-geocoding; enhance

spectra diversity; coherence generation; TOPSAR-deburst; and
multilook and terrain correction [50], [51]. The Sentinel-1 data
processing is carried out via the SNAP software platform. The
complex coherence quantifies the relative stability of the scatter-
ing mechanisms within a window between two SAR acquisitions
[52]. The complex coherence (γ) is between 0.0 and 1.0, and for
two coregistered complex signals of SAR images it is estimated
using (1) [50], [53]

γ =
E〈s1.s2∗〉√

E〈|s1|2〉.E〈|s2|2〉
(1)

where s1 and s2 are complex signals of the SAR datasets, E〈.〉
is the expectation operator, ∗ indicates the complex conjugate,
and |.| indicates the absolute operator. In practical applications,
we use the coherence ensemble average (γ̂) instead of the
measurement of the mathematical expectation of SAR signals,
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Fig. 5. Multitemporal coherence map generation procedure.

Fig. 6. Overview of the QMDNN-Net method architecture for WFBM (burned-area mapping).

which can be defined as

γ̂ =

∣∣∣∑N
i=1 s1i · s∗2i · ejϕ(i)

∣∣∣√∑N
i=1 |s1i|2.

∑N
i=1 |s2i|2

(2)

where N is the number of pixels in the window. The coherence
map of each new image is generated with respect to the previ-
ous image. An overview of the multitemporal coherence map
generation is shown in Fig. 5.

B. Proposed Deep-Learning Architecture

The architecture of the QMDNN-Net method for WFBM is
shown in Fig. 6. Based on this architecture, QMDNN-Net was
built from six parts, which included

1) the input part;
2) the deep feature extraction stream based on the optical

dataset;
3) the deep feature extractor channel from the multitemporal

coherence dataset;
4) the reshaping of deep features by flattening layers;
5) the classification part;
6) the output.

The input of QMDNN-Net is patch data with a defined size,
which is set at 13×13 for each deep feature extractor stream.
Next, the input patch data is fed to deep feature extractor
streams to explore the higher level and more effective deep
features. The deep feature extractor streams are the same in
terms of structure and number of layers. The deep features
are extracted by hybrid QM layers and GDC blocks. Then, the
deep feature reshapes by flattening the layer to be transferred
to the classification part. The deep features are integrated by
concatenating the layers and feeds to fully connected layers.
Finally, the soft-max layer is used to decide on the input patch
data. The main differences between the proposed QMDNN-
Net method architecture with other CNN frameworks are
following.

1) Use of the trainable morphological scale-space layers,
which can increase the efficiency of the network for
the extraction of nonlinear features. Furthermore, they
dramatically improve the generalisation to unseen scales
compared to standard convolution layers.

2) Combination of the GDC-block for more exploration and
increased robustness of the network with the morpho-
logical scale-space operator. Another advantage of the
GDC-block is the exponential expansion of the receptive
field without loss of resolution.
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Fig. 7. Structure of the QMEM-block.

3) Taking advantage of the QMEM-block based on two
morphological operators for more exploration of deep
features.

4) Use of separable convolution layers, which reduces the
number of parameters of the network without reducing
the effectiveness.

C. QMEM-Block

The empirical mode decomposition is a fully data-driven
algorithm designed for linear and nonstationary time series
analysis that has been introduced recently by Huang et al. [54].
This method is considered as a simple and robust multiscale
decomposition technique that is widely used in many applica-
tions. The main idea behind empirical mode decomposition is
to decompose original real data into a number of oscillatory
modes called intrinsic mode functions. The empirical mode
decomposition uses lower and upper envelopes of the signal
in an iterative decomposition manner, for representing a signal.
The empirical mode decomposition can be formulated based on
pairs of morphological operators. Thus, this research uses the
quadric morphological operators (erosion and dilation operator)
for formulation of empirical mode decomposition. The QMEM
can be defied based on QM erosion (εqτ ) and (δqτ ) and dilation
operators as defined based on the following [55]:

QMEM =
εqτ (f) (x) + δqτ (f) (x)

2
. (3)

The QMEM-block has a key role in the QMDNN-Net method
for the extraction of deep features for WFBM. This structure
is based on quadratic dilation and erosion operators and then
averaging. The structure of the QMEM-block is shown in Fig. 7,
which includes quadratic dilation and erosion operators and two
dilated group convolution blocks. Four steps are involved in
applying the QMEM-block.

