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Abstract—In the convolutional neural network, the precise seg-
mentation of small-scale objects and object boundaries in remote
sensing images is a great challenge. As the model gets deeper, low-
level features with geometric information and high-level features
with semantic information cannot be obtained simultaneously.
To alleviate this problem, a successive pooling attention network
(SPANet) was proposed. The SPANet mainly consists of ResNet50
as the backbone, successive pooling attention module (SPAM), and
feature fusion module (FFM). Specifically, the SPANet uses two
parallel branches to extract high-level features by ResNet50 and
low-level features by the first 11 layers of ResNet50. Then, both the
high- and low-level features are fed to the SPAM, which is mainly
composed of a successive pooling operator and a self-attention
submodule, for further extracting deeper multiscale and salient fea-
tures. In addition, the low- and high-level features after the SPAM
are fused by the FFM to achieve the complementarity of spatial and
geometric information. This fusion module alleviates the problem
of the accurate segmentation of object edges. Finally, the high-level
features and enhanced low-level features of the two branches are
fused to obtain the final prediction results. Experiments show that
the proposed SPANet achieves a good segmentation effect com-
pared with other models on two remotely sensed datasets.

Index Terms—Attention mechanism, convolutional neural
network, remote sensing images, semantic segmentation, successive
pooling.

I. INTRODUCTION

S EMANTIC segmentation, which classifies each pixel into
a category, is currently one of the research hotspots in the

field of image processing, especially for remote sensing images.
It now plays an irreplaceable role in many practical applications,
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such as natural disaster damage assessment [1], [2], precision
agriculture [3], [4], urban planning [5], [6], and military re-
connaissance [7], [8]. With the development of deep learning
technology [9]–[11], a fully convolutional network (FCN) [12]
was first applied to the semantic segmentation of remote sensing
images. However, this kind of direct utilization of the neural
network model [13], [14] in natural images to remote sensing
images cannot achieve appealing results. The main reason is that
compared with natural images, remote sensing images have their
own characteristics: objects with fine structures in remote sens-
ing images are either small in size or very slender in structure,
such as cars and the edges of buildings, and shadows generated
by buildings will also adversely affect them. Therefore, it is still
a challenging task to accurately segment remote sensing images,
especially for those small-scale objects and object edges.

Recently, a series of theoretically excellent research methods
have been put forward for the semantic segmentation of remote
sensing images. Some models are used for the segmentation
of single category of objects. Irwansyah et al. [15] categorized
buildings by improving the U-Net model, while Zhang et al. [16]
combined U-Net and the attention mechanism to improve the
accuracy of building segmentation. In a dense fusion classmate
network [17], the lack of features in the network was compen-
sated by joint training with a remote sensing dataset and a road
dataset, and the accurate recognition of confused pixels was,
thus, ensured. However, owing to the requirement of practical
application, more models are dedicated to multicategory seg-
mentation. Specifically, these models all exploit the continuity of
contextual information, which ensures that the network models
are extremely robust to objects at different scales in the dataset.
In [18], features at different scales extracted through the pooling
operation of the encoding stage and features at different scales
extracted during the upsampling process of the decoding stage
were fused to improve the segmentation accuracy of the road
in the dataset. In dense dilated convolutions’ merging network
(DDCM-Net) [19], the network used dilated convolution to
extract multiscale features and integrated local and global in-
formation to improve the model’s ability to recognize objects
with similar characteristics at different scales. In [20], a dense
connection and FCNs used multiscale convolution kernels to in-
crease the richness and diversity of extracted information, so that
the features extracted by the network had stronger representative
characteristics; this results in an improvement in the segmenta-
tion accuracy of semantic segmentation. In [21], the inception
network structure was adopted, and the transposed convolution
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and dilated convolution were used to extract multiscale features
to improve the performance of the network. In general, these
models are based on extracting multiscale features to enhance
the coherence of context information and the robustness of the
network.

Although the extraction of multiscale features has a good ef-
fect on the segmentation accuracy, most network models obtain
segmentation accuracy improvements at the cost of increasing
the complexity of the model and introducing a large number
of parameters; however, this often leads to excessive memory
and time consumption during the training phase. To alleviate
these problems, the attention mechanism was introduced to
extract the main features in the image, suppress noise, and other
useless information and also reduce the storage and training
time. Therefore, many scholars have applied it to the field of
semantic segmentation of high-resolution remote sensing im-
ages. For instance, in dual expectation–maximization attention
network [22], the spatial expectation–maximization attention
model simulated the interdependence of spatial features to obtain
rich contextual information. Another module of the network
enhanced the ability to express features through the interdepen-
dence between channels. In [23], a lightweight channel attention
module used average pooling and maximum pooling to extract
salient features to enhance the expressive ability of features.
A local attention network (LANet) [24] used a one-time reduc-
tion in size and enlargement of features (using average pooling)
to enhance the representation ability of small-scale object fea-
tures. In the contextual transformer (CoT) network model [25],
the authors proposed a CoT block based on self-attention, which
can enhance the continuity of context information and extract
salient features. Although those networks based on the attention
mechanism can extract key salient features, they ignore the
information contained in local small blocks in high-resolution
remote sensing images.

Therefore, in this article, we propose a successive pooling at-
tention network (SPANet) to simultaneously combine multiscale
feature extraction and self-attention mechanism. Compared to
the LANet, the SPANet utilizes a successive pooling operator
and concatenates the intermediate pooling features at different
scales to extract deeper semantic features. The information of
intermediate features is retained to prevent excessive loss of
information. The core idea of this successive pooling operation
is to continuously zoom in on high-resolution remote sensing
images as if holding a magnifying glass, more detailed and rich
salient features at different scales will be exploited; moreover,
the continuity of contextual information and the stability of the
network model will be ensured. This successive pooling oper-
ation alleviates the problem that small-scale objects in remote
sensing images are difficult to accurately subdivide. Besides,
the high- and low-level features extracted by the backbone are
subjected to in-depth feature extraction, and they are fused to
achieve the complementarity of spatial and geometric informa-
tion. This fusion approach alleviates the problem of accurate
segmentation of object edges.

The main three contributions of the proposed SPANet can be
summarized as follows.

1) In the successive pooling attention module (SPAM), an
innovative successive pooling mechanism is proposed,

which can obtain deeper features by effectively extracting
and fusing multiscale features. This pooling method plays
a very important role in the segmentation of small-scale
objects in high-resolution remote sensing images and ef-
fectively improves the accuracy of semantic segmentation.

2) The SPAM proposed for semantic segmentation of high-
resolution remote sensing images organically couples the
attention mechanism with multiscale feature extraction.
Among them, the attention mechanism can extract the
salient features in the image while suppressing noise and
useless information.

