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Abstract—Hyperspectral unmixing has been an important tech-
nique that estimates a set of endmembers and their corresponding
abundances from a hyperspectral image (HSI). Nonnegative matrix
factorization (NMF) plays an increasingly significant role in solving
this problem. In this article, we present a comprehensive survey
of the NMF-based methods proposed for hyperspectral unmixing.
Taking the NMF model as a baseline, we show how to improve
NMF by utilizing the main properties of HSIs (e.g., spectral, spa-
tial, and structural information). We categorize three important
development directions, including constrained NMF, structured
NMF, and generalized NMF. Furthermore, several experiments are
conducted to illustrate the effectiveness of associated algorithms.
Finally, we conclude this article with possible future directions with
the purposes of providing guidelines and inspiration to promote the
development of hyperspectral unmixing.

Index Terms—Deep learning, hyperspectral unmixing, linear
mixture model, nonnegative matrix factorization.

NOMENCLATURE

HSIs Hyperspectral images.
DL Deep learning.
MV Minimum volume.
PPI Pixel purity index.
IEA Iterative error analysis.
VCA Vertex component analysis.
SGA Simplex growing algorithm.
ICA Independent component analysis.
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NMF Nonnegative matrix factorization.
LSTM Long short-term memory.
LMM Linear mixture model.
NLMM Nonlinear mixture model.
ANC Abundance nonnegative constraint.
ASC Abundance sum-to-one constraint.
FCLS Fully constrained least squares.
TV Total variation.
GPU Graphics processing units.
PSO Particle swarm optimization.
BMM Bilinear mixture model.
MRF Markov random field.
SLIC Simple linear iterative clustering.
NTF Nonnegative tensor factorization.
CPD Canonical polyadic decomposition.
BTD Block term decomposition.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) acquired by imaging
spectrometers, record hundreds or thousands of spectral

bands of the observed scene in a single acquisition [1]–[6].
Owing to the wealthy spectral information, HSIs have been
applied to many applications, including agricultural and military
defense [7]–[9], food quality control [10], [11], mineralogical
mapping of earth surface [12], and pharmaceutical manufac-
turing industry [13]. Due to the complexity of objects and the
relatively low spatial resolution, pixels in HSIs are normally
composed of mixed spectral responses from multiple ground
objects [4], [14]. Mixed pixels affect the performance of hyper-
spectral analysis, such as object classification and identification.
To address this problem, hyperspectral unmixing is developed
to decompose each pixel of an HSI into a set of endmembers
and their corresponding abundances.

In general, unmixing algorithms can be divided into four
categories: geometrical, sparse regression-based, statistical, and
deep learning (DL)-based methods. Geometrical unmixing al-
gorithms work under the assumption that the endmembers of
an HSI are the vertices of a simplex with the minimum volume
enclosing the dataset or of a simplex with the maximum volume
contained in the convex hull of the dataset. Pure pixel-based and
minimum volume (MV)-based methods belong to this category.
The pure pixel-based algorithms assume that there is one pure
pixel at least per endmember. The classical methods include
the pixel purity index (PPI) [15], N-FINDR [16], iterative
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error analysis [17], vertex component analysis (VCA) [18],
and the simplex growing algorithm [19], [20]. The MV-based
approaches seek a mixing matrix that minimizes the volume
of the simplex defined by its columns, such as the minimum
volume enclosing simplex [21] and the simplex identification via
variable splitting and augmented Lagrangian [22]. To reduce the
influence induced by the intrinsic nonlinearity of the geometric
manifold of the HSI and extract the endmembers accurately, a
novel nonlinear endmember extraction algorithm [23] was pro-
posed by combining the hypergraph framework-based manifold
representation and fuzzy assessment. In [24], maximum volume
inscribed ellipsoid method was presented to attract endmembers
effectively. As one of the mainstream methods, the geometri-
cal unmixing approaches have shown their powerful ability in
extracting endmembers from HSIs. However, the geometrical
algorithms may hardly extract the endmembers from the highly
mixed data since pure spectral signatures are not available.

With the increasing availability of spectral libraries for mate-
rials measured on the ground, sparse regression-based methods
are proposed by expressing each mixed pixel in a scene as a linear
combination of a finite set of pure spectral signatures in a spectral
library. Sparse regression-based algorithms avoid estimating the
number of endmembers and identifying the endmember signa-
tures in the original dataset [25], [26]. Owing to these two advan-
tages, more efforts have been dedicated to improving the sparse
unmixing performance. For example, double weights were in-
troduced in [27] to improve the sparsity of fractional abundances
in both spectral and spatial domains, where one is used to
enhance the sparsity of endmembers in the spectral library, and
the other is to encourage the sparsity of fractional abundances.
To make full use of the spatial–contextual information, a new
spectral–spatial weighted sparse unmixing framework [28] was
developed for hyperspectral unmixing. Besides, the spatial cor-
relation was incorporated to promote the abundance estimation
in [29]–[31]. Specifically, a superpixel-based reweighted low
rank and total variation [29] method was proposed to enhance
the performance of the traditional spatial-regularization-based
sparse unmixing approaches. By using multiview collaborative
sparse and spectral–spatial weights, the new sparse unmixing
model [30] took the advantage of spectral information as well
as spatial information. In [31], graph Laplacian regularization
was utilized to promote the smoothness of abundance maps
in the sparse regression framework. These methods have ob-
tained promising unmixing results. However, the spectra in the
library have high coherence and are undesirable due to the
diverse imaging conditions, which limit the applicability of these
approaches.

The statistical algorithms identify the endmembers and their
corresponding abundances at the same time by utilizing the
statistical properties of the HSI. Popular statistical algorithms
include independent component analysis [32], [33], nonnega-
tive matrix factorization (NMF) [34], [35], and Bayesian ap-
proaches [36]–[38]. Among them, NMF provides a good fit for
hyperspectral unmixing owing to its nonnegativity and inter-
pretability. Therefore, numerous NMF-based methods have been
developed to pursue better unmixing performance.

In the last few years, DL [39], [40] has shown great power
and potential in pattern recognition. Therefore, many researchers

have focused on hyperspectral unmixing using autoencoder
and its variants, achieving more competitive unmixing perfor-
mance [41]–[47]. In addition, Hong et al. [48] proposed an
effective guidance for real endmembers with shared weights in
the autoencoder-like architecture. In [49], the HSI was processed
as sequential data, and a long short-term memory network was
included in autoencoder architecture to capture spectral corre-
lation information. These approaches can learn the abundance
fractions from the original data via a series of the hierarchi-
cal layers, which are more suitable for coping with a variety
of situations. For the availability in practice, Deshpande and
Bhatt [50] proposed a two-stage fully connected self-supervised
DL network for alleviating some practical issues, such as the
noise and perturbation. Nevertheless, there are still several draw-
backs [51]. For instance, current approaches often require a lot of
training samples and network parameters to achieve satisfactory
unmixing performance.

Compared with the geometrical methods and sparse
regression-based methods, the NMF-based methods are pow-
erful to extract simultaneously the endmembers and their asso-
ciated abundances. Combining the ability to extract hierarchical
features as DL-based approaches, multilayer/deep NMF [52],
[53] models have been developed to explore hidden information
with interpretability power as in classical NMF.

From the perspective of spectral signatures in HSIs, there are
two main challenges. One is spectral variability [54]–[57], which
is often brought by many factors, such as changes in illumina-
tion, environmental, atmospheric, and temporal conditions. It
may lead to large amounts of errors in abundance estimation. To
address this problem, a hierarchical sparse NMF (HSNMF) [58]
introduced hierarchical sparsity constraints for describing end-
member variability. Besides, endmember variability was con-
sidered by building a 4-D endmember tensor along with a new
low-rank regularization [59] and relying on structured additively
tuned linear mixing model [60]. Another issue is the multiple
physical interactions in the resulting observed spectrum [14].
This challenge will reduce the generalization ability of unmixing
methods based on the linear mixture model (LMM) and increase
computational complexity. As such, combined with nonlinear
mixture model, NMF can also be applied to form some novel
nonlinear unmixing methods [61], [62].

In this article, we aim to provide a survey on NMF-based
hyperspectral unmixing. We take the NMF model as a baseline
to show how to improve NMF by utilizing the main properties of
HSIs (e.g., spectral information, spatial information, and struc-
tural information). We introduce three important development
directions for the NMF model and discuss their pros and cons.

1) Constrained NMF: By introducing additional constraints
or penalty terms to the cost function, such as sparsity
constraints, smooth constraints, and graph constraints.

2) Structured NMF: By modifying the structure of the
cost function, e.g., weighted NMF, convex NMF, robust
NMF.

3) Generalized NMF: By extending the decomposition form,
involving nonnegative tensor factorization (NTF), multi-
layer NMF, deep NMF, etc.

In addition, we conduct several experiments to demonstrate
the effectiveness of some associated algorithms. The purpose is
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to give guidelines and inspiration for the future improvement of
hyperspectral unmixing.

