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DRMNet: Difference Image Reconstruction
Enhanced Multiresolution Network for Optical

Change Detection
Avinash Chouhan , Arijit Sur, and Dibyajyoti Chutia, Senior Member, IEEE

Abstract—Change detection in satellite images is an important
research area as it has a wide range of applications in natural
resource monitoring, geo-hazard detections, urban planning, etc.
Identifying physical changes on the ground and avoiding spurious
changes due to other reasons like co-registration issues, change in
illumination conditions, sun angle, and presence of cloud and fog is
a challenging task. This work proposes a multitask learning based
change detection model where two parallel pipeline architectures
predict change map and image difference. The proposed model
takes two images and their difference as input and provides them
to a backbone network (BN). The output of the BN is fed into the
proposed multiscale attention module for the effective identification
of changes in multitemporal and very high-resolution aerial images.
In another parallel path, the output of the BN is downsampled and
passed to the proposed deconvolution with a subpixel convolution
module to generate image difference. Two loss functions are utilized
in two parallel paths to train the overall model in an end-to-end
supervised setting. A comprehensive set of experiments have been
carried out, and the results reveal that the proposed DRMNet model
has achieved an F1 score improvement of 1.66% in CDD, 1.61% in
SYSU, and 0.14% in LEVIR-CD datasets. It achieved an F1 score
of 86.11% for the BCDD dataset with the new test image.

Index Terms—Change detection (CD), difference image
reconstruction, multiscale attention, optical remote sensing.

I. INTRODUCTION

IDENTIFYING changes in bitemporal remotely sensed im-
ages is very useful in natural resource monitoring, urban

planning, land monitoring, and other disaster mitigation ap-
plications. In the recent literature, plenty of change detection
(CD) algorithms have been proposed. CD algorithms can be
categorized into two groups based on data usage: homogeneous
CD and heterogeneous CD. The homogeneous CD algorithm
uses the input images taken from the same sensor, while the
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heterogeneous CD algorithm [1], [2] uses input images from
different sensors to detect the changes. This work presents a
homogeneous CD algorithm where the image pairs from the
same sensor are used for analyzing the changes. Tradition-
ally, arithmetic-based analysis [3], transformation-based anal-
ysis [4], and post-classification based algorithms [5], [6] are
used for homogeneous CD, of which arithmetic-based analysis
and transformation-based analysis are primarily unsupervised.

One of the main challenges of the CD task is determining the
alteration at the pixel level. Recent studies proposed pixel-level
CD methods [4], [7], [8] based on pixel differences between
images taken in different time intervals for the same region.
It maps the relationship between the same pixels between two
different images to denote the changes in the spectral features.
Object-level methods [9], [10] considered the group of pixels
for the change identification. They try to identify the relation
between pixels at the object level and consider that information
for CD.

Deep learning (DL) based approaches offered the combina-
tion of pixel- and object-level approaches as they classify output
at pixel level and considered semantic dependencies at the object
level. For DL-based methods, two approaches are frequently
used: early fusion networks and siamese networks. In an early
fusion network [11]–[14], input images are first combined and
then passed to the network to detect the changes, while in
siamese networks [15]–[19], the input images are passed to the
parallel stream of the network. The literature has observed that
contextual information plays an important role in identifying
the changes in high-resolution aerial images. To model the local
context, large size kernels, local attention, and dilated convolu-
tions are used [13], [17], [20]–[24]. Identification of long-range
dependency between pixels is required to differentiate between
actual and spurious changes, which are achieved using nonlocal
operators and self-attention modules (SAMs) [15], [25]–[27].

In the literature, different approaches for CD are reported.
Among them, adversarial learning based methods [28]–[30]
for generating synthetic dataset, single image super-resolution
based multiscale image generation method [31], and superpixels
based siamese networks [32] become popular. Dense connectiv-
ity plays an important role in network design for CD in high-
resolution aerial images. It provides feature reuse and alternative
paths in the network. Recent network architectures for CD follow
dense connections within the network [24], [33]. Preservation
of the original resolution of features also becomes prominent to
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avoid information losses and enhance the delineation process to
identify actual changes.

The utilization of multispectral information is useful in the
CD task [11], [34], [35]. For hyperspectral images, DL-based
CD methods [36], [37] perform efficiently. CD can be modeled
as a difference between input features. Attempts are made to
replicate this in deep networks using the difference of feature
maps [12], [33], [38] within the network. Postclassification-
based methods [6] are also utilized for similar objectives but
treat each image independently for classification.