1) Employing the GDC block on the previous layer of the
features map.

2) Using two QM operators with kernel size (3×3).
3) Applying two QM operators with kernel size (5×5) to the

extracted features from step (2).
4) Using GDC-Block to explore the data further.
This QMEM-block uses two QM operators with different

kernel sizes (i.e., 3×3, 5×5).

Fig. 8. Structure of the GDC-block.

The structure of the GDC-block is shown in Fig. 8, which
contains two convolution layers with different dilation rates (i.e.,
1, 2). Then the extracted features are concatenated and fed to a
separable convolution layer. The separable convolution layer has
built two point-wise and depth-wise convolution layers.

D. Convolution Layer

Mathematically, the feature value (Ψ) in the lth layer is
expressed using (4) [56]

vl = g
(
wlxl−1

)
+ bl (4)

where x is the input data, g is the activation function; b is the
bias vector for the current layer, and w is the weighted vector.
The value (v) at position (x,y) on the jth feature ith layer for the
two-dimensional convolution layer is given as [57]

vxyi,j = g

(
bi,j +

∑
χ

Ωi−1∑
ω = 0

Φi−1∑
ϕ = 0

Wω,ϕ
i,j,χv

(x+ω×d1)(y+ϕ×d2)
i−1,χ

)

(5)
where χ is the feature cube connected to the current feature
cube in the (i − 1)th layer, Ω and Φ are the length and width of
the convolution kernel size, respectively, and d1 and d2 are the
dilation rates, as length and width, respectively. Fig. 9 shows
the main difference between standard convolution and depth
and point-wise convolution. The separable convolution was built
using point-wise [see Fig. 9(b)] and depth-wise [see Fig. 9(c)]
convolution.

E. QM Layer

Morphological operators are considered as nonlinear opera-
tors that are focused on the spatial structure of the images [58],
[59]. Erosion and Dilation are the basic mathematical morpho-
logical shape-sensitive operations [60], [61]. These operators
can extract discriminative spatial–contextual information during
the training stage [62]. Let f be the image data that can be
represented as a function where the intensity at position x is
represented by f(x); thus, the Erosion(εb) and Dilation(δb) can
be defined for f as [60]–[63]

εb (f) (x) = min
i∈[−n,n](f (x+ i)− bi ) (6)
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Fig. 9. Main differences between standard convolution and separable convolution (point-wise and depth-wise). (a) Standard convolution. (b) Point-wise
convolution. (c) Depth-wise convolution.

δb (f) (x) = min
i∈[−n,n](f (x− i) + bi ) (7)

where b is the structure element. Based on the theory of mor-
phological scale spaces, the saleable nonflat structure functions
are the most valuable functions [64]–[67]. Assume τn×n is
a symmetric positive definite matrix, and thus the quadratic
structuring function associated with the τ matrix is denoted as
qχ and is as defined as (8) [55]

qτ (α) = −1

2
〈α, τ −1α〉. (8)

This equation for a separable and rotationally invariant struc-
turing function can be simplified as

qτ (α) = −‖α‖2
2τ

. (9)

The erosion and dilation by the quadratic structuring function
are denoted by εqτ and δqτ , respectively, which are defined as

εqτ (f) (x) = inf
zεE

{
f (α− x) +

‖α‖2
2τ

}
(10)

δqτ (f) (x) = inf
zεE

{
f (α+ x)− ‖α‖2

2τ

}
. (11)

F. Classification

The classification task can be applied by a multilayer percep-
tron classifier, which is applied to the extracted deep features.
The multilayer perceptron classifier is composed of a fully
connected and soft-max layer. The output deep features extractor
part reshapes the layer by flattening it, and then feeds it to a
fully connected layer. The fully connected layer connects the
deep feature extractor parts to the soft-max layer. The soft-max
layer is the last layer in the multilayer perceptron classifier, as an
activation function is used to assign the probabilities belonging
to each class for the input patch.