3) Using ResNet50 as a backbone, the SPANet model fully
excavates deep and shallow features through two branches
and effectively merges them to achieve the complemen-
tarity of spatial and geometric information. This feature
fusion module (FFM) alleviates the problem of accurate
segmentation of object edges. Experiments on the Pots-
dam and Vaihingen datasets verify the superiority of the
SPANet over most other advanced semantic segmentation
methods, especially in the segmentation of small-scale
objects and boundaries.

The rest of this article is organized as follows. Section II
introduces previous work related to semantic segmentation.
Section III then describes the SPANet network model in detail.
In Section IV, a detailed experimental evaluation and discussion
of the SPANet is presented. Finally, Section V concludes this
article.

II. RELATED WORKS

A. Encoder–Decoder Architecture

The encoder–decoder structure is widely used in various
computer vision tasks [26]–[29]. The emergence of encoder–
decoder structure in semantic segmentation was inspired by the
FCN [12]. The specific purpose of the encoding stage was to
extract the deeper semantic information of the image at the cost
of reducing the image resolution. The decoding stage used an
upsampling strategy to restore the low-resolution feature map
to the original size and, finally, employed image reconstruction
to output a predicted segmentation map the same size as the
original image. In the decoding stage of the U-Net [30] model,
the features of the image were introduced into the decoder using
a jump connection, so that the decoder added the geometric fea-
tures of the image in the process of image resolution restoration
to recover the lost details of the image. In the SegNet model [31],
the author recorded the location index in the process of sampling
pooling and, then, upsampled the index positions recorded in
the encoding stage to obtain sparse features. The convolution
operation was then used to transform sparse features into dense
features. The discriminative feature network model [32] inte-
grated channel attention module and averaged pooling opera-
tion based on the encoder–decoder structure to enhance feature
representation ability, so as to alleviate the problem of large dif-
ferences within classes, based on extracting features using codec
structure. The LANet [24] added other modules to enhance the
ability of feature expression. The DDCM-Net [19] also used the
encoder–decoder structure to extract the features and utilized
the dilated convolution to enhance the feature representation.
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It can be seen that the encoder–decoder structure is crucial in
the process of feature extraction. Therefore, our model structure
also uses the encoder–decoder structure to achieve preliminary
feature extraction.

B. Multiscale Feature Extraction

The continuity of context information plays a key role in the
segmentation of objects of different scales in scene semantic
segmentation. The continuity of context information requires
the network model to have robust recognition capabilities for
objects with different structural scales, and at the same time, it
can deal with the problems of large intraclass differences and
small interclass differences in different scenes. For instance, the
DeepLab [33]–[36] series of deep convolutional neural network
models have achieved good results for semantic segmentation.
The Deeplabv3+ [36] model extracted features by using dilated
convolution, while in the pyramid scene parsing network (PSP-
Net) [37] model, the author used parallel pooling to extract
features of different scales. These models have achieved good
results for semantic segmentation of natural images. Inspired
by the parallel pooling of different scales to extract features
in [37], Yu et al. [38] proposed a model, which was composed
of a convolution module and a pyramid pooling structure, to
extract features at different scales so as to improve the model’s
ability to recognize different ground object categories. In [39],
the training phase was divided into two stages. The first-stage
network extracted deep-level semantic features from the original
size image, and the second-stage network extracted low-level
features from the cropped original image blocks and merged the
features of different scales extracted into the two stages to en-
hance feature representation ability; different from the methods
in [37] and [38], in this article, the original images are cropped
at different scales and then input into the network for multiscale
feature extraction. In addition, scale features are fused to im-
prove the performance of the network. Cui et al. [40] proposed
an adaptive multiscale feature learning module. This module was
used to enhance the representation of weak boundary features,
thus improving the segmentation accuracy of the model. These
multiscale feature extraction operations are designed to enhance
the coherence of context information, thereby improving the
robustness of the network model. In those methods described
above, multiscale feature extraction from high-resolution im-
ages is not thorough. There is still big room for improvement.
Therefore, the proposed SPANet uses successive pooling op-
erations to extract multiscale features. This idea of successive
pooling is then embedded into the attention mechanism in the
two-branch deep convolutional neural network model, so that
more detailed and rich features can be extracted, and the ability
of the model to recognize ground objects of different scales can
be improved.

C. Attention Mechanism

Attention mechanism modules are added to models to empha-
size the important information of the target object and suppress
irrelevant details. Recently, an attention mechanism has been

used for semantic segmentation of natural images and achieved
good results. A squeeze-and-excitation network (SENet) [41]
enhanced network performance by using only one average pool-
ing to emphasize channel-level feature representation, which
reduced interference from unrelated features. By using a single
convolution kernel to extract a single feature, the selective kernel
network [42] used convolutional kernels of different sizes to
extract features in multiple branches and finally merged the
output of each branch to produce richer features. There is no
doubt that those methods increase the computational complexity
of the models. To alleviate the problem, lightweight network
architectures have been proposed, including convolutional block
attention module (CBAM) [43] and bottleneck attention module
(BAM) [44]. The former executed the channel attention module
and the spatial attention module on the feature map in order
and obtained the feature maps enhanced by the two modules.
The CBAM then performed element-level multiplication using
the original feature map and finally achieved the purpose of
adaptive refinement. The BAM added the parallel branch re-
sults of the channel attention module and the spatial attention
module to obtain an attention map that combines spatial and
channel information, which improved performance when clas-
sifying natural images. The dual attention network (DANet) [45]
was also an attention mechanism network divided into two
branches. The two modules obtained long-range context infor-
mation from the spatial dimension and the channel dimension,
thereby enhancing the model’s ability to express features. More
recently, the attention mechanism has also been applied to the
semantic segmentation of remote sensing images. Especially, in
the attention-guided label refinement network [46], the chan-
nel attention mechanism was used to gradually refine feature
maps of different scales to improve the accuracy of semantic
segmentation of high-resolution remote sensing images. The
gate module [47] simultaneously realized multiscale feature
extraction and boundary restoration. The spatial relationship
module and the channel relationship module proposed by Mou
et al. [48] were used to learn the global relationship between
feature maps, thus aggregating similar features to enhance the
continuity of the context and the representation of different scale
features. Compared to [48], the LANet [24] only implemented an
average pooling operation to emphasize the partial key feature
representations, which was obviously not enough for remote
sensing images.

Building on the foundation of the research described above,
the SPANet organically couples an attention mechanism with
multiscale feature extraction. The former emphasizes key fea-
tures, and the latter refines object boundaries to improve the
segmentation results of our network model.