The rest of this article is organized as follows. In Section II,
we give a general introduction to spectral mixture model and
the unmixing problem. Sections III, IV, and V review classical
NMF unmixing categories according to different constraints,
structures of the cost function, and decomposition forms, re-
spectively. Extensive experiments are conducted and the results
are discussed in Section VI. Section VII draws comprehensive
conclusions and presents a brief outlook on future possible
research directions.

II. CLASSICAL NMF FOR HYPERSPECTRAL UNMIXING

Let X ∈ Rr×c×B denote an HSI with B bands, r rows, and
c columns. Through the unfolding operation, the HSI can be
represented by a matrix

X =

⎡
⎢⎣
x11 · · · x1P

...
. . .

...
xB1 · · · xBP

⎤
⎥⎦ ∈ RB×P (1)

with the number of pixels P = r × c. The element at (b, p)
denoted by xbp represents the reflection value from bth band
of pth pixel. From the row perspective, X = [x1,x2, . . . ,xB ],
where the bth vectorxb is the ground information in the bth band.
Generally, X = [x1,x2, . . . ,xP ] is given from the column per-
spective, where thepth vectorxp is the spectrum ofpth pixel. The
LMM assumes that an observed pixel spectrum in an HSI can
be produced by a linear combination of endmember signatures
and their corresponding abundances. The matrix formulation of
the LMM can be described as

X = AS+G (2)

where A = [a1,a2, . . . ,aM ] ∈ RB×M denotes endmember
matrix, the vector am represents the mth endmember signature,
and M denotes the number of endmembers. S ∈ RM×P repre-
sents the abundance matrix for all endmembers, andG ∈ RB×P

represents the noise matrix. Typically, two constraints are im-
posed on S, i.e., the abundance nonnegative constraint and the
abundance sum-to-one constraint (ASC), given by S ≥ 0 and
1T
MS = 1T

P , where 1M and 1P are all-one column vectors with
size M and size P , respectively, and (·)T denotes the transpose
operation.

Given a matrix X, NMF [63] focuses on decomposing it into
the product of two nonnegative matricesA andS, i.e.,X ≈ AS.
Obviously, this decomposition form is consistent with LMM.
Thus, NMF is attractive for hyperspectral unmixing. In general,
Frobenius norm is utilized to measure the approximation be-
tween X and AS, and the cost function is expressed as

min
A,S
‖X−AS‖2F , s.t.A ≥ 0,S ≥ 0,1T

MS = 1T
P (3)

where the operator ‖·‖F denotes the Frobenius norm. The mul-
tiplicative update rules are deduced as

A← A� (XST )� (ASST ) (4a)

S← S� (ATX)� (ATAS) (4b)

in which � and � stand for the elementwise multiplication and
division, respectively. Meanwhile, when abundance matrix S
is updated, the ASC requires to be satisfied by redefining the
observation and spectral signature matrices as

X̄ =

[
X
δ1T

P

]
, Ā =

[
A

δ1T
M

]
(5)

where δ is a parameter to control the impact of the ASC. For the
implementation of NMF, a crucial issue is how to initialize the
related variables. The endmember matrix A can be initialized
by the various methods, such as random values from 0 to 1,
VCA [18], and automatic target generation process [64]. Abun-
dance matrix S is initialized according to the fully constrained
least squares algorithm [65]. To speedup the NMF processing,
an adaptive projected NMF algorithm was parallelized by in-
troducing its parallel version in [66]. In addition, by applying
Nesterov’s optimal gradient method, NeNMF [67] was proposed
to accelerate the optimization.

Nevertheless, the cost function of NMF is nonconvex so
that it easily falls into local optimal solutions. As such, to
improve the unmixing performance, there are three important
improvement directions for the NMF model. A considerable
number of NMF-based methods address the spectral and spatial
information by introducing additional constraints or penalty
terms to the cost function. These methods are reviewed in
Section III. As discussed in Section IV, many methods enable
flexibility to account for more structures and details, such
as the difference of pixels, bands, and elements. Moreover,
a lot of methods extend the decomposition form to acquire
more essential characteristics, e.g., nonlinearities, 3-D structure
information, hidden information. Such methods are considered
in Section V. The framework of the NMF-based methods for
hyperspectral unmixing is illustrated in Fig. 1. The specifical
unmixing methods are mainly summarized in Table I.

III. CONSTRAINED NMF FOR HYPERSPECTRAL UNMIXING

By exploiting the spectral and spatial information in HSIs,
additional constraints have been imposed on the endmembers
and abundances to obtain better unmixing performance. The
constrained NMF model can be integrated as

min
A,S
‖X−AS‖2F + αJ(A) + βJ(S)

s.t. A ≥ 0,S ≥ 0,1T
MS = 1T

P (6)

where J(A) and J(S) are regularization terms for endmembers
and abundances, respectively, and α and β are nonnegative
parameters to balance the effect of the corresponding constraint
terms. Next, we mainly describe the algorithms that incorpo-
rate the constraints on endmember matrix in Section III-A. By
contrast, numerous works are reported in terms of imposing
constraints for abundances, given in Section III-B to III-G. More
details are presented as follows.

A. Endmember Constraints

The constraints for endmembers are integrated into NMF by
minimizing simplex volume [68]–[72], compacting endmember



FENG et al.: HYPERSPECTRAL UNMIXING BASED ON NONNEGATIVE MATRIX FACTORIZATION: A COMPREHENSIVE REVIEW 4417

Fig. 1. Framework of the NMF-based methods for hyperspectral unmixing.

distance [73]–[77], keeping signature smoothness [78]–[81],
introducing prior spectral information [82], and exploring high-
level semantic information [83].

Motivated by geometric insights, the minimum volume con-
straint (MVC) is robust without the pure pixel assumption, which
can be presented as

J(A) = Vol(A) (7)

where Vol(A) is the volume of the simplex whose vertices
correspond to the endmembers A. As a typical one, the first
minimum-volume NMF was proposed in [68] by incorporating
the MVC into the NMF to effectively extract endmembers from
highly mixed data. It should be noted that J(A) is calculated
with dimensionality reduction since the matrix determinant is
valid only for square one. On this basis, Qu and Bao [69] further
introduced total variation (TV) and reweighted sparse regu-
larizers to form a multiple-priors ensemble constrained NMF
(MPEC-NMF) method. Although the above-mentioned methods
do not require the pure-pixel assumption, it is inconvenient to

adopt appropriate dimensionality reduction. Therefore, more
algorithms were proposed to define the volume of the sim-
plex. In [70], three different volume regularizers were presented
to form volume-regularized NMF (VRNMF), including Gram
determinant, logarithm Gram determinant, and nuclear norm.
Besides, volume minimization can be promoted by pushing
endmembers toward a solution that is quadratically regularized
by a given simplex [71], [72].

Different from using simplex volume as an endmember con-
straint, Yu et al. [73] used endmember distance (EMD) to keep
the simplex as compact as possible, and proposed a minimum
distance constrained NMF (MDC-NMF) method. The EMD is
defined as the sum of distances from each endmember to their
centroid, expressed as

J(A) =
M∑

m=1

‖am − 1

M

M∑
m=1

am‖22. (8)
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TABLE I
TAXONOMY OF THE NMF-BASED METHODS FOR HYPERSPECTRAL UNMIXING

Boldfaced letters represent that L1/2 regularizer is employed for the corresponding methods.

This constraint is not only simpler but also convex for end-
member matrix A. Under the framework of MDC-NMF, Wu
et al. [74] reported an unmixing method along with spar-
sity constraint and graphics processing units (GPU). Yang et
al. [75] introduced particle swarm optimization (PSO) to solve
the optimization problem, which possessed good global search
ability and convergence. Afterward, the bilinear mixture model
(BMM)-based constrained NMF algorithm (BCNMF) was pre-
sented in [76] with the EMD constraint for unsupervised non-
linear spectral unmixing, in which pixels were projected into
their approximate linear mixture components based on the char-
acteristics of BMM to reduce the collinearity greatly. Similarly,
in [77], an inertia constraint was presented so as to promote

the homogeneity of estimated spectra from the same class using
the trace of the covariance matrix. It can deal with intraclass
variability by extracting a separate set of pure material spectra
from each observed pixel spectrum.

To promote the smoothness, different metrics are applied on
the matrix A. Specifically, an adaptive potential function from
discontinuity adaptive Markov random field (MRF) model was
adopted in [78]. Spectral dispersion function [79] encouraged the
variance of each endmember spectrum to be as low as possible.
In [80], an endmember dissimilarity function has been defined
to make the estimated endmember signatures to be smooth.
Besides, a quadratic weighted norm was used as a regularizer
term in [81] to exploit spectral smoothness.
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Fig. 2. Illustration of (a) sparsity, (b) collaborative sparsity, and (c) group
sparsity.