G. Training Process

While the parameters of the network are, thus, optimized
iteratively by an optimizer, the adaptive moment estimation
optimizer was used to tune the network parameters [68]. The
QMDNN-Net is initialized by He-Normal by an initializer, and
then the model is trained. Next, the error network is calculated
by a loss function in the training process, and the error value is
fed to the optimizer to update the network parameters by back-
propagation. The Tversky loss function was used to estimate the
loss of QMDNN-Net in the training process [69]. The Tversky
index between v̂ (predicted value) and v (true value) is defined
as

TI ( v̂, v, α, β) =
|v̂v|

| v̂v|+ α
∣∣∣ v̂/v∣∣∣+ β

∣∣v/ v̂∣∣ (12)

where α and β control the magnitude of the penalties for false-
positive and false-negative pixels, respectively.

H. Accuracy Assessment

This study assessed the result of the WFBM using numerical
and visual analyses with a reference dataset. Due to the role of the
reference map in assessing the result of WFBM, this study was
designed to generate the reference map with high reliability. The
reference data was generated by a native expert based on visual
interpretation of the very high-resolution data and WFBM re-
ports presented on some websites. Standard accuracy assessment
indices were used for numerical accuracy assessment, which
include overall accuracy, kappa coefficient, F1-score, recall,
Jaccard index, precision, and balanced accuracy.

To evaluate the performance of QMDNN-Net, a novel state-
of-the-art deep-learning-based method was also implemented.
This is a CNN-based method that was proposed by Belenguer-
Plomer et al. [47] for WFBM and that provided high efficiency
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TABLE II
NUMBER OF SAMPLES USED FOR THE BURNED-AREA MAPPING FOR THE TWO STUDY AREAS

in the different areas. More details of this CNN-based method
can be found in [47].

IV. EXPERIMENTS AND RESULTS

The QMDNN-Net method is applied in the supervised learn-
ing framework that is required to sample data. We collected
the sample dataset as randomized and systematic. In addition,
Table II shows the details of the incorporated sample data for the
two study areas. It can be noted that the collected sample data
are <1% of the whole dataset. The sample data is divided into
three parts: the training, validation, and testing data, as 65%,
15%, and 20%, respectively, of the whole sample dataset.

A. Parameter Settings

The parameter τ is defined by trial-and-error, which is here
set to 4.0. The QMDNN-Net method has hyperparameters that
it needs to set, which are set manually based on trial and error.
The optimum values of these parameters are set as follows: input
patch-size for Sentinel-2 and Sentinel-1 multitemporal coher-
ence datasets, 13×13×10 and 13×13×8, respectively; initial
learning rate 10−4; number of neurons at the fully-connected
layer, 1500; mini-batch size, 900; and number of iterations, 1500
(epochs). It is worth noting that the effects of these parameters
on the performance of the network are low; e.g., the change in
patch size from 11×11 to 13×13 only increases the accuracy of
the network by 0.5%.

B. Results

This section investigates the result of WFBM using the
QMDNN-Net method for two study areas. The two scenarios
were designed to evaluate the efficiency of the QMDNN-Net
method, using only the Sentinel-2 dataset and using the Sentinel-
1 and Sentinel-2 fusion datasets.

1) First Study Area: The results of the WFBM for the first
study area are shown in Fig. 10. As can be seen, the QMDNN-Net
method showed good detection Fig. 10(b) and (c), and it is
clear that other CNN-based method has high false pixels [see
Fig. 10(a)]. While this issue can also be seen in the results
of the QMDNN-Net method, this effect is lower than for the
other methods [see Fig. 10(c)]. The QMDNN-Net method also
provides considerable improvement in the WFBM by fusion of
the multitemporal Sentinel-1 coherence map and the Sentinel-2
optical imagery, which relates mainly to around the burned areas.
This improved efficiency is more evident in the detection of the
Unburned pixels that can be seen for the whole study area.