III. PROPOSED METHOD

In this section, we describe the SPANet architecture in detail.
We will first provide a general overview of the network model
and the core idea of dealing with semantic segmentation of
remote sensing scenes and then describe the function of each
module in detail.
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Fig. 1. Overview of the proposed SPANet architecture. The output of the 11th layer of ResNet50 is used as low-level features, and its size and number of channels
are 64 × 64 and 256, respectively. The output of the 50th layer of ResNet50 is used as high-level features, and its size and number of channels are 16 × 16 and
2048, respectively.

A. Overview of the Proposed SPANet

The continuity of context information plays a key role in
improving the accuracy of the semantic segmentation of remote
sensing scenes. There is ambiguity about the features of different
ground object categories in remote sensing images. Features
extracted only by convolution and pooling operations cannot
enable the network to recognize the features of different ground
object categories; thus, the segmentation of object boundaries is
easy to become blurred. Therefore, our proposed SPANet model
uses a successive pooling method, which is much like browsing
high-resolution remote sensing images with a magnifying glass.
By analogy to the deep convolutional neural network model,
we can extract more detailed and rich features that enhance
the network’s ability to recognize different object categories in
remote sensing scenes. The architecture of the SPANet is shown
in Fig. 1. The output of the 11th layer of ResNet50 is used
as low-level features, and its size and number of channels are
64 × 64 and 256, respectively. The output of the 50th layer of
ResNet50 is used as high-level features, and its size and number
of channels are 16 × 16 and 2048, respectively. It is emphasized
that we set the stride of the 43rd layer convolution operation in
the original ResNet50 model from 2 to 1, and the purpose is to
keep the size of the feature maps as 16 × 16.

The motivation for this article is as follows.
1) To use a method of successive pooling to realize the extrac-

tion of multiscale features. The detailed and rich features
of high-resolution remote sensing images enhance the
continuity of network context information and improve the
network’s ability to recognize similar feature categories.

2) Enriching the semantic representation of low-level fea-
tures to better use spatial information.

These two points are reflected in the SPANet by the two mod-
ules: SPAM and FFM. The SPAM enhances the continuity of
contextual information by extracting multiscale information in
a modified attention module. The FFM fuses high-level semantic
features and low-level features to realize the complementarity
of spatial and geometric information. Specifically, we first use
ResNet50 as our feature extractor, which is divided into two
parallel branches after the feature extraction layer at differ-
ent stages, called low- and high-level features. Immediately

afterward, these are processed by the SPAM for the first
enhancement of the features, and then, the high- and low-level
semantic features after the first enhancement are used as the
low-level features of the second enhancement after the FFM.
Finally, the fusion of the first enhanced high-level semantic fea-
ture and the second enhanced low-level semantic feature is used
as the final prediction segmentation graph. The detailed training
framework of the SPANet model is shown in Algorithm 1.

B. Successive Pooling Attention Module

Unlike natural images, high-resolution remote sensing images
have a large field of view and cannot show all the details of the
object; in addition, some elements of the objects in the scene,
such as low vegetation and trees, may be obscured because
of the height and angle at which the image was captured. It
is, therefore, likely to confuse human visual perception. For
network models, actions should be taken to improve the model’s
ability to recognize objects with the same visual characteristics.
In order to improve network performance, we use the SPAM
to extract features at different scales in an attention module,
thus improving the continuity of the context information, and to
extract more detailed and salient features.

Fig. 2 shows a representation of the SPAM, which is inspired
by the LANet [24]. We will next describe the specific operations
of the SPAM. As shown in Fig. 2, the input 2-D feature map
is assumed as M ∈ RH×W×C . According to the structure of
the transformer, the Keys, Queries, and Values are random
matrices, and they are initialized as Key = M , Query = M ,
and V alue = M . First, the feature matrix CK1 is obtained
by using the convolution kernel with kernel size = 3 and the
convolution operation on the Key, and then, the feature matrix
A is obtained by connecting CK1 and Query after two 1 × 1
convolutions (KS1−1 with ReLU activation function andKS1−2
without activation function)

A =
[
CK1, Query

]
KS1−1KS1−2. (1)

For the Value branch, we first perform a successive adaptive
average pooling operation on Value. Then, the Value of the
feature map of multiple channels changes from the size of
H ×W to the feature matrix PFC

i of the size of PHi × PHi
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Fig. 2. Detailed design of the SPAM.

after several successive pooling operations. The value PVc of
each grid point of each channel in the PFC

i feature matrix
corresponds to the average Value of the sum of all grid points
in the size of Pi × Pi and the corresponding channel area in the
original feature maps. This can be represented as follows:

Pi = H + 2 · padding − stride (PHi − 1) . (2)

According to the method of adaptive average pooling in the
PyTorch library, stride = 1 and padding = 0. Therefore, the
value of PVc can be obtained by the following formula:

PVc =
1

PiPi

Pi∑
j=1

Pi∑
k=1

xc(j, k) (3)

where xc represents the value of a single grid point in the cth
channel in the original feature map. With the calculation method
of formula (3) and stride as 1, a feature matrix PFC

i of the size
of PHi × PHi can be obtained. In more detail, i is set to 1,
2, 3, and the corresponding PHi is 10, 8, and 6, respectively;
after the feature map is output by a pooling operation, the same
pooling operation is performed twice in succession, and each
time the output feature matrix is defined as PF1, PF2, PF3.
Next, an FU performs operation on PF1, PF2, and PF3 and
the size becomes H ×W (FU is for upsampling operation). For
the continuity of context information, we then concatenate the
feature matrix of these three stages and Value and perform a 1
× 1 convolution operation to get PV . Next, we calculate the
enhanced matrix CK2 as follows:

CK2 = PV ⊗A (4)

where CK2 is defined as the representative of the enhanced
contextual information continuity of the input feature M . The
symbol ⊗ represents channel element-level multiplication op-
eration. According to the design of the residual block, it is
conducive to the stability of the gradient backpropagation, and
the final output enhanced feature matrix AF is the fusion of the
original feature map M and CK2:

AF = M ⊕ CK2 (5)

Fig. 3. Detailed design of the FFM.

where the symbol ⊕ represents channel element-level summing
operation.