By incorporating prior spectral information, Tong et al. [82]
introduced a constraint to minimize the differences between the
estimated endmember and the known one. It not only considers
the discrepancies between the standard signature and the corre-
sponding one in the image, but also shows flexibility in terms of
its extensions.

Recently, in order to effectively learn high-level semantic
information, a multiple clustering guided NMF (MCG-NMF)
unmixing approach was proposed in [83]. Specifically, clus-
tering analysis via the k-means method is conducted on the
data matrix X. Then, selecting K pixels in each cluster, ac-
cording to the principle of k-nearest neighbors. Finally, the
Rk, k = 1, . . . ,K + 1 is constructed. Thus, the regularization
term is expressed as

J(A) =
1

K + 1

K+1∑
k=1

‖(Rk −A)W‖2F (9)

where W is a diagonal matrix and depends on the similarity
relationship between each pixel and their cluster mean.

B. Sparsity Constraints

Sparsity regularizer is extensively exploited during the hy-
perspectral unmixing procedure since the distribution of each
endmember is sparse in general. Inspired by [97], we discuss
the works on imposing sparsity regularizer from sparsity, col-
laborative sparsity, and group sparsity perspectives. As shown
in Fig. 2, diverse effects can be promoted for the abundances,
where zero coefficients are denoted by white squares.

1) Sparsity: Jia and Qian [78] proposed two algorithms
(called PSnsNMF and PSNMFSC) to explicitly represent
sparsity. In particular, PSnsNMF controls the sparsity us-
ing the parameter of smoothing matrix in nonsmooth NMF
(nsNMF) [163]. Thus, it is difficult to balance the smooth-
ness and sparsity. PSNMFSC enforces sparsity by setting both
L1-norm and L2-norm. However, the algorithm needs to assign
an exact sparsity level which cannot be known a priori, and
sparsity levels of different endmembers also vary from each
other. In order to encourage the sparsity of abundance matrix,
L-norm is widely used in the field of unmixing. Along this line,
L0 regularizer counts the number of non-zero elements in the
abundances to yield the sparsest results, while its optimization
belongs to an NP-hard problem. Therefore, Lq regularizer is

attractive in real applications, expressed as

J(S) = ‖S‖q =

M,P∑
m,p=1

(smp)
q (10)

where smp represents the element of the matrix S in the mth
row and pth column.

1) By setting q = 1, L1 regularizer is a popular alternative
for achieving a sparse abundance matrix [25], [164]. Nev-
ertheless, it is not compatible with the ASC during the
unmixing procedure.

2) Lq(0 < q < 1) regularizer achieves sparser results com-
pared with the L1 counterpart. Especially, Qian et al. [84]
showed that q = 1/2 was an optimal choice and proposed
an L1/2-NMF algorithm for unmixing the hyperspectral
data. Due to the simplicity and effectiveness, the L1/2

regularizer is widely applied to develop novel unmixing
approaches (see the boldfaced methods in Table I). To
solve the nonconvex optimization caused by the L1/2

regularizer, a fast and efficient adaptive half-thresholding
algorithm was proposed in [85]. Considering that the
mixed level of each pixel may be different from each other,
a data-guided sparsity was provided to adaptively employ
Lq(0 < q < 1) constraint [86]. In detail, a data-guided
map (DgMap) was first learnt by measuring the uniformity
of neighboring pixels, thus obtaining adaptive value for q.

3) The problem (15) with q = 2 is often considered to im-
prove the unmixing performance as well. For instance,
Huang et al. [87] proposed a data-guided constrained
NMF (DGC-NMF) model by imposing sparsity with ei-
ther L1/2-norm or L2-norm. Specifically, the sparsity of
each pixel is measured first. Then, the L1/2 regularizer is
utilized to constrain the abundances of the pixels with a
high sparsity level, whereas the L2 regularizer is adopted
for generating smooth results with a low sparsity level.

Nevertheless, anLq(0 < q < 1) regularizer brings challenges
as well since it is noncontinuous and nondifferentiable. Ac-
cordingly, more efforts are reported to achieve better abun-
dances. Specifically, by adopting a higher order norm, NMF
with S-measure constraint (NMF-SMC) was constructed [88].
Since NMF-SMC is a gradient-based algorithm, the convergence
speed may be slow for large scale dataset. Wu et al. [74],
defined the sparsity constraint for the abundances using the
difference betweenL1-norm andL2-norm. Furthermore, arctan
function [81] was introduced to explore the sparse property of
the abundance matrix.

In order to pursue sparser representation, He et al. [89] pro-
posed to utilize a weighted sparse regularizer for abundances,
expressed as

J(S) = ‖W � S‖1 (11)

where W is a weight matrix whose element at (m, p) is calcu-
lated by wmp = 1/(|smp|+ ε), and ε is a positive parameter.
It encourages the sparsity of the abundance matrix from the
column perspective (i.e., spectral domain). Similarly, a double
reweighted L1-norm regularizer is designed to further exploit
the sparsity of abundances in spatial domains [27], [28], [145].
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Moreover, to ensure the sparsity of the learned coefficients, a
local coordinate constraint was imposed to develop a robust non-
negative local coordinate factorization (RNLCF) method along
with a correntropy induced metric (CIM) [90], where the weight
was defined aswmp = ‖am − xp‖2. The generalization in terms
of an Lq-norm was presented in [96]. By further accounting
for local spatial information, the L1-norm was added to each
nonoverlapping subblock [91].

Based on generalized morphological component analysis
(GMCA), each sm (the vector of S in mth row, m = 1, . . . ,M )
can be modeled as a linear combination of multiple morpholog-
ical components (smk) that can be sparsely represented by its
associated dictionary basis, i.e., sm ≈∑k smk =

∑
k Dkϕmk

[92]. A concatenated dictionary D acts as a discriminator be-
tween different morphological components, and ϕmk is the
sparse representation coefficient constrained by the L1-norm.
Furthermore, in order to simplify the solution, the sparse con-
straint ‖ϕ‖1 is transferred as

J(S) =
M∑

m=1

‖sm‖1. (12)

Through GMCA, spatial information can be naturally consid-
ered in the unmixing process by exploiting the sparsity and
morphological diversity of the abundance maps associated with
each endmember.

Unlike imposing a sparsity regularizer on abundances directly,
a transform domain-based sparse regularizer was proposed
in [93], expressed as

J(S) = ‖SWT ‖1 (13)

where W is the curvelet transform basis. Very recently,
correntropy-based adaptive sparsity constraint [94] was im-
posed to abundances for each pixel. Besides, a generalized
minimax concave (GMC) sparsity regularizer was embedded
into NMF [95], which is nonconvex and nonseparable, avoiding
systematic underestimation of high components of sparse vector
and producing more accurate sparse approximation.

2) Collaborative Sparsity: As shown in Fig. 2(b), collabo-
rative sparsity enforces the row sparsity (joint sparsity), whose
formulation is

J(S) = ‖S‖2,1 =

M∑
m=1

‖sm‖2. (14)

Since it is challenging to correctly identify the number of
endmembers, an overestimation for it was studied in [71] and
a collaborative sparsity regularizer is imposed to remove the
redundant endmembers. Through this regularizer, the sparsity
among the endmembers is achieved simultaneously (collabora-
tively) for all pixels, i.e., collaborative sparsity of the abundance
matrix. In addition, a weighted L2,1-norm regularizer was ap-
plied to local similar abundances (i.e., blocks) to consider both
sparsity and spatial information [165].

3) Group sparsity: As shown in Fig. 2(c), by fully exploring
the spatial group structure and sparsity of the HSIs, spatial group

sparsity regularizer was proposed in [97], defined as

J(S) =
G∑

g=1

∑
sp∈ϑg

cp‖Wgsp‖2 (15)

where sp(p = 1, . . . , P ) denotes the vector of S in the pth col-
umn, andG is the number of the spatial groups (i.e., superpixels),
which was generated by an improved simple linear iterative
clustering (SLIC) algorithm. That is, the abundance matrix is
divided into G groups as sr = (s̄1, . . . , s̄G) ∈ RM×P in which
s̄g denotes spatial group ϑg. cp = 1

Dg
p

(Dg
p is spatial-spectral

distance) is a pixelwise confidence index for relaxing the group
sparsity constraints of heterogeneous pixels, such as boundaries
and small targets.Wg is updated iteratively to appropriately con-
trol the nonzero abundances ofϑg . This regularizer is expected to
promote the same sparse structure for pixels within a local spatial
group. By further combining with nonlocal spatial information,
Yang et al. [98] developed NLNMF to address the unmixing
problem. Compared with the unmixing methods with smooth
constraints, it is more reasonable and effective to utilize this local
spatial groups with irregular shapes. Furthermore, group spar-
sity [166] was investigated in unmixing process that accounts
for spectral variability through the use of group two-level mixed
norm, i.e., LG,p,q = ‖S‖G,p,q . More concretely, the fractional
LASSO with LG,1,q, 0 < q < 1 aims to simultaneously enforce
group and within-group sparsity.