Fig. 11 illustrates the confusion matrices of the WFBM
for the first study area. The results were obtained by visual
analysis of the data in Fig. 10. Among the 3555268 total
ground truth Unburned pixels, the QMDNN-Net method de-
tected 3193267 and 3427761 Unburned pixels for only the
Sentinel-2 dataset and for the Sentinel-1 and Sentinel-2 fusion
dataset, respectively, while the CNN-based method detected
3170464 Unburned pixels. Thus, in the fusion scenario, the
QMDNN-Net method has the lowest Unburned error pixels, at
127507, compared to the CNN-based method with 384804 error
pixels. It is also worth noting that for the 5425604 total ground
truth Burned pixels, the CNN-based method shows 5160187
Burned pixels, while for the fusion scenario, the QMDNN-
Net method provides fewer, at 5088568. Thus the CNN-
based method provides better performance compared to the
QMDNN-Net for the detection of Burned pixels, while it signif-
icantly misses its performance in the mapping of the Unburned
pixels.

The numerical results of the mapping of the burned areas
in terms of the quality measurement indices for the first study
area are presented in Table III. These show that all of the
methods provide an overall accuracy >92%. The QMDNN-Net
method outperformed the CNN-based method according to most
of the indices, using either only the Sentinel-2 dataset or the
Sentinel-1 and Sentinel-2 fusion dataset. The QMDNN-Net
method improves the performance of the burned-area mapping
by >2% according to the overall accuracy index. Furthermore,
there is an improvement in most of the other indices, such as the
Recall index, kappa coefficient, and Jaccard index. However,
the CNN-based method provides greater precision compared
to the QMDNN-Net method, although it does missed its perfor-
mance for other indices. Additionally, the QMDNN-Net method
generally provides improved performance with the fusion of
the multitemporal coherence images and the optical Sentinel-2
datasets.

2) Second Study Area: The results of the WFBM for the
second study area are shown in Fig. 12, where it can be seen
that all of the methods provide good results for the detection of
the burned areas. The main challenge among the methods is the
correct mapping of the unburned pixels. There are many pixels
that are classified as Burned pixels when they should be Un-
burned pixels. The CNN-based method shows many false pixels
around the burned region. However, the QMDNN-Net method
shows good detection compared to the other methods for both of
its scenarios. The QMDNN-Net provides good performance in
the second scenario [see Fig. 12(c)], while some noisy labeled
pixels can be seen in the first scenario [see Fig. 12(b)].
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Fig. 10. Maps for visual comparisons of the results of WFBM based on the post/pre-event Sentinel-2 imagery for the first study area. (a) CNN-based method of
[47]. (b) Proposed QMDNN-Net method using just the Sentinel-2 dataset. (c) Proposed QMDNN-Net method using the Sentinel-2 and SAR dataset. (d) Ground
truth map.
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Fig. 11. (a) Comparison of the confusion matrices for the CNN-based method of [47], (b) the proposed QMDNN-Net method using just the Sentinel-2 dataset,
and (c) using the Sentinel-1 and Sentinel-2 fusion dataset.

TABLE III
ACCURACY ASSESSMENT OF THE WFBM FOR THE FIRST STUDY AREA

TABLE IV
ACCURACY ASSESSMENT OF THE WFBM FOR THE SECOND STUDY AREAS

The confusion matrix of the results for the second study area
is shown in Fig. 13. Here, the QMDNN-Net method shows better
efficiency for the classification of the Unburned pixels, where it
correctly defines more than 39369089 pixels from 40186532
total ground truth pixels using only the Sentinel-2 dataset.
Furthermore, the QMDNN-Net method improved upon this
performance of detection of the Unburned pixels in the fusion
dataset (i.e., 39374292 Unburned pixels correctly identified).
However, the CNN-based method provides some improvement
in the detection of the Burned pixels, although this benefit is
small in comparison with the error pixels in the Unburned class.

The quality indices for these numerical results for the WFBM
methods for the second study area are presented in Table IV.
Here, the two methods provide overall accuracies of >93%,
although the QMDNN-Net method provides greater accuracy

than the CNN-based method for most of these indices. Indeed,
the QMDNN-Net method improves the accuracy mapping by
>4% in terms of overall accuracy and the Recall index. Further-
more, there is a significant improvement for the WFBM using
the QMDNN-Net method according to the kappa coefficient.
Finally, while the CNN-based method provides slightly better
performance according to the precision index, this benefit is lost
for the other indices.