C. Feature Fusion Module

Blindly increasing the depth of the network and extracting
deep semantic features can sometimes play a negative feedback
role in the performance of semantic segmentation. Therefore,
the high-level features containing spatial information should
be superimposed on the low-level semantic features at the
appropriate stage to achieve information complementation and
improve semantic segmentation performance. In order to make
full use of low-level semantic features, our proposed FFM adds
spatial details from high-level semantic features to low-level
semantic features, so that the model realizes the complemen-
tarity of spatial detail information and geometric information.
Fig. 3 shows the details of the FFM. The FFM input is the
high-level feature AFh ∈ RH ′×W ′×Ch and the low-level fea-
ture AFl ∈ RHl×Wl×Cl after the SPAM. First, we perform an
average pooling operation on the advanced feature AFH as in
formulas (2) and (3) to get feature matrix APh [PHi is set
to 10, padding = 3, and stride = 1 in (2)]. We then get the
enhanced attention matrices ASl by convolving the APh twice
in succession

ASl = FU {[KS1−4 (KS1−3APh)]} (6)

where KS1−3 convolution is a buffer reduction of the number
of high-level feature channels. In order to perform subsequent
operations, KS1−4 convolution will change the number of chan-
nels in the middle feature matrix after KS1−3 operation so that
it has the same size as AFl (“()” and “[]” represent different
numbers of 1 × 1 convolution operations, and “{}” represents
the upsampling operation). Finally, the feature matrix AMl is
used as an enhanced low-level feature representative fused with
high-level semantic information

AMl = ASl ⊗AFl. (7)

D. Fusion of the Outputs of Two Parallel Branches

After the FFM, the enhanced low-level feature representation,
which contains rich semantic information, can be obtained.
This greatly improves pixel-level classification tasks. The two
branches of high- and low-level features maintain the same
number of channels, dimensions, and sizes after the SPAM and
the FFM. After the two branches, we use six 1 × 1 convolution
kernels to complete the classification of each branch and sum the
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Algorithm 1: Training Framework for the SPANet Model.

Input: Input a remote sensing image I ∈ RH×W×C and
ground truth G.

Output: Predicted maps of the test dataset.
1: Set batch_size = 5 the weight attenuation of all

learnable parameters is 2× 10−5, the maximum
iteration number is n = 108, optimizer Adam (learning
rate = 8.5× 10−5/

√
2), Loss

= − 1
M

∑M
k=1

∑L
l=1 o

(m)
l log(q

(m)
l )El (10);

2: After data augmentation preprocessing, images with
size of 256× 256× 3 and their corresponding labels
are obtained;

3: Train the SPANet network model;
4: for i = 1 to n do
5: Extract low-level features from the 11th layer of

ResNet50, and extract high-level features from the last
layer of ResNet50;

6: High-level and low-level features are, respectively, fed
to SPAM to obtain AFH , AFL;

7: AFH and AFL are input to FFM together to get AML;
8: Fuse AML and AFL to obtain the prediction results;
9: Calculate the loss between prediction results and

labels, and update the parameters of the model;
10: Verify the performance of this weight;
11: When there is a higher mIou or mF1, save the weight.
12: break
13: Get the optimal training weight.
14: end for
15: Use test dataset with the trained model to get predicted

maps.

feature maps of the corresponding channels in the two branches,
as our final result.

IV. EXPERIMENTS AND RESULTS

In this section, we elaborate on the experimental design and
experimental results. This section includes descriptions of the
two remote sensing datasets used in this study, image enhance-
ment methods, and evaluation indicators. In order to verify
the practicability of the modules of our model, an analysis of
ablation experiments is also included. Finally, we compare the
indicators and results with other methods, which shows that our
method is capable of better segmentation results.

A. Datasets

We used two remote sensing scene datasets captured in Pots-
dam and Vaihingen. The first dataset is Potsdam, which consists
of 38 tiles with a size of 6000× 6000, with a ground resolution of
5 cm. Tiles are composed of red–green–blue infrared (RGB-IR)
four-channel images. The dataset also includes a digital surface
model (DSM) and a normalized DSM (nDSM). In this study,
we only used IRRG data. The label data are divided into six
categories: impervious surfaces, building, low vegetation, tree,
car, and clutter/background. For evaluation, the 24 pictures were

divided with labels into training set of 19 pictures, a validation
set of two pictures, and a test set of three pictures.

The second dataset is Vaihingen, which consists of 33 tiles
with an average size of 2100 × 2100, with a ground resolution
of 9 cm. Tiles are composed of RGB-IR four-channel images.
The dataset also includes a DSM and an nDSM. In this study, we
only used IRRG data. The number of feature categories in the
label data is the same as the number of categories in the Potsdam
dataset. For evaluation, the 17 Vaihingen datasets containing
labels were divided into a training set of 11 pictures, a validation
set of two pictures, and a test set of four pictures.

B. Datasets Augmentation and Evaluation Methods

It is difficult to annotate the remote sensing dataset because
different categories of ground objects present very complex
visual effects, which is also an important reason for the small
amount of annotated datasets. Therefore, the Potsdam and Vai-
hingen training sets employ random flip or mirror for data aug-
mentation. In this study, we also used the albumentations library
to enhance the data, and all the training images were normalized
to [0.0, 1.0] following data augmentation. We applied test time
augmentation in the image inversion and mirroring stage. For
these two datasets, we used a sliding window (with a size of 448
× 448 and a step size of 100 pixels) on the test data by averaging
the prediction results of the overlapping area and stitching the
results together as the final output.

The evaluation indicators provided by the publisher of the
dataset are also used in some modeling methods. Mean IoU
(mIou), mean F1 score, per-class F1 score, and overall accuracy
(OA) are usually used as evaluation indicators for semantic
segmentation. OA refers to the sum of the correct number
of pixels predicted by all the categories divided by the total
number of pixels, which reflects the total accuracy of the model’s
prediction. MIou is a standard measure of semantic segmenta-
tion, which shows the accuracy of network prediction for each
category by calculating the average of the ratio of intersection
and union of all categories. Especially for high-resolution remote
sensing images, the level of the mIou index can better reflect the
performance of network segmentation and network robustness.
A certain type of F1 score is defined as the harmonic mean of
accuracy and recall as follows:

F1 = 2 · precision · recall
precision + recall

. (8)

It is worth noting that the mean F1 score (mF1) and mean
IoU (mIou) in these two datasets were calculated as the average
metric for all classes except the clutter class.

C. Training Details

Adam was used as the optimizer to train the network, and
except for bias, batch-norm parameter, and polynomial learning
rate (1− (cur_iter/max_iter))0.9, the weight attenuation of all the
learnable parameters was 2× 10−5, and the maximum iteration
number was 108. On Potsdam and Vaihingen datasets, we used
an initial learning rate of (8.5× 10−5/

√
2), and we reduced the

learning rate by 0.85 times after every 15 epochs. We applied
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TABLE I
RESULTS OF DATA A DISPLAY OF THE PROPOSED SPANET ABLATION

EXPERIMENT (ON THE POTSDAM DATASET)

LLF stands for low-level semantic features; HLF stands for high-level semantic
feature.

a cross-entropy loss function with median frequency balancing
weights as defined in the following:

El =
median ({rl | l ∈ L})

rl
(9)

Loss = − 1

M

M∑
k=1

L∑
l=1

o
(m)
l log

(
q
(m)
l

)
El (10)

where El is the weight for class l, rl is the pixel frequency of
class l, q(m)

l is the probability of sample belonging to class l, and

o
(m)
l denotes the class label of samplem in class l. For these two

datasets, our training set randomly sampled 5000 patches of 256
× 256 size from the original image as input and set the batch
size to 5. It is worth noting that both our model and the other
comparison models use the same data augmentation to augment
the data.