As discussed previously, the Lq regularizers draw much at-
tention to enforce the sparsity of abundances, especially for
L1-norm and L1/2-norm. Compared with the L1-norm, the
L1/2-norm [84] is excellent to obtain a sparser solution, thus en-
hancing the unmixing performance. Nevertheless, it requires to
be combined with other constraints (e.g., graph constraint [103])
such that the intrinsic structures of HSIs can be considered. In
addition, many approaches have been devoted to incorporate the
spectral and spatial information into the L1-norm. For example,
the reweighted L1-norm regularizer [89] promotes the sparsity
of the abundance matrix from spectral domain, and double
reweighted L1-norm regularizer [145] aims to further describe
the sparsity in spatial domains. In this way, the improvement
can be obtained greatly in the unmixing process. However, they
are sensitive to noise corruption. Collaborative sparsity [71] is
helpful to induce the row sparsity, whereas it is incompetent to
explore the spatial information. Thus, Huang et al. [165] applied
a weighted L2,1-norm regularizer on blocks and imposed TV
regularizer. Meanwhile, it may be more reasonable to encourage
the collaborative sparsity when the endmember matrix is com-
posed of spectral library or bundles. Moreover, the group sparsity
regularizer considers sparsity at the group level by integrating
the spatial group structure [97], [98], but how to effectively group
the abundances deserves more investigation.

C. Smooth Constraints

Neighboring pixels are more likely to be constituted by the
same materials. Accordingly, it is significant to investigate
the spatial correlation among the neighboring pixels. Smooth
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constraints are often used to preserve the spatial-contextual
information.

An adaptive potential function from discontinuity adaptive
MRF model [78] was adopted to promote the piecewise smooth-
ness of abundances, given as

J(S) = g(S− SN ) (16)

whereSN is the neighborhood matrix ofS. However, PSNMFSC
cannot perform well for many real datasets and has high com-
putational complexities [99]. Hence, Liu et al. [99] proposed
abundance separation and smoothness constrained NMF (ASS-
NMF). They defined the smoothness function as

J(S) =
1

2
× 1

8

8∑
h=1

‖S̃m

h − Sm‖ (17)

where S̃
m

h is a weight matrix corresponding to Sm ∈ Rr×c,
which is obtained via the reshape operation to the mth row of
S. Compared with PSNMFSC where only adjacent elements
are considered, ASSNMF is more effective by exploiting its
surrounding elements, and is acquired by a linear transform with
a low computational cost. Nevertheless, it is not always true that
the smoothness levels of two-pixel pairs are the same even if the
spatial distances between them are the same.

To describe spatial correlations, a weighted nonnegative ma-
trix factorization (WNMF) algorithm was presented in [100],
and the designed weight is expressed as

J(S) =

N∑
i=1

∑
j∈N(i)

wij‖si − sj‖22 (18)

where wij is a weight to characterize how much the neighboring
pixel xj contributes to the considered pixel xi. This regularizer
integrates both spectral and spatial information. Similarly, an
adaptive local neighborhood weight constraint was designed to
propose a double abundance characteristics constrained NMF
(DAC 2 NMF) [101] along with a separation constraint to prevent
oversmoothness. In [96], the weight constraint with theL2-norm
was generalized to use the Lq-norm.

Recently, the abundance maps are assumed to be piecewise
smooth. Therefore, the TV regularizer is accounted for capturing
the piecewise smoothness structure of each abundance map to
enhance the unmixing results. He et al. [89] first embedded the
TV regularizer into the NMF framework, expressed as

J(S) = ‖S‖HTV =

M∑
m=1

‖Fsm‖TV (19)

where F denotes the reshape operation from a vector with P
pixels to a matrix with the size of c× r, and ‖ · ‖TV is the
anisotropic TV norm. Together with collaborative sparsity and
endmember constraint, Yuan et al. [72] presented an improved
collaborative NMF and TV algorithm (ICoNMF-TV) for the
unmixing task. Similarly, multiple-priors ensemble constrained
NMF (MPEC-NMF) [69] integrated the MVC, reweightedL1/2-
norm, and TV regularizers. Besides, Yao et al. [102] extended the
piecewise smoothness to the nonlocal smoothness, developing a

nonlocal TV and log-sum regularized NMF (NLTV-LSRNMF)
method.

For the above-mentioned methods, the neighborhood is deter-
mined by a set of pixels involved in a predefined regular shape,
such as a cross or square window. Consequently, smooth con-
straints can be utilized to exploit spatial-contextual information
adequately, while ignoring the edges and local spatial details. By
comparison, it may be more reasonable to use irregular shapes
adaptively.

D. Manifold Constraints

The above-mentioned methods exploit the Euclidean structure
of the hyperspectral data space. Considering that the data are
more likely to lie on a low-dimensional submanifold embedded
in the high-dimensional ambient space [167], the intrinsic man-
ifold structure receives increasing attention in the hyperspectral
unmixing field. The graph regularizer can be expressed as

J(S) =

P∑
i,j=1

‖si − sj‖2Wij = Tr
(
SLST

)
(20)

where Tr(·) denotes the trace of a matrix, W is an affinity
matrix, L = D−W, and D is a diagonal matrix with its (i, i)
element calculated by Dii =

∑
j Wij . Next, we introduce how

to construct the affinity matrix.
1) Spectral Similarity: In [103], a manifold regularizer was

incorporated into the sparsity constrained NMF, presenting
graph-regularized L1/2-NMF (GLNMF) for hyperspectral un-
mixing, where the affinity matrix of the nearest neighbor graph
W ∈ RN×N is built to model the local structural information,
given as

Wij = exp

(
−‖xi − xj‖2

σ

)
(21)

which is known as the heat kernel. Here, xi is one of the
k-nearest neighbors of xj . When xi and xj are similar, Wij

is relatively large, and σ denotes the standard deviation. This
regularizer was leveraged in [82] along with partially known
endmembers for unmixing. Inspired by the graph regularizer
based on L2-Laplacian, Rathnayake et al. [104] developed
an L1-norm-based graph, called GLRl1 . Besides, a Hessian
graph [105] was adopted for hyperspectral unmixing. Compared
with Laplacian graph, it is more stable and further captures the
relationship of the nonlinear mapping.

2) Spectral–Spatial Similarity: By respectively defining spa-
tial geometric distance and spectral geometric distance of these
two pixels in local window, dual Laplacian manifold regular-
izer [106] was established to exploit the geometric structure of
the HSI. In order to encode the manifold structures embedded in
the hyperspectral data space, a graph Laplacian is incorporated
from spatial distance and feature distance perspectives simul-
taneously [107], where the weight matrix is obtained by using
spectral angle distance (SAD) metric and two conditions are
adopted to determine the neighbors: one is the nearest spatial
distance via a local window, and the other is the nearest feature
distance via the SAD similarities in the local window. In this way,
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the edges can be preserved by avoiding the graph across dissim-
ilar pixels. Likewise, a bilateral filter regularizer based on graph
theory was adopted to utilize the correlation information in both
spatial and spectral spaces [108]. Moreover, GLrNMF [109]
defined a spatial–spectral semantic weight based on the inter-
section (denoted by QG) of spatial neighbor (denoted by Q)
and spectral neighbor (denoted by G). Motivated by hypergraph
learning, the spectral–spatial joint structure was modeled by a
hypergraph to capture the high-order relation among multiple
pixels [110].

3) Region-Based Similarity: Considering that the spectra are
similar in the same region while different between regions,
Tong et al. [111] presented a region-based structure preserving
NMF (R-NMF) to explore consistent data distribution in the
same region, aiming at discriminating different data structures
across regions. Furthermore, in view of the difference in spatial
structure, an HSI was partitioned into homogeneous region
and detail region based on a sketch map [112], in which the
manifold constraint and the L1/2 regularizer were employed
for the homogeneous region, while the L1 regularizer for detail
region.

4) Other weight learning
Different from the above-mentioned perspectives to establish

a graph regularizer, the work in [113] was based on the local
linear embedding assumption, where the weight matrix W is
learned by minimizing the following equation:

Wij = argmin ‖xi −
∑

xj∈N (xi)

Wijxj‖2 (22)

to exploit the local geometric structure. In addition, the cluster-
ing algorithm is also beneficial to characterizing the structure
information of the HSIs. In [114], subspace clustering was
applied to capture the latent characteristic structure, for which
the weight matrix W is constructed by

W =
H+HT

2
(23)

to form a graph regularizer. Here,H is the subspace structure ma-
trix that is learned by minimizing ‖X−XH‖2F , s.t. diag(H) =
0. It is noteworthy that only the largest k values are remained
for each column of H.

E. Low-Rank Constraints

The high spatial correlation of HSIs can be also translated
into the low rank of the involved abundance matrices.