3) Comparison With the Landsat-8 Burned-Area Product:
The Landsat-8 burned-area product is generated based on the
normalized burned ratio thermal index with a temporal resolu-
tion of eight-days for the whole world. This index is defined
by the near-infrared, the short-wave infrared, and the thermal
band, and it requires thresholding, which is set here to 0.92
for discrimination between the burned areas (<0.92) and the



4208 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 12. Maps for visual comparison of the results of WFBM based on the post/pre-event Sentinel-2 imagery for the second study area. (a) CNN-based method
of [47]. (b) Proposed QMDNN-Net method using just the Sentinel-2 dataset. (c) Proposed QMDNN-Net method using the Sentinel-2 and SAR dataset. (d) Ground
truth map.

Fig. 13. (a) Comparison of the confusion matrices for the CNN-based method of [47], (b) proposed QMDNN-Net method using just the Sentinel-2 dataset, and
(c) using the Sentinel-1 and Sentinel-2 fusion dataset.

unburned areas (>0.92). Fig. 14 shows the result of the WFBM
using the QMDNN-Net method and the Landsat-8 burned-area
product for the first study area. Fig. 14(b) shows the burned-area
map generated by the Landsat-8 burned-area product, which
shows that there are many missed pixels.

Here, the result of the WFBM using the QMDNN-Net method
and the Landsat-8 burned-area product for the second study

area are shown in Fig. 15. Similar to the QMDNN-Net method
[see Fig. 15(b)], the Landsat-8 burned-area products have high
efficiency in the mapping of the unburned areas; however,
again, many of the burned pixels are missed. Thus, there are
many burned pixels that are detected by the QMDNN-Net
method that are not detected using the Landsat-8 burned-area
product.
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Fig. 14. Maps for visual comparison of the results of WFBM based on the Landsat-8 product for the first study area. (a) Derived Landsat-8 burned area product.
(b) Landsat-8 burned-area product after thresholding. (c) QMDNN-Net method. (d) Ground truth map.
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Fig. 15. Maps for visual comparison of the results of WFBM based on the Landsat-8 product for the second study area. (a) Derived Landsat-8 burned area
product. (b) Thresholding the Landsat-8 burned-area product. (c) QMDNN-Net method. (d) Ground truth map.

TABLE V
ACCURACY ASSESSMENT OF THE WFBM FOR THE TWO STUDY AREAS

The confusion matrices for the WFBM are presented in
Fig. 16, for both of the study areas. Here, it can be seen that
the QMDNN-Net method shows significant improvement in the
detection of the burned pixels, while the Landsat-8 burned-area
product shows high levels of missed detection. Indeed, there are
more than 20 00 000 missed burned detection pixels using the
Landsat-8 burned-area product.

Table V presents the comparisons of the numerical results of
the WFBM for both of the study areas. As can be seen, using
the Sentinel-1 and Sentinel-2 fusion dataset, the QMDNN-Net
method has higher efficiency than the Landsat-8 burned-area

product. Indeed, the Landsat-8 burned-area product shows an
overall accuracy as low as 60% (first study area), while the
QMDNN-Net method has a corresponding overall accuracy of
>94%. Thus, while the Landsat-8 burned-area product shows
higher efficiency for mapping the unburned areas than the
QMDNN-Net method, its performance is greatly reduced by
the lower efficiency for mapping the Burned areas. Considering
the balanced accuracy and F1-score as particularly important
factors to define the results here, it can be seen that the QMDNN-
Net method is significantly higher for both of these scores,
compared to the Landsat-8 burned-area product.
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Fig. 16. Comparison of the confusion matrices for both of the study areas. (a, c) Landsat-8 burned-area product for the first (a) and second (c) study areas. (b, d)
Proposed QMDNN-Net method using the Sentinel-1 and Sentinel-2 fusion dataset for the first (b) and second (d) study areas.