D. Ablation Study

To validate the effectiveness of our model, we conducted
ablation experiments on the two high-resolution remote sensing
datasets. The ResNet50 was used as a backbone, and all the
modules (including low-level feature, high-level feature, SPAM,
and FFM) were conducted on the features extracted by the back-
bone. The first set of ablation experiments was the fusion of the
high- and low-level features of the backbone. The second group
of ablation experiments was to extract the high- and low-level
features through the backbone and made them go through the
SPAM, and the results of the two branches were fused as the
prediction results. The third group of ablation experiments was
to integrate the high- and low-level features obtained from the
backbone into the FFM to obtain enhanced low-level features;
then, the enhanced low- and high-level features extracted from
the backbone were fused as the prediction results. The last set
of experiments was SPANet.

The results of the ablation experiment on the Potsdam dataset
are shown in Table I. The mF1 and mIou of the second group are
0.97% and 1.67% higher than those of the first group, respec-
tively. This demonstrates that the performance of the network
was improved by the adoption of the SPAM. The mF1 and the
mIou of the third group were 0.65% and 1.14% higher than those
of the first group, respectively. This shows that the high-level
features make up for the missing spatial detail information in
the low-level features, thereby improving the indicators. The

TABLE II
RESULTS OF DATA A DISPLAY OF THE PROPOSED SPANET ABLATION

EXPERIMENT (ON THE VAIHINGEN DATASET)

LLF stands for low-level semantic features; HLF stands for high-level semantic
feature.

TABLE III
DATA RESULTS BEFORE AND AFTER USING SUCCESSIVE POOLING (ON THE

POTSDAM DATASET)

TABLE IV
DATA RESULTS BEFORE AND AFTER USING SUCCESSIVE POOLING (ON THE

VAIHINGEN DATASET)

last experiment is SPANet after adding both the SPAM and the
FFM, we can see that mF1, mIou, and OA were 0.44%, 0.77%,
and 0.37% higher than those in the second set of experiments,
while 0.76%, 1.3%, and 0.45% higher than those in the third set
of experiments.

The results of the ablation experiments on the Vaihingen
dataset are shown in Table II. The comparison results of each
group of experiments show the same trend as were found for
the Potsdam dataset, and the indices of the second and third
groups were still higher than those of the first group. After adding
SPAM and FFM modules, the mF1, mIou, and OA of the SPANet
were 0.37%, 0.61%, and 0.05% higher than those in the second
group of experiments, while 0.45%, 0.74%, and 0.06% higher
than those in the third set of experiments. The above ablation
experiments validate that the use of the two modules together
improves the experimental indicators more significantly.

To prove the effectiveness of our successive pooling opera-
tion, we also conducted ablation experiments on this module.
Table III shows the results of these ablation experiments con-
ducted on the Potsdam dataset. It can be seen that the mF1 of each
category in the SPANet with no successive pooling decreased
significantly, and mIou, mF1, and OA all decreased by 3.62%,
2.12%, and 1.9%, respectively. The results of this experiment
as performed on the Vaihingen dataset follow the same trend
as the previous dataset, as shown in Table IV. After removing
the successive pooling modules, mIou, mF1, and OA decreased
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TABLE V
MIOU VALUES AS A FUNCTION OF THE SUCCESSIVE POOLING SCALES ON THE

POTSDAM (THE SECOND LINE) AND VAIHINGEN (THE THIRD LINE) DATASETS

by 1.24%, 0.78%, and 0.18%, respectively. It can be seen from
Tables III and IV that the F1 score of all categories has been
improved after successive pooling, especially the F1 score of
the car has increased by 3.55% in the Vaihingen dataset and
by 3.37% in the Potsdam dataset. It once again verifies that
our SPAM can extract deeper semantic features while extract-
ing salient and multiscale features, which is conducive to the
segmentation of small-scale objects.

Through the comparison of Tables III and IV, it is easy to
find that the increase in the indicators of the two datasets is
different, which is mainly caused by the different resolutions of
the two data. Specifically, for the Potsdam dataset, which has a
higher resolution, all the indicators increased significantly with
the addition of the successive pooling operation; this is a further
indication that the successive pooling operation has a great
contribution to the segmentation accuracy of high-resolution
remote sensing images. Besides, after integrating successive
pooling operations, the continuity of contextual information
was strengthened, and the original prediction result map was
improved.

In addition, to prove that the setting of successive pooling
size is optimal in our experiment, we plot the mIou values as a
function of the successive pooling size on the above two datasets
in Table V, where the pooling sizes are (10, 8, 2), (10, 8, 4), (10, 8,
6), and (10, 8, 7). It can be seen from Table V that the successive
pooling size used in our model with (10, 8, 6) is optimal, and the
experimental results obtained are the best. As expected, different
pooling sizes do affect the experimental results. Empirically,
we recommend setting parameters of successive pooling as (10,
8, 6), which makes SPANet achieve appealing results in most
high-resolution remote sensing images.

E. Qualitative Analysis of Features

In this subsection, we present a visualization of the partial
segmentation results of the ablation experiment to verify the
effectiveness of our proposed module. Fig. 4 shows the seg-
mentation maps after adding the SPAM and the FFM in order.
In the original backbone, there was no large receptive field
for high-resolution remote sensing images, so the prediction of
different features was very fuzzy. However, after the addition of
the SPAM, the continuity of context information is enhanced,
multiscale and salient features can be extracted, and the original
predicted results are improved for small-scale objects. After
the addition of the FFM module, the segmentation accuracy of
object edge details in the predicted results has been improved. In
general, our SPAM achieves the enhanced continuity of context
information, and our FFM achieves the complementation of low-

Fig. 4. After adding the SPAM and the FFM to the backbone in order,
segmentation results of our network. (a)–(c) were cropped from the prediction
results of the Potsdam dataset. (d) and (e) were cropped from the prediction
results of the Vaihingen dataset.

Fig. 5. Before and after adding successive pooling operation, segmentation
results of our network. (a) and (b) were cropped from the prediction results of
the Potsdam dataset. (c) and (d) were cropped from the prediction results of the
Vaihingen dataset.

and high-level features, so these two modules have made a great
contribution to the segmentation results.

To prove the effectiveness of the successive pooling oper-
ation, we also performed an ablation experiment; the visual
representation of this experiment is shown in Fig. 5. Compared
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TABLE VI
DISPLAY OF VARIOUS DATA RESULTS OF DIFFERENT MODELS (ON THE POTSDAM DATASET)

It is worth noting that the bold font is the highest score.