Let G denote the number of non-overlapping subimages
from the input HSI. By enforcing simultaneously the local
low-rank and sparse structures to the abundance matrix SG,
DSPLR-NMF [91] was reported for unmixing, in which, the
local low-rank constraint is given as

J(S) =
G∑

g=1

‖Sg‖∗ (24)

where ‖ · ‖∗ denotes the nuclear norm. In order to naturally
incorporate spatial priors, superpixels were generated by em-
ploying SLIC algorithm to the HSI and constrained using the

low-rank penalty [109]. For the learning of subspace struc-
ture [118], the low-rank constraint was utilized to construct a
self-representation matrix.

F. Abundance Separation Constraints

Taking the spatial correlation into consideration, the unmixing
results can be improved and robust to noise generally. However,
the oversmoothing problem may occur since dissimilar pixels are
often ignored in a local window. Therefore, an abundance sepa-
ration constraint [99] was imposed based on the KL divergence
to minimize the correlation between different endmembers.
Likewise, Liu et al. [101] introduced the separation constraint
to preserve the inner diversity of the same type of materials.
Moreover, in [115], a dissimilarity regularizer constructed by
label information was incorporated into the NMF.

As discussed previously, numerous works are devoted to
obtaining better spatial structure from different insights, such as
sparsity, spatial–contextual information, low-dimensional man-
ifold structure, low-rank structure, and global spatial informa-
tion. Among these constraints, it has considerable potential to
make use of the spatial and spectral information simultaneously
for HSIs applications.

G. Other Spatial Constraints

To maintain the structural information, clustering has con-
tributed to the regularization term in [116] and [117]. A sub-
space structure learned from the HSIs was introduced to form a
subspace regularizer ‖S− SH‖2F + τ‖H‖∗, thereby capturing
the global correlation of all pixels [118]. In view of the simi-
larities between the substances, Yuan et al. [119] introduced a
substance dependence constraint. To be more specific, the sub-
stance dependence is considered in the whole space to describe
the global spatial information, which is reflected by the abun-
dance. In [120], spectral–spatial joint sparse NMF (S2-NMF)
was proposed by combining the global spatial information and
local spectral information simultaneously. Based on the label
information, Jia et al. [115] developed a similarity regularizer
to compensate the dissimilarity regularizer.

IV. STRUCTURED NMF

A. Weighted NMF

NMF-based methods achieve the unmixing by utilizing the
statistical properties of HSIs. Thus, it is closely related to
the number of samples. However, there is a large difference
for the number of pixels concerning different endmembers in
many scenarios. Therefore, a clusterwise weighted NMF (CW-
NMF) [121] method was provided to explore the information of
imbalanced pixels. In particular, a weight matrix based on the
result of clustering is integrated into the NMF, expressed as

min
A,S
‖(X−AS)W‖2F (25)

where W is the diagonal weight matrix. Then, the effects of the
pixels involving imbalanced endmembers can be enhanced by
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giving larger weight values, while the effects of the pixels that in-
volving majority endmembers are reduced by assigning smaller
weight values. Similarly, self-paced NMF (SpNMF) [122] was
presented by adopting weighted least-squares losses, given as

min
A,S

B∑
b=1

{
wb‖xb − (AS)b‖22 + h(γ,wb)

}
(26)

where h is a self-paced function associated with “model
age” parameter γ to learn the weights adaptively. There are
many self-paced functions, such as binary, linear, logarith-
mic, and mixture functions. Besides, the SpNMF can be also
extended for pixel weighting (i.e., minA,S

∑P
p=1

{
wp‖xp −

(AS)p‖22 + h(γ,wp)
}

) and element weighting (i.e., minA,S∑B,P
b,p=1

{
wbp[xbp − (AS)bp]

2 + h(γ,wbp)
}

). Meanwhile, the
weighted NMF is also effective to improve the robustness of
NMF.

B. Projection-Based NMF

Inspired by the sparse regression-based unmixing methods,
a projection-based NMF (PNMF) algorithm was proposed by
introducing a spectral library into the NMF framework [123].
In detail, related spectra in the library U are projected onto
a subspace based on a transformation matrix V to obtain the
projected endmembers, i.e., A = UV, the cost function is

min
V,S
‖X−UVS‖2F . (27)

In this way, the endmembers are not only adaptively generated
from the spectral library, but also related to the HSIs. Meanwhile,
the number of endmembers, which is a difficulty in sparse
regression, is controlled by the dimension of the subspace.

C. Convex NMF

In NMF, some of the computed endmembers in A may be
artificial, which do not belong to any real material in the scene,
but exist only in the solution space of the problem. To keep the
association between extracted and real endmembers, each spec-
trum am was assumed to be nonnegative linear combinations of
the observed pixels [124], i.e.,A = XΞ. Thus, the cost function
is

min
Ξ,S
‖X−XΞS‖2F . (28)

Along with subspace clustering, Lu et al. [114] also proposed
to extract endmembers by linearly combining of all pixels in
a spectral subspace, avoiding the generation of artificial end-
members. Under this assumption, the hierarchical sparse NMF
(HSNMF) [58] introduced hierarchical sparsity constraints to
accommodate endmember variability.

D. Robust NMF

NMF is applied to the unmixing under the assumption of
Gaussian noise. However, HSIs are inevitably contaminated by
different types of noise, e.g., Gaussian noise, impulse noise,
stripes, and deadlines. Hence, the classical NMF model defined

by the least-squares loss is sensitive to noise, leading to dramat-
ically degrading the unmixing performance. To improve the ro-
bustness of NMF, many models have been reported based on cer-
tain metrics, including but not limited to bounded Itakura–Saito
(IS) divergence [125], L2,1-norm regularizer [62], [113], [126],
[127], CIM [90], [94], [128], [129], Cauchy function [130], and
general robust loss function [131]. The bounded IS divergence
was employed to address the additive, multiplicative, and mixed
noises in HSIs [125].

The L2,1-norm regularizer proposed by Ding et al. [168] can
effectively handle noise and outliers. Based on this regularizer,
different robust models are designed to reduce the impact of
noise. In [62], robust NMF (rNMF) was proposed by introducing
a residual term E ∈ RB×P accounting for outliers (i.e., nonlin-
ear effects), whose cost function is written as

min
A,S,E

D (X|(AS+E)) + λ‖E‖2,1 (29)

where D(X|(AS+E)) measures dissimilarity between X and
(AS+E), ‖E‖2,1 =

∑P
p=1 ‖ep‖2, and ep denotes the pth vec-

tor of E. As such, the problem (29) addresses the nonlinearities
and improves the robustness against the noisy pixels. Based on
the L1,2-norm regularizer, He et al. [126] used specific bands of
the HSIs and modeled the sparse noise explicitly for significantly
improving the robustness of NMF. TheL2,1-norm was employed
to replace Euclidean distance or KL divergence directly in [113],
and the spectral–spatial constrained NMF (SS-NMF) model was
developed to cope with non-Gaussian noises or outliers, whose
reconstruction error is calculated by

min
A,S
‖X−AS‖2,1. (30)

In this way, the model is robust to noisy pixels by columns. To
further achieve robustness to band noise by rows, the L1,2-norm
was also incorporated to form a spectral–spatial robust NMF
model for hyperspectral unmixing [127].

Correntropy is a nonlinear similarity measure, which is based
on Gaussian kernel

κ(x) =
1

2πσ
exp

(−x2

2σ2

)
. (31)

Recently, CIM is employed to replace the least-squares loss to
develop some robust models. For example, a correntropy-based
NMF (CENMF) [128] was proposed to suppress the influence
of noisy bands efficiently. Considering the diversity of the
noise levels of pixels, correntropy-based spatial–spectral robust
sparsity-regularized NMF (CSsRS-NMF) was proposed in [94]
by adaptive assigning weights to noisy pixels. Furthermore,
robustness can be achieved from an elementwise noise perspec-
tive [90], [129].

By cutting off the large error via the truncation operation,
the truncated Cauchy loss [169] exhibits robustness to outliers.
Accordingly, the reconstruction error was measured via the
truncated Cauchy function [130], which is expressed as

h(x) =

⎧⎨
⎩

ln
(
1 + x2

γ2

)
, |x| ≤ ε

ln
(
1 + ε2

γ2

)
, |x| ≥ ε

(32)
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where γ and ε are the scale parameter and truncated coefficient,
respectively.

Furthermore, a general loss-based NMF (GLNMF) model
[131] was developed by introducing a general robust loss func-
tion defined in [170], given as

f(x) =
|2− υ|

υ

((
(x/c)2

|2− υ| + 1

)υ/2

− 1

)
(33)

to downplay the large noise. It is a generalization of the L2 loss
(υ → 2), Cauchy loss (υ → 0), and Welsch loss (υ → −∞), etc.

Through the L2,1-norm, the model can effectively address the
pixels with noise or outliers. By contrast, CIM can be applied
flexibly to relieve the impact of noise from bands, pixels, and
elements insights. Meanwhile, the algorithms with CIM are
effective to process non-Gaussian and impulsive noise. The
truncated Cauchy loss can suppress the outliers effectively.