V. DISCUSSION

Accurately and timely detection of burned areas are the
most important factors in WFBM damage assessment. This
study presents a novel framework for the mapping of burned
areas based on Sentinel-2 and Sentinel-1 imagery. Analysis for
WFBM has been conducted based on low-resolution imagery,
such as Sentinel-3 and MODIS, due to the high temporal res-
olution, with many burned-area products now generated daily
on a global scale. Fig. 17 illustrates the results of the MODIS
burned-area products for the two study areas considered here.
As can be seen here, although the MODIS burned-area products
show lower noisy labeled pixels, they also show high missed
detection and false pixels. For example, in Fig. 17(a), the MODIS
burned-area product for the first study area shows many small
unburned regions that have not been detected. Furthermore,
Fig. 17(c) shows that the MODIS burned-area product for the
second study area also shows many missed detection pixels. As
a result, the MODIS burned-area product cannot detect burned
areas well, due to some specific factors (i.e., coarse spatial
resolution, weakness of the burned-area algorithm). Therefore,
these products are suitable for global-scale analysis, but not for
local and accurate WFBM.

The Landsat-8 burned-area product is another high-resolution
product that covers the global scale with eight-day spatial
resolution. Based on the numerical and visual analyses shown in

Fig. 14 and 15 and in Table V, the Landsat-8 burned-area product
shows many missed detection pixels. This depends on a number
of factors, one of which is the complexity of the background,
which means that a single global threshold cannot discriminate
all of the burned areas. Thus, the detection of burned areas
with only one burned ratio index is difficult. Furthermore, the
selection of a suitable threshold for discriminating the burned
areas is challenging.

Burned-area mapping by machine-learning methods has be-
come more popular recently. The main advantages of machine-
learning methods are the relatively low requirement for sample
data and the ease of implementation. The strength of these
methods depends on the quality of the input dataset and the
features generated. Table VI gives an overview of WFBM using
machine-learning methods. Most of these methods provide an
overall accuracy of around 92% for small areas, while the
QMDNN-Net method provides an overall accuracy of >94%
for large-scale areas. Additionally, the generation of efficient
spatial and spectral features is time-consuming, especially for
large-scale areas. It is worth noting that Castillo et al. [70]
provided an accuracy similar to the proposed method but this
framework is based on manual feature extraction and thresh-
olding. The finding of optimal threshold values for several
features is time-consuming. Furthermore, due to the structure
of forest areas and complexity of such areas, the threshold value
is different from one case to other cases.
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Fig. 17. Maps for visual comparison of the results of WFBM based on the MODIS burned-area product for the two study areas. (a, b) MODIS burned-area product
for the first study area (a) and the corresponding ground truth map (b). (c, d) MODIS burned-area product for the second study area (c) and the corresponding
ground truth map (d).

TABLE VI
COMPARISON OF THE PERFORMANCES OF QMDNN-NET COMPARED TO THE OTHER REPORTED BURNED-AREA MAPPING METHODS

It is crucial for deep learning methods to perform an ablation
analysis. Ablation analysis involves removing a section of the
network to gain insight into how it affects the whole system.
To this end, this research conducted the ablation analysis in
three scenarios: (S#1) removing QM-block, (S#2) without GDC-
block, and (S#3) QMDNN-Net with all functions. The result
confusion matrices of ablation analysis of the proposed method

are pretended in Fig. 18. As seen, the proposed method has
provided better performance in the detection of the burned area
by first and second scenarios compared with third scenario. The
QMDNN-Net has high efficiency in the detection of unburned
pixels by the first scenario (S#1). Furthermore, the QMDNN-Net
method has provided considerable performance in the detection
of burned pixels while missing the efficiency in the detection of
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Fig. 18. Ablation analysis of the proposed method for the second study areas in the different scenarios. (a) Without QM-block (S#1), (b) without GDC-block
(S#2), and (c) QMDNN-Net with all functions (S#3).

TABLE VII
ABLATION ANALYSIS OF THE PROPOSED NETWORK FOR THE SECOND DATASET

unburned pixels (false pixels are more than 15 40 000 pixels).
Thus, the QMDNN-Net has improved the result by combining
the QM-block and GDC-block as it reduces the miss detection
and false pixels.

The results of the ablation analysis for the second dataset in
three scenarios are shown in Table VII. As seen, the performance
of QMDNN-Net is better than the other two scenarios by the
most accurate assessment indices (i.e., overall accuracy, Recall,
F1-score, Jaccard index, and Kappa coefficient). It is worth
noting that the proposed method has provided the accuracy a bit
better than both scenarios by Precision and Balanced accuracy
but it considerably miss the performance by other accuracy
assessment indices (i.e., Recall, Jaccard index, and Kappa coef-
ficient). There is, however, a tradeoff between detecting burned
and unburned samples that the ideal case is when a model can
effectively classify both classes with minimum classification
error.