TABLE VII
DISPLAY OF VARIOUS DATA RESULTS OF DIFFERENT MODELS (ON THE VAIHINGEN DATASET)

It is worth noting that the bold font is the highest score.

with the prediction maps without the successive pooling oper-
ation, these maps have improved a lot from the visual effect.
Especially, the car category segmentation in rows (a) and (c) in
Fig. 5 is clear. This operation also increases the continuity of
context information through multiscale feature extraction and
has strong recognition capabilities for different scale features
in high-resolution remote sensing images, thus enhancing the
robustness of the network.

F. Quantitative Comparison With State-of-the-Art Methods

We compared our proposed SPANet with other methods. In
those methods, the backbone used to extract high- and low-level
features was also ResNet50. The models contrasted with this ex-
periment were derived from the most recent work on the attention
mechanism, including CBAMNet [43], SENet [41], LANet [24],
and DANet [45]. The experimental data results are shown in Ta-
bles VI and VII. The PSPNet [37] and DeeplabV3plus [36] mod-
els improve the accuracy of semantic segmentation by increasing
the receptive field, which is also included in the model of our
comparison experiment. Tables VI and VII show the results of
different models applied to the Potsdam and Vaihingen datasets.
From the results, we can see that for the Potsdam dataset, the
Deeplabv3plus and PSPNet models achieved higher mF1 and
mIou than the SENet and CBAMNet models. The two former
models are based on the extraction of multiscale information. In
the DeepLabv3plus model, spatial pyramid pooling and empty
convolution are used to extract multiscale features, so as to

capture clearer target boundaries by gradually recovering spatial
information. PSPNet adopts parallel and average pooling meth-
ods to extract multiscale features, which enhances the continuity
of context information and strengthens the model’s ability to
recognize objects at different scales. Although these two classic
models have good semantic segmentation effects when applied
to natural scenes, the effects are not ideal when the models are
applied to high-resolution remote sensing images. The reason
is that a parallel feature extraction is not thorough enough for
extracting features from high-resolution images. The rich and
detailed features are not extracted, so the segmentation of the
boundary details of the image is not accurate. However, when
applied to the Vaihingen dataset, the mF1, OA, and mIou of
SENet are higher than those of PSPNet and Deeplabv3plus. This
is because the Vaihingen dataset has a smaller resolution than the
Potsdam dataset. The SE block using only one pooling operation
achieved good results.

The patch attention module in the LANet uses an aver-
age pooling operation to make local features more prominent,
thereby increasing the continuity of context information. How-
ever, only using one pooling operation for extracting deeper
features from high-resolution remote sensing images is not
thorough. Therefore, three successive pooling operations are
used in the SPANet to extract deeper semantic features. Not
only are the mF1, OA, and mIou in the SPANet (as applied
to the Potsdam dataset) 0.92%, 0.86%, and 1.59% higher than
those of the LANet, but the mF1, OA, and mIou in the SPANet
as applied to the Vaihingen dataset are 0.78%, 0.4%, and 1.23%
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TABLE VIII
COMPARISON RESULTS OF COMPLEXITY, NUMBER OF PARAMETERS, AND INFERENCE TIME (MEASURED ON INPUT IMAGE SIZE OF 3 × 256× 256)

FOR DIFFERENT MODELS

Fig. 6. Segmentation maps of all competing methods. (a) and (b) were cropped from the prediction results of the Potsdam dataset. (c) and (d) were cropped from
the prediction results of the Vaihingen dataset.

higher, respectively. The DANet contains a position attention
module and a channel attention module. The function of the
former is to associate similar features of the same channel,
and the function of the latter is to integrate the correlation of
features between channels so as to strengthen the representation
of features and obtain more accurate segmentation results. The
DANet model applied to the Potsdam dataset is 0.5% and 0.11%
higher for low vegetation and tree of F1 score, respectively, than
the SPANet and 0.13% higher for building of F1 score than
our model as applied to the Vaihingen dataset. From Tables VI
and VII, it can be seen that not only our model is higher than
other methods in the comprehensive indicators, but also the F1
score of each category is almost the highest. In addition, the F1
score of car in the Vaihingen dataset is 2.15% higher than that of
the DANet. The improvement is significant. These phenomena
show that the SPANet is better than the DANet in the segmen-
tation of small-scale objects. In general, the proposed SPANet
model performed better on the Potsdam and Vaihingen datasets
than other methods, as measured in terms of mF1, OA, and
mIou.

We compared the floating-point operations (FLOPs) and pa-
rameters required by the SPANet and other models. Table VIII
shows the values of these two indicators. This calculation was
based on a three-channel image with an input size of 256 × 256.
The results clearly show that the attention-mechanism-based

models CBAMNet, SENet, and LANet are lightweight models.
DeepLabv3+ and PSPNet, on the other hand, require more
computing resources but perform poorly on high-resolution
remote sensing images. The DANet introduces a large number of
learnable parameters to improve the performance of the model,
but the number of parameters for the SPANet is much lower, and
only a small amount of calculation is added in exchange for the
improved segmentation performance of the network.

We also tested the time consumption of forward propagation
of different models. The CPU is Intel (R) Xeon (R) Silver 4210,
and the GPU is NVIDIA Geforce GTX 2080Ti. As shown in
inference time in Table VIII, the more complex the model, the
longer time required for forward propagation. Compared with
the LANet and the DANet, the SPANet greatly improves the
segmentation accuracy while reducing forward propagation time
on the GPU.

G. Quantitative Analysis of Visualization Results of Different
Models

Fig. 6 shows a comparison of the enlarged results of the
SPANet and other methods. It is clear that models based on
attention mechanisms, such as CBAMNet, SENet, and DANet,
are not ideal for the semantic segmentation of high-resolution
remote sensing images, especially for small objects and object
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Fig. 7. Segmentation maps of all competing methods. These maps were cropped from the prediction results of the Potsdam dataset.

Fig. 8. Segmentation maps of all competing methods. These maps were cropped from the prediction results of the Vaihingen dataset.

boundaries. In the PSPNet, although the multiscale feature ex-
traction method is used to increase the continuity of context
information, it can be seen from the segmentation maps that there
are misclassifications between different categories. In order
to enhance the continuity of context information and extract
more detailed and salient features, the proposed SPANet model
achieves the purpose of complementing spatial and geometric in-
formation. Thus, object boundary segmentation is more accurate
than other models. Moreover, the successive pooling operation
is also very beneficial to the segmentation of small-scale objects;
it can be seen from the comparison of the output results of
different models in rows (a), (b), and (c) in Fig. 6. In addition,
the segmentation effect of the SPANet for buildings, low-veg,

and tree categories is also improved in comparison with other
models.