V. GENERALIZED NMF

A. Linear-Quadratic NMF

Combined with the linear-quadratic model, NMF can be
extended as X = AS = AaSa +AbSb. Subsequently, the fol-
lowing cost function requires to be minimized:

min
Aa,Ab,Sa,Sb

‖X−AaSa −AbSb‖2F . (34)

Under this framework, the unmixing task can be addressed
from the following two perspectives.

1) First, Tang et al. [132] proposed an unmixing method
by using the prior knowledge of some signatures in the
scene. To be specific, Aa and Ab represent the matrices of
known and unknown endmembers with related abundance
fractions Sa and Sb, respectively.

2) Then, the second-order scattering of light can be consid-
ered to improve the performance [61], [133]–[135]. In this
case, Aa and Ab are the endmember matrix and bilinear
endmember matrix, whileSa andSb are abundance matrix
and interaction abundance matrix, respectively. Among
them, semi-nonnegative matrix factorization (semi-NMF)
was used for the optimization to process an entire image
in the matrix form [61], [135].

B. Kernelized NMF

Kernel methods can be introduced for nonlinear hyperspec-
tral unmixing without estimating the nonlinear mixture model.
In [136], a constrained kernel NMF (CKNMF) was proposed
for dealing with nonlinearities. Through kernel mappings (de-
noted by φ), the observed matrix X and endmember matrix A
are transformed to high-dimensional feature space, obtaining
φ(X) = [φ(x1), . . . , φ(xN )] and φ(A) = [φ(a1), . . . , φ(aM )].
As a result, the data are linearly separable in the feature space.
The cost function is given as

min
A,S
‖φ(X)− φ(A)S‖2F (35)

where φ is a nonlinear function. Generally, the Gaussian ker-

nel k(xi,xj) = 〈φ(xi) · φ(xj)〉 = exp(−‖xi−xj‖2
2σ2 ) is utilized

to achieve dot product operator in a high-dimensional kernel
feature space. Taking into account both the input and feature
spaces, a biobjective NMF [137] was formulated by combining
the linear and kernel-based models. However, the kernel-based
methods suffer from computation burden. For dealing with large-
scale and streaming dynamic data, Zhu et al. [138] proposed an
online KNMF (OKNMF) framework to control the computa-
tional complexity via adopting the stochastic gradient descent
(SGD), mini-batch, and averaged SGD strategies. In addition,
the KNMF was extended to incremental KNMF (IKNMF) and
improved IKNMF (IIKNMF) for desired unmixing accuracy and
efficiency [34].

C. Transform Domain-Based NMF

Due to the dense spectra (typically 10 nm) and overlapped
information, HSIs are compressible in a suitable transformed
domain. Very recently, wavelet transform has been exploited
to express the hyperspectral data compactly [139]. Specifically,
biorthogonal discrete wavelet transform was employed to rep-
resent the hyperspectral data in the wavelet domain, denoted
as xpw. Accordingly, the LMM in the wavelet domain can be
written as Xw = AwSw +Nw. Hence, the cost function is

min
Aw,Sw

‖Xw −AwSw‖2F . (36)

On this basis, three prior terms (i.e., volume regularizer, spatial
smoothness prior, and sparseness constraint) in the wavelet do-
main are integrated to better handle the ill-posedness. Similarly,
a wavelet-based approach was proposed for estimating abun-
dances in [171]. Furthermore, considering that the curvelet is
capable of characterizing anisotropic singularity, such as curves
or edges in the image, Xu et al. [93] adopted fast discrete curvelet
transform to impose a sparse regularizer on the transformed
domain of abundances, thereby enhancing both sparsity and
diversity.

D. Nonnegative Tensor Factorization (NTF)

A third-order tensor, which is the high-dimensional extension
of a matrix, can be used to represent the HSI for preserving
the intrinsic structure information. Accordingly, NTF has been
successfully applied to HSIs processing, such as denoising [172]
and classification [173]. In [140], the NTF method was used to
the unmixing task by using canonical polyadic decomposition.
However, a limitation is the lack of an explicit link with LMM.
In [141], a matrix-vector NTF (MV-NTF) unmixing method was
proposed based on block term decomposition. The MV-NTF
factorizes the HSI tensor into a sum of several component tensors
as

X =
M∑

m=1

Sm ◦ am + G =
M∑

m=1

(
CmBT

m

) ◦ am + G (37)

where X ∈ Rr×c×B is a third-order HSI tensor, am is regarded
as an endmember, Sm is the corresponding abundances repre-
sented by the product of two low-rank matrices Cm ∈ Rr×R

and BT
m ∈ RR×c, and G denotes the noise term. R is related to

the rank of abundance matrix, and ◦ denotes the outer product.



FENG et al.: HYPERSPECTRAL UNMIXING BASED ON NONNEGATIVE MATRIX FACTORIZATION: A COMPREHENSIVE REVIEW 4425

Fig. 3. Architecture of decomposition for (a) multilayer NMF by factorizing the coefficient matrix, (b) multilayer NMF by factorizing the basis matrix, (c)
multilayer convex NMF, and (d) multilayer nsNMF.

Apparently, this model constructs a straightforward link between
LMM and tensor factorization. The cost function is expressed
as

min
A,B,C

‖X −
M∑

m=1

(
CmBT

m

) ◦ am‖2F . (38)

Although intrinsic structure information is preserved, the
local spatial information is not fully exploited due to the strict
rank constraint. Subsequently, under this framework, Xiong
et al. [143] further incorporated the similarity graph regular-
izer [142] and the TV regularizer so as to describe the local
spatial information. Likewise, three constraints were embed-
ded into MV-NTF, including sparsity, minimum volume, and
nonlinearity in [144]. In addition, some unmixing methods
were also presented by combining additional constraints [145]–
[147]. Considering that NMF characterizes more local spatial
details through dealing with HSI at the pixel level, MV-NTF
and NMF were coupled to make full use of their individual
advantages [148]. In [149], a low-rank tensor regularization
was introduced during the learning process, allowing flexibility
to the rank of the estimated abundance tensor. Endmember
variability was considered based on the 4-D endmember tensor
that was constrained by a new low-rank regularization [59],
[150]. Besides, a nonlocal Tucker decomposition method [151]
was provided to exploit the spectral–spatial correlations and the
nonlocal self-similarity.

E. Multilayer/Deep Extensions

The aforementioned approaches explore the information in
a single-layer manner, which do not allow for hierarchical
refinement of the obtained endmembers and abundances. In
order to extract hierarchical features with hidden information,
DL [39] has achieved commendable success in pattern recogni-
tion [174]–[176]. Hence, Rajabi and Ghassemian [52] unfolded
NMF into multilayer architecture (i.e., multiple basis matrices
and one abundance matrix) and proposed the multilayer NMF
(MLNMF) model for hyperspectral unmixing. As shown in
Fig. 3(a), in the first layer, the matrix X can be factorized into
A1 and S1. Then, in the next layer, S1 is further factorized
into A2 and S2. A similar process is continued until the fac-
torization of the Lth layer is completed. Here, L represents

the maximum number of layers. Accordingly, the observation
matrix is decomposed into L+ 1 nonnegative factors, i.e.,
X = A1A2 · · ·ALSL. The latent factors can be obtained by
minimizing the following cost function:

min
AlSl

‖Sl−1 −AlSl‖2F (39)

with l = 1, · · · , L, andS0 = Xwhen l = 1. Then, the endmem-
ber and abundance matrices are A = A1A2 · · ·AL and S =
SL, respectively. Based on this multilayer architecture, a double-
constrained multilayer NMF (DCMLNMF) [152] method was
proposed to jointly explore the sparsity and the geometric
structure. Besides, Tong et al. [153] developed novel unmixing
approaches by further imposing constraints, such as a spectral
and spatial total variation regularizer, an adaptive graph reg-
ularizer [154], and a homogeneous region regularizer [155].
Moreover, the classical MLNMF was restructured and improved
by integrating the Hoyer’s projector in [35]. Different from
factorizing S mentioned previously, A is decomposed in [156]
to form constrained multilayer NMF (CMLNMF) along with
MVC and sparsity constraints, as shown in Fig. 3(b). Thus,
X = ALSL · · ·S2S1. Here, the endmember and abundance
matrices are A = AL and S = SL · · ·S2S1, respectively. Fur-
thermore, multilayer factorization was investigated with fast
kernel archetypal analysis (AA) [157] and kernel NMF [158]
for unmixing.

However, these models are optimized by only minimizing
the cost function of each layer, which fail to reduce the total
reconstruction error. Trigeorgis et al. [176] formulated deep
Semi-NMF, achieving a significant breakthrough. Motivated by
this, a deep NMF structure [53] was proposed to address the
unmixing task, whose cost function is

min
A1,A2,...,AL,SL

‖X−A1A2 · · ·ALSL‖2F (40)

where A = A1A2 · · ·AL and S = SL denote the endmembers
and abundances, respectively. The proposed model consists of
pretraining stage and fine-tuning stage, where the former pre-
trains all factors layer by layer and the latter is used to reduce
the total reconstruction error. Likewise, a sparsity-constrained
deep NMF (L1-DNMF) was proposed for hyperspectral un-
mixing [159]. Multiview concept learning was incorporated to
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explicitly model the consistent and complementary informa-
tion [177].