This study proposes a novel framework based on hybrid QM
layers and GDC blocks for mapping burned areas. Based on
the results presented here for two large-scale areas, the pro-
posed QMDNN-Net method outperforms the other state-of-the-
art deep-learning-based WFBM methods. The strength of the
QMDNN-Net method is its use of GDC-block and morphologi-
cal layers that can detect burned areas with high complexity. This
QMDNN-Net method is additive with high-resolution datasets
that help the accurate mapping of burned area. The QMDNN-Net
method combines the Sentinel-2 and multitemporal Sentinel-1

coherence dataset for the mapping of burned areas, which im-
proves the efficiency of this WFBM by >2% according to the
overall accuracy index.

One of the main advantages is that the QMDNN-Net method
requires few sample data, as the sample data used repre-
sents <1% of the whole of the dataset. However, semantic
segmentation-based methods (e.g., U-Net, DeeplabV3+) [13],
[35] have provided promising results for many applications,
although it is worth noting that these require large sample
datasets. The collection of sample data is the most challenging
aspect of supervised learning methods, especially for WFBM.
Furthermore, these methods need more time for the tuning of
their parameters, as this is time-consuming and challenging.

The fusion of remote sensing datasets by deep-learning meth-
ods can be applied at different levels, such as shallow feature
levels and high feature levels. It has been shown that high feature
level fusion can improve the efficiency of deep-learning-based
methods. To this end, this study proposed a novel framework
for fusion at a high deep-feature level based on a double stream
deep-feature extractor. The Sentinel-2 and multitemporal co-
herence images are investigated using these channels, and then
they are fused in the latest layers by concatenation. The double
stream led to the extraction of a high-level feature map from
the original dataset that uses the full potential of each of the
datasets.

The generalisation capacity is the most important fac-
tor among the deep-learning-based methods. Unlike many
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deep-learning-based methods, the QMDNN-Net method has a
high generalisation capacity due to its structure. For example,
there is a waterbody area and agricultural farms in the second
dataset in the present study that are not included in the sample
datasets. Thus, the proposed QMDNN-Net method provides
good performance in such areas, while they are unseen in the
sample data.

VI. CONCLUSION

Accurate and timely WFBM can help damage assessment and
better management of such disasters. In this study, we propose
a novel framework for WFBM that combines QM layers and
convolution layers. Post-event Sentinel-2 and multitemporal
coherence images are used for this burned-areas mapping for
two large-scale regions. The performance of the QMDNN-Net
method is compared here with other state-of-the-art methods
and some burned-area products. The results of this WFBM
show that the proposed QMDNN-Net algorithm has high effi-
ciency in the mapping of burned areas. Furthermore, the fusion
of post-event Sentinel-2 images with multitemporal Sentinel-1
coherence datasets can improve the results of this WFBM and
reduce the false pixel levels.

The fusion of the Sentinel-1 and Sentinel-2 datasets also helps
to map the burned areas in more detail and with more preci-
sion. Based on visual and numerical analyses, the burned-area
products originated from MODIS and the Landsat-8 burned-area
products show high missed detection of pixels and low accuracy
in comparison with the Sentinel-based results. Furthermore, they
have a low spatial resolution, while the QMDNN-Net method
has a high spatial resolution.

The QMDNN-Net method has several particular benefits
compared to other burned-area mapping methods

1) it provides high accuracy (>95%) in the mapping of
burned areas;

2) the fusion of the Sentinel-2 and Sentinel-1 coherence
datasets provides a high feature level based on double
deep-feature extractor streams;

3) it requires relatively few sample data;
4) it combines the morphological and convolutional layers,

which increases the efficacy of the network for WFBM in
highly complex areas;

5) it has high generalization capabilities over various study
areas.

In spite of the fact that it took longer to train QMEM-Net
compared to other deep learning methods (i.e., one hour more),
the proposed method was chosen due to its higher accuracy and
more robust results.
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