Figs. 7 and 8 show large-scale prediction maps for the Pots-
dam and Vaihingen datasets. Although the DANet produces
segmentation results that are better than those produced by
other methods, it is still ambiguous for small-sized objects
and boundary parts. In the result maps of SPANet semantic
segmentation, the classification of errors between classes is very
small; this is due to the fusion of high- and low-level semantic
features. Meanwhile, the segmentation of object boundaries is
very fine, which is due to the deep multiscale feature extraction
in the SPAM. In general, the SPANet performs well in the
segmentation of small-scale objects and object edge details.
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V. CONCLUSION

In this article, we combined the attention mechanism with
deep multiscale feature extraction, so the network can not only
extract the key information from the image but also refine the
details of objects. Specifically, the SPAM is proposed to enhance
the representation of high- and low-level semantic features,
and the FFM also makes spatial and geometric information
complementary to each other.

1) The SPAM uses the attention mechanism to enhance the
extraction of useful information to suppress noise and
useless information, which is particularly important for
remote sensing images of complex scenes. The successive
pooling operation was embedded into the SPAM to extract
multiscale and salient features, just like holding a magni-
fying glass and continuously zooming in and browsing
across high-resolution remote sensing images.

2) The FFM alleviates the bottleneck problem in semantic
segmentation. By fusing the semantic information in the
deep network into the features of the shallow network, the
features of the shallow network contain not only geometric
information but also rich spatial information. The fusion
of high- and low-level features makes the boundaries of
objects more refined.

The results of the proposed SPANet on Potsdam and Vaihin-
gen datasets show that the features extracted from the backbone
were extracted into multiscale features after the SPAM so that
a stronger feature representation was obtained. Therefore, com-
pared to other models, good segmentation results were achieved,
especially for small-scale objects and boundaries. However,
the segmentation results for those parts affected by shadows
in the scene are unsatisfactory. To conquer this problem, we
plan to embed feature enhancement strategies to the SPAM for
improving the representation ability of high-level features in the
network.

REFERENCES

[1] T. Chowdhury, M. Rahnemoonfar, R. Murphy, and O. Fernandes, “Com-
prehensive semantic segmentation on high resolution UAV imagery for
natural disaster damage assessment,” in Proc. IEEE Int. Conf. Big Data,
2020, pp. 3904–3913.

[2] Q. Ye, J. Yang, F. Liu, C. Zhao, N. Ye, and T. Yin, “L1-norm distance
linear discriminant analysis based on an effective iterative algorithm,”
IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 1, pp. 114–129,
Jan. 2018.

[3] T. Anand, S. Sinha, M. Mandal, V. Chamola, and F. R. Yu, “AgriSegNet:
Deep aerial semantic segmentation framework for IoT-assisted precision
agriculture,” IEEE Sens. J., vol. 21, no. 16, pp. 17581–17590, Aug. 2021.

[4] Q. Ye, Z. Li, L. Fu, Z. Zhang, W. Yang, and G. Yang, “Nonpeaked
discriminant analysis for data representation,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 12, pp. 3818–3832, Dec. 2019.

[5] Z. Guo et al., “Semantic segmentation for urban planning maps based on
U-Net,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2018, pp. 6187–
6190.

[6] Q. Ye et al., “L1-norm distance minimization-based fast robust twin
support vector k-plane clustering,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 9, pp. 4494–4503, Sep. 2018.

[7] J. Li, S. Gou, R. Li, J.-W. Chen, and X. Sun, “Ship segmentation via
encoder-decoder network with global attention in high-resolution SAR
images,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2021, Art no. 4016605.

[8] L. Sun et al., “Low rank component induced spatial-spectral kernel method
for hyperspectral image classification,” IEEE Trans. Circuits Syst. Video
Technol., vol. 30, no. 10, pp. 3829–3842, Oct. 2020.

[9] L. Sun, G. Zhao, Y. Zheng, and Z. Wu, “Spectral-spatial feature tok-
enization transformer for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5522214.

[10] L. Fu et al., “Learning robust discriminant subspace based on joint L2,p-
and L2,s-norm distance metrics,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 1, pp. 130–144, Jan. 2022.

[11] Q. Ye, P. Huang, Z. Zhang, Y. Zheng, L. Fu, and W. Yang, “Multiview
learning with robust double-sided twin SVM,” IEEE Trans. Cybern., to be
published, doi: 10.1109/TCYB.2021.3088519.

[12] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[13] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A deep
neural network architecture for real-time semantic segmentation,” 2016,
arXiv:1606.02147.

[14] A. Chaurasia and E. Culurciello, “LinkNet: Exploiting encoder represen-
tations for efficient semantic segmentation,” in Proc. IEEE Vis. Commun.
Image Process., 2017, pp. 1–4.

[15] E. Irwansyah, Y. Heryadi, and A. A. S. Gunawan, “Semantic image
segmentation for building detection in urban area with aerial photograph
image using U-Net models,” in Proc. IEEE Asia-Pacific Conf. Geosci.,
Electron. Remote Sens. Technol., 2020, pp. 48–51.

[16] Z. Zhang, C. Zhang, and W. Li, “Semantic segmentation of urban buildings
from VHR remotely sensed imagery using attention-based CNN,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., 2020, pp. 1833–1836.

[17] C. Tian, C. Li, and J. Shi, “Dense fusion classmate network for land cover
classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, 2018, pp. 262–2624.

[18] X. Tan, Z. Xiao, Q. Wan, and W. Shao, “Scale sensitive neural network
for road segmentation in high-resolution remote sensing images,” IEEE
Geosci. Remote Sens. Lett., vol. 18, no. 3, pp. 533–537, Mar. 2021.

[19] Q. Liu, M. Kampffmeyer, R. Jenssen, and A.-B. Salberg, “Dense dilated
convolutions’ merging network for land cover classification,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 9, pp. 6309–6320, Sep. 2020.

[20] C. Peng, Y. Li, L. Jiao, Y. Chen, and R. Shang, “Densely based multi-scale
and multi-modal fully convolutional networks for high-resolution remote-
sensing image semantic segmentation,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 8, pp. 2612–2626, Aug. 2019.

[21] X. Zhang, Z. Xiao, D. Li, M. Fan, and L. Zhao, “Semantic segmentation of
remote sensing images using multiscale decoding network,” IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 9, pp. 1492–1496, Sep. 2019.

[22] J. Liu, X. Xiong, J. Li, C. Wu, and R. Song, “Dilated residual network based
on dual expectation maximization attention for semantic segmentation of
remote sensing images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2020, pp. 1825–1828.

[23] H. Li, K. Qiu, L. Chen, X. Mei, L. Hong, and C. Tao, “SCAttNet: Semantic
segmentation network with spatial and channel attention mechanism for
high-resolution remote sensing images,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 5, pp. 905–909, May 2021.