In addition, an asymmetric encoder–decoder framework was
presented in [160] for hyperspectral unmixing, where a multi-
layer nonlinear network was designed to powerfully encode the
original data, and the resulting abundances were then decoded
by the decoder part with one layer. The cost function is given by

min
A,E,W1,...,WL

‖X−E−Aσ(WL · · ·σ(W2σ(W1X)))‖2F
(41)

where σ(·) is a nonlinear activation function, abundances S =
SL = σ(WL · · ·σ(W2σ(W1X))), and E is introduced in the
decoder to characterize sparse noise.

Besides, various deep NMF models [178] have been proposed
in an increasing number of applications.

1) Deep orthogonal NMF [178]–[180] is a variant of deep
NMF by imposing orthogonality constraint to Sl, where
the decomposition is the same as in [156].

2) Deep convex NMF [175] was developed by extending
convex NMF [181] that is also known as AA or con-
cept factorization (CF), where each basis vector (named
concept) is modeled as a linear combination of data
points, i.e., am =

∑N
n=1 xnwnm. Fig. 3(c) shows the

factorization process of multilayer CF [182]. Accordingly,
X = XW1S1 · · ·WLSL. After layerwise factorization,
the cost function of deep convex NMF is

min
W1,...,WL,S1,...,SL

‖X−XW1S1 · · ·WLSL‖2F . (42)

Different from directly using the output of the previous
layer as the input of subsequent layer, Zhang et al. [183]
proposed a novel deep self-representative concept factor-
ization network (DSCF-Net) and a deep semisupervised
coupled factorization network (DS2CF-Net) [184].

3) By introducing a smoothing matrix at each layer, deep
nsNMF (dnsNMF) [185] was reported to learn features
hierarchically in the context of text mining. Let Zl denote
the “smoothing” matrix. The matrix X is factorized into
A1,Z1, andS1 in the first layer. Then,S1 is factorized into
A2, Z2, and S2 in the next layer. The same process will
be continued until the Lth layer is reached, as shown in
Fig. 3(d). Hence, the observation can be represented using
X = A1Z1 · · ·ALZLSL. The cost function of dnsNMF
is expressed as

min
A1,Z1,...,AL,ZL,SL

‖X−A1Z1 · · ·ALZLSL‖2F . (43)

4) Deep autoencoder-like NMF (DANMF) [186] was pro-
posed for community detection, whose cost function is
expressed as

min
A1,A2,...,AL,SL

‖X−A1A2 · · ·ALSL‖2F

+‖SL −AT
L · · ·AT

2 A
T
1 X‖2F . (44)

Similar to deep autoencoder, DANMF consists of an encoder
component and a decoder component. This architecture em-
powers DANMF to learn the hierarchical mappings between the

Fig. 4. Visualization of (a) Cuprite image, (b) Samson image, and (c) Jasper
Ridge image.

original network and the final community assignment with im-
plicit low-to-high level hidden attributes of the original network
learned in the intermediate layers.

Meanwhile, the hierarchical factorization has applied to ten-
sor, developing some multilayer frameworks of tensor decom-
position [187], and deep tensor decompositions [188]–[190]. In
addition, the deep unfolding technique was used for unrolling
the iteration inference algorithm into a layerwise structure to
obtain novel neural network-like architectures that enjoy the ad-
vantages of well-defined interpretability, strong learning power,
and little computational cost [51], [161], [162].

Multilayer/deep extensions of NMF combine both inter-
pretability and the extraction of multiple hierarchical features.
Nevertheless, it is also an important and challenging research
issue such as how to determine the parameters (e.g., the inner
ranks and the number of layers) and loss function, and how to
choose efficient optimization algorithms and initial conditions.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

SAD is utilized to assess unmixing performance quantita-
tively, given as

SADm = arccos

(
AT

mÂm

‖AT
m‖‖Âm‖

)
(45)

whereAm and Âm are themth original and estimated endmem-
ber spectral signatures, respectively.

We choose the most popular methods in different categories to
conduct experiments, such as L1/2-NMF [84], SGSNMF [97],1

TV-RSNMF [89], L1/2-RNMF [126], MV-NTF-TV [143], ML-
NMF [52],2 and SSRDMF [160]. It should be noted that all
the results are averaged after ten independent runs. All ex-
periments are conducted under the environment of MATLAB
R2015b software and computer configuration Intel Core i5 CPU
at 2.80 GHz and 8.00 GB RAM. For hyperspectral unmixing,
the number of endmembers is a crucial factor, which can be
set manually or estimated through an effective method, such as
virtual dimensionality [191], [192] and HySime [193].

Three hyperspectral scene have been utilized in the tests,
shown in Fig. 4. The first dataset is the notable Cuprite data,

1[Online]. Available: https://github.com/Xinyu-Wang/SGSNMF_TGRS
2[Online]. Available: https://github.com/roozbehrajabi/mlnmf

https://github.com/Xinyu-Wang/SGSNMF_TGRS
https://github.com/roozbehrajabi/mlnmf
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TABLE II
SAD (AVERAGE OF TEN RUNS) ALONG WITH STANDARD DEVIATION ON THE AVIRIS CUPRITE DATASET FOR DIFFERENT METHODS

Boldfaced number denotes the best result under each condition.

TABLE III
SAD SCORES (AVERAGE OF TEN RUNS) ALONG WITH THEIR STANDARD DEVIATION ON THE SAMSON DATASET FOR DIFFERENT METHODS

Boldfaced number denotes the best result under each condition.

TABLE IV
SAD SCORES (AVERAGE OF TEN RUNS) ALONG WITH THEIR STANDARD DEVIATION ON THE JASPER RIDGE DATASET FOR DIFFERENT METHODS

Boldfaced number denotes the best result under each condition.

which was obtained by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS). The second dataset is Samson image,
which is the first public real hyperspectral dataset. The third
dataset is Jasper Ridge scene. Since these real HSI datasets
have been studied for unmixing in many articles, we refer to
the experimental results reported in some published references.

1) AVIRIS Cuprite Dataset: As shown in Fig. 4(a), it is
typically used to verify the effectiveness of hyperspectral un-
mixing methods. It contains 250× 191 pixels, and each pixel
contains 188 bands (i.e., 3–103, 114–147, and 168–220) after
removal of noisy bands. The covered wavelength range com-
prises 0.4− 2.5μm. There are mainly 12 minerals in the sub-
scene: Alunite GDS82 Na82, Andradite WS487, Buddingtonite
GDS85 D-206, Chalcedony CU91-6A, Kaolin/Smect H89-FR-5
30K, Kaolin/Smect KLF508 85%K, Kaolinite KGa-2, Montmo-
rillonite + Illi CM37, Muscovite IL107, Nontronite NG-1.a, Py-
rope WS474, and Sphene HS189.3B. The reference signatures

are from the U.S. Geological Survey (USGS) spectral library,3

and a mineral map is often used for illustrative purposes.4

2) Samson Dataset: As shown in Fig. 4(b), it contains
95× 95 pixels, and each pixel has 156 bands ranging from
0.401 to 0.889μm. The number of endmembers is set to 3,
including soil, tree, and water.

3) Jasper Ridge Dataset: As shown in Fig. 4(c), it contains
100× 100 pixels, and each pixel has 198 bands (i.e., 4–107,
113–153, and 167–219) after removal of noisy bands ranging
from 0.38 to 2.5μm. The number of endmembers is set to 4,
including tree, water, soil, and road.

The experimental results are summarized in Tables II–IV
and plotted in Figs. 5–10. Tables II, III, and IV list the SAD
values between each reference spectrum and the endmembers

3[Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06
4[Online]. Available: https://www.usgs.gov/labs/spectroscopy-lab

http://speclab.cr.usgs.gov/spectral.lib06
https://www.usgs.gov/labs/spectroscopy-lab
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Fig. 5. Comparison of the USGS library spectra (green solid line) with those estimated by different methods (red dash line) of four endmembers on the AVIRIS
Cuprite dataset. From top to bottom: Buddingtonite GDS85 D-206, Kaolinite KGa-2, Montmorillonite+Illi CM37, and Nontronite NG-1.a. From left to right:
(a) L1/2-NMF, (b) SGSNMF, (c) TV-RSNMF, (d) L1/2-RNMF, (e) MV-NTF-TV, (f) MLNMF, and (g) SSRDMF.