[24] D. Lei, T. Hao, and B. Lorenzo, “LANet: Local attention embedding
to improve the semantic segmentation of remote sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 426–435, Jan. 2021.

[25] Y. Li, T. Yao, Y. Pan, and T. Mei, “Contextual transformer networks
for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., to be
published, doi: 10.1109/TPAMI.2022.3164083.

[26] L. Sun, F. Wu, C. He, T. Zhan, W. Liu, and D. Zhang, “Weighted
collaborative sparse and L1/2 low-rank regularizations with superpixel
segmentation for hyperspectral unmixing,” IEEE Geosci. Remote Sens.
Lett., vol. 19, 2022, Art no. 5500405.

[27] C. He, L. Sun, W. Huang, J. Zhang, Y. Zheng, and B. Jeon, “TSLRLN:
Tensor subspace low-rank learning with non-local prior for hyperspectral
image mixed denoising,” Signal Process., vol. 184, 2021, Art. no. 108060.

[28] Y. Zheng, B. Jeon, L. Sun, J. Zhang, and H. Zhang, “Student’s T-
hidden Markov model for unsupervised learning using localized feature
selection,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 10,
pp. 2586–2598, Oct. 2018.

[29] X. Wang, C. Shen, H. Li, and S. Xu, “Human detection aided by deeply
learned semantic masks,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 30, no. 8, pp. 2663–2673, Aug. 2020.

[30] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput. Assist. Intervention, 2015, pp. 234–241.

[31] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

https://dx.doi.org/10.1109/TCYB.2021.3088519
https://dx.doi.org/10.1109/TPAMI.2022.3164083


SUN et al.: SPANET: SUCCESSIVE POOLING ATTENTION NETWORK FOR SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGES 4057

[32] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Learning a
discriminative feature network for semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 1857–1866.

[33] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Semantic image segmentation with deep convolutional nets and fully con-
nected CRFs,” 2015. [Online]. Available: http://arxiv.org/abs/1412.7062

[34] L.-C. Chen, G. Papandreou, and I. Kokkinos, “DeepLab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4,
pp. 834–848, Apr. 2018.

[35] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017. [Online]. Avail-
able: https://doi.org/10.48550/arXiv.1706.05587

[36] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801–818.

[37] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 6230–6239.

[38] B. Yu, L. Yang, and F. Chen, “Semantic segmentation for high spatial
resolution remote sensing images based on convolution neural network
and pyramid pooling module,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 9, pp. 3252–3261, Sep. 2018.

[39] D. Lei, Z. Jing, and B. Lorenzo, “Semantic segmentation of large-size
VHR remote sensing images using a two-stage multiscale training archi-
tecture,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 5367–5376,
Aug. 2020.

[40] B. Cui, W. Jing, L. Huang, Z. Li, and Y. Lu, “SANet: A sea–land seg-
mentation network via adaptive multiscale feature learning,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 116–126, 2021.

[41] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2011–2023, Aug. 2020.

[42] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 510–519.

[43] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

[44] J. Park, S. Woo, J.-Y. Lee, and I.-S. Kweon, “BAM: Bottleneck attention
module,” 2018. [Online]. Available: https://doi.org/10.48550/arXiv.1807.
06514

[45] J. Fu et al., “Dual attention network for scene segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3141–3149.

[46] J. Huang, X. Zhang, Y. Sun, and Q. Xin, “Attention-guided label refinement
network for semantic segmentation of very high resolution aerial orthoim-
ages,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 4490–4503, 2021.

[47] Z. Zheng, X. Zhang, P. Xiao, and Z. Li, “Integrating gate and attention
modules for high-resolution image semantic segmentation,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 4530–4546, 2021.

[48] L. Mou, Y. Hua, and X. X. Zhu, “Spatial relational reasoning in networks
for improving semantic segmentation of aerial images,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2019, pp. 5232–5235.

Le Sun (Member, IEEE) was born in Jiangsu, China,
in 1987. He received the B.S. degree in mathematics
from the School of Science, Nanjing University of
Science and Technology (NJUST), Nanjing, China, in
2009, and the Ph.D. degree in computer science from
the School of Computer Science and Engineering,
NJUST, in 2014.

From 2015 to 2018, he was a Postdoctoral Re-
searcher with the School of Electronic and Electri-
cal Engineering, Sungkyunkwan University, Seoul,
South Korea, where he conducted research in the field

of multi-image fusion based on sparse dictionary learning and compressive sens-
ing. Since 2020, he has been an Associate Professor with the School of Computer
and Science, Nanjing University of Information Science and Technology, Nan-
jing. His research interests include hyperspectral image processing (including
unmixing, classification, and restoration), sparse representation, compressive
sensing, and deep learning.

Shiwei Cheng received the B.S. degree in software
engineering from the School of Software College,
Zhongyuan University of Technology, Zhengzhou,
China, in 2019. He is currently working toward the
M.S. degree in electronic information with the Nan-
jing University of Information Science and Technol-
ogy, Nanjing, China.

His research interests include semantic segmenta-
tion of remote sensing images.

Yuhui Zheng (Member, IEEE) was born in Shanxi,
China, in 1982. He received the B.S. degree in chem-
istry and the Ph.D. degree in computer science from
the Nanjing University of Science and Technology,
Nanjing, China, in 2004 and 2009, respectively.

From 2014 to 2015, he was a Visiting Scholar with
the Digital Media Laboratory, School of Electronic
and Electrical Engineering, Sungkyunkwan Univer-
sity, Seoul, South Korea. He is currently a Full Profes-
sor with the School of Computer and Science, Nanjing
University of Information Science and Technology,

Nanjing. His research interests include image processing, pattern recognition,
and remote sensing information systems.

Zebin Wu (Senior Member, IEEE) was born in Zhe-
jiang, China, in 1981. He received the B.S. and Ph.D.
degrees in computer science from the School of Com-
puter Science and Engineering, Nanjing University of
Science and Technology, Nanjing, China, in 2003 and
2008, respectively.

He is currently a Full Professor with the School of
Computer Science and Engineering, Nanjing Univer-
sity of Science and Technology. His research inter-
ests include virtual reality and system simulation, re-
mote sensing information processing, and distributed
computing.

Jianwei Zhang received the B.S. degree from Wuhan
University, Wuhan, China, in 1998, and the Ph.D.
degree from the Nanjing University of Science and
Technology, Nanjing, China, in 2006, both in com-
puter science.

He is currently a Professor with the College of
Mathematics and Physics, Nanjing University of In-
formation Science and Technology, Nanjing. His
research interests include pattern recognition, arti-
ficial intelligence, and remote sensing information
processing.

http://arxiv.org/abs/1412.7062
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.48550/arXiv.1807.06514
https://doi.org/10.48550/arXiv.1807.06514


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