Fig. 6. Fractional abundance maps estimated by different methods of four endmembers on the AVIRIS Cuprite dataset. From top to bottom: Buddingtonite GDS85
D-206, Kaolinite KGa-2, Montmorillonite+Illi CM37, and Nontronite NG-1.a. From left to right: (a) L1/2-NMF, (b) SGSNMF, (c) TV-RSNMF, (d) L1/2-RNMF,
(e) MV-NTF-TV, (f) MLNMF, and (g) SSRDMF.
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Fig. 7. Comparison of the reference spectra (green solid line) with those estimated by different methods (red dash line) of three endmembers on the Samson
dataset. From top to bottom: soil, tree, and water. From left to right: (a) L1/2-NMF, (b) SGSNMF, (c) TV-RSNMF, (d) L1/2-RNMF, (e) MV-NTF-TV, (f) MLNMF,
and (g) SSRDMF.

Fig. 8. Fractional abundance maps estimated by different methods of three endmembers on the Samson dataset. From top to bottom: soil, tree, and water. From
left to right: (a) L1/2-NMF, (b) SGSNMF, (c) TV-RSNMF, (d) L1/2-RNMF, (e) MV-NTF-TV, (f) MLNMF, and (g) SSRDMF.

extracted by each method on Cuprite, Samson, and Jasper Ridge
datasets, respectively. Figs. 5, 7, and 9 present the correlation
of the endmember signatures obtained by these seven methods
and the reference signatures. Figs. 6, 8, and 10 show the visual
comparison of abundance maps estimated by all algorithms.

From Tables II–IV, all methods achieve satisfactory SAD
mean values for most materials. It demonstrates that the in-
troductions of sparsity regularizer, spatial information, robust
constraint, and multilayer/deep architectures in hyperspectral
unmixing are compelling. Besides, compared with L1/2-NMF,
methods SGSNMF, TV-RSNMF, and MV-NTF-TV achieve
lower mean SAD scores, revealing the significance of preserving
the spatial information. L1/2-RNMF aims to model the sparse
noise explicitly, thereby obtaining desirable unmixing results.
The performance of MLNMF and SSRDMF verifies that multi-
layer/deep architectures offer significant advantage. In addition,

the results obtained by SSRDMF are better than those provided
by MLNMF. This indicates that the combination of multilayer
nonlinear network and self-supervised constraint can play a
significant role in the task of improving unmixing performance.
In particular, from the standard deviation perspective, SGSNMF
often provides the best results since the endmember matrix is
initialized based on the results of the segmentation and the
region-based VCA.

For illustrative purposes, Figs. 5, 7, and 9 plot the refer-
ence signatures (green solid line) along with the endmembers
identified by different methods (red dash line) on the Cuprite,
Samson, and Jasper Ridge datasets, respectively. It can be seen
that the endmember signatures are nearly all around corre-
lated in spectral terms with respect to the reference partners.
Meanwhile, Figs. 6, 8, and 10 show the abundance maps esti-
mated by different methods on the Cuprite, Samson, and Jasper
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Fig. 9. Comparison of the reference spectra (green solid line) with those estimated by different methods (red dash line) of three endmembers on the Jasper Ridge
dataset. From top to bottom: tree, water, soil, and road. From left to right: (a) L1/2-NMF, (b) SGSNMF, (c) TV-RSNMF, (d) L1/2-RNMF, (e) MV-NTF-TV,
(f) MLNMF, and (g) SSRDMF.

Fig. 10. Fractional abundance maps estimated by different methods of three endmembers on the Jasper Ridge dataset. From top to bottom: tree, water, soil, and
road. From left to right: (a) L1/2-NMF, (b) SGSNMF, (c) TV-RSNMF, (d) L1/2-RNMF, (e) MV-NTF-TV, (f) MLNMF, and (g) SSRDMF.

Ridge datasets, respectively. Due to the ground-truth abundance
maps are unavailable, we compare the obtained abundance
maps with the real scene image, i.e., Fig. 4. In the abundance
maps, the higher value means the proportion of the material
is larger. From Fig. 6, it is obvious that similar abundance
maps can be achieved in most cases for each material. From
Fig. 8, we can observe all estimation results have a good
correlation with the geological maps of the Samson dataset.

For the Jasper Ridge dataset, as shown in Figs. 9 and 10, it
is difficult to obtain desirable estimations in terms of Road
for all methods, which may be because there are few pixels
for Road so that VCA fails to extract this signature when
initializing.

These seven methods have their own benefits. Figs. 6(a), 8(a),
and 10(a) show that L1/2-NMF can obtain a sparse abundance
map because L1/2-norm regularizer is an optimal choice for
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the hyperspectral unmixing. Figs. 6(b), 8(b), and 10(b) keep the
spatial group structure and the sparsity within a local spatial
group through utilizing the spatial group sparsity regularizer.
The results in Figs. 6(c), 8(c), and 10(c) show that it is effective
to utilize the piecewise smoothness. The estimated abundances
in Figs. 6(d), 8(d), and 10(d) are robust to noise, which is
mainly because L1/2-RNMF describes the sparse noise explic-
itly. Figs. 6(e), 8(e), and 10(e) preserve the local spatial structure
and the global spectral–spatial information. The results listed
in Figs. 6(f)–(g), 8(f)–(g), and 10(f)–(g) display that the abun-
dance maps estimated by MLNMF and SSRDMF are always
in accordance with the ground truth, demonstrating the effec-
tiveness of the multilayer/deep architectures. From the results
of experiments, we find that sparse regularizer, spectral–spatial
information, multilayer/deep architectures are all beneficial to
the hyperspectral unmixing.

Last, we investigate the average running time of ten times
on Jasper Ridge dataset for L1/2-NMF, SGSNMF, TV-RSNMF,
L1/2-RNMF, MV-NTF-TV, MLNMF, and SSRDMF, which are
4.99, 60.81, 25.19, 43.31, 107.50, 19.38, and 136.54 s, respec-
tively. Apparently, the L1/2-NMF performs the fastest estima-
tion since it is a single-layer factorization with efficiency sparse
regularizer. SGSNMF and TV-RSNMF require more time due
to the learning of spatial group structure and piecewise smooth
structure, respectively. To handle sparse noise, L1/2-RNMF
models the sparse noise explicitly, increasing the running time.
MLNMF is also fast since it only decomposes the observation
matrix iteratively layer by layer. MV-NTF-TV and SSRDMF
need much more time mainly owing to the complex factorization.

VII. DISCUSSION AND FUTURE DIRECTIONS

NMF plays an increasingly significant role in the field of
hyperspectral unmixing. In particular, the constrained NMF
has the capacity of providing more accurate endmembers and
abundances by integrating the spectral constraints and the spatial
constraints. The structured NMF enables flexibility to account
for more structures and details, such as the difference of pixels,
bands, and elements. By extending the decomposition form,
the generalized NMF exhibits great potential in acquiring more
essential characteristics, e.g., nonlinearities, 3-D structure infor-
mation, and hidden information.

Nevertheless, there are still several drawbacks. For instance,
the constrained NMF generally requires extensive parameter
tunning to achieve satisfactory results. The generalized NMF
often suffers from time-consuming. Secondly, the NMF-based
methods rely on proper guidance or initialization to generate
meaningful endmembers. Besides, it is difficult to thoroughly
capture the plentiful information of HSIs. To this end, it is quite
challenging to obtain excellent unmixing performance. In the
future, how to design NMF methods for unmixing deserves
further research. We provide some considerations as follows.

1) One important research direction is to make use of the spa-
tial and spectral information simultaneously to guarantee a
more reliable unmixing performance. The spectral–spatial
joint has shown considerable potentials for hyperspectral
unmixing.

2) Many NMF approaches have been reported to exploit the
spectral characteristics, such as the corresponding simplex
volume, endmember distance, and signature smoothness.
However, more efforts are required to describe the end-
member variability under the NMF model, e.g., construct-
ing a 4-D endmember tensor in [59]. Combining insight
from spectral variability with a mathematical treatment
would be valuable to improve the performance signifi-
cantly.

3) Most of the current NMF algorithms rely strongly on
LMM to obtain unmixing results. In real scenarios, mul-
tipath scattering is common due to complex landforms,
resulting in nonlinear spectral mixture effects. As shown
in [61] and [133]–[135], a nonlinear mixture model is
closely related to the LMM, indicating NMF methods that
aim to solving nonlinear unmixing problems deserve to be
further investigated.

4) To achieve more reliable performance in practical scenar-
ios, there is growing attention on improving the robustness
of the methods. Although many robust NMF methods have
been proposed, they mainly focus on the robustness to
noise. In addition to relieve the effect of different types of
noise, it is also important to investigate the robustness to
the selections of the initialization methods and the tunable
parameters in various application scenarios.

5) The computational complexity is also an aspect that
brings difficulties to apply most existing methods (e.g.,
graph regularized algorithms, NTF, and multilayer/deep
approaches). Meanwhile, HSIs are very large in general.
Considering that many applications need real- or near real-
time processing, it is crucial to develop fast alternatives to
reduce the computation time.
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