It is observed in the literature that the temporal dependency
of pixels plays a vital role in detecting the changes in images.
For temporal dependence, a few recent schemes [35], [39], [40]
have used recurrent neural networks. In addition, coregistration
of image pairs and input normalization is also important for CD
tasks as a minor shift in input data, variation of surrounding
conditions, cloud, fog, shadow, and sun angle may create the
pseudochange effects. These effects are required to nullify for
efficient detection strategies.

In the satellite images, physical changes are categorized as
spatial and temporal changes. A long-range context correlation
between pixels is necessary for modeling such spatial and tempo-
ral changes. Capturing long-range context correlation is difficult
due to convolutional kernels’ limited field of view. Moreover, CD
is a dense labeling problem, and, thus, the prediction of a precise
change map for high-resolution satellite images is difficult.
The other best published method [13] resolves these challenges
using dilated convolution and self-attention. Preservation of the
image’s original resolution is also vital to avoid information loss
due to downsampling and subsequent upsampling processes.
Another best published method [24] handles this through the
use of NestedUnet architecture that preserves original resolution
feature maps. This work proposes an end-to-end multitasking ar-
chitecture that predicts the change map and the image difference
through two parallel architectures. One path predicts the change
map by analyzing the multiresolution backbone with the help
of a multiscale attention module (MSAM). The multiresolution
backbone ensures the preservation of original resolution, and
multiscale self-attention extracts long-range pixel dependencies
required to capture finer details. The other path uses a deconvolu-
tion network using subpixel convolution to predict the accurate
image difference from downsampled features generated from
the backbone network (BN).

The rest of this article is organized as follows. Section II
contains a comprehensive literature review for related work.
The detailed architecture of the proposed model is described in
Section III. The experimental setup is given in Section IV. Ex-
perimental results having a comparison of the proposed scheme
with the existing state-of-the-art (SOTA) results are given in
Section V. An ablation study is included in Section VI to
highlight the usefulness of individual modules of the proposed
model. Finally, Section VII concludes this article.

II. LITERATURE SURVEY

CD requires a pair of images as input that a siamese-
based convolutional neural network can effectively utilize. Zhan
et al. [18] proposed a siamese neural network having increas-
ing kernel size with weighted contrastive loss to handle data

imbalance. Zhang et al. [19] pointed out that contrastive loss
ignored semantic dependencies between pixels. To resolve it,
the authors proposed the use of a siamese network that utilized
enhanced triplet loss based on triplet selection of anchor fea-
tures, positive features, and negative features. Peng et al. [14]
followed a different approach than the siamese network and used
concatenated input pairs. They proposed the use of UNet++ [41]
as it utilized dense connections and multiscale feature streams
with multiple side output fusion.

Attention-based models have also been proposed frequently
for CD. Zhang et al. [20] utilized a double UNet based encoder–
decoder network to produce coarse and refine scale predictions.
Attention gates are used in coarse networks, and their output is
enhanced in the second network using ground truth and residual
connections. In another attention-based model, Zhang et al. [21]
proposed an image fusion network (IFN) that used two fully con-
volutional networks for extraction of features that are passed to
a difference discrimination network for change map generation.
In a similar direction, Chen et al. [25] proposed the use of spatial
and temporal attention in a deep network to identify bitempo-
ral changes. Besides these, channelwise attention modules and
atrous convolutions are used by Song et al. [13] to generate
multiscale and multicontext features. In a similar line of thought,
bilateral semantic fusion siamese network (BSFNet) is proposed
by Du et al. [17] which uses the channel and spatial attention.
Other significant attention-based method includes ADS-Net by
Wang et al. [22] and DTCDSCN by Liu et al. [23].

Time-varying sequential inputs are also essential in CD to
model the temporal dependency. Mou et al. [35] proposed a
recurrent convolution neural network to utilize temporal features
in addition to spatial and spectral features. The recurrent module
analyzes the features extracted by CNN layers to model the
temporal dependency. Chen et al. [39] introduced a siamese
convolutional multiple-layer recurrent neural network that used
extracted features from the convolutional neural network and
recurrent neural network to find the changes. Ru et al. [42]
proposed a correlation-based fusion module that utilized deep
features to find the correlation between instances and fused it
to find changes. This correlation is utilized for cross-temporal
fusion.

The difference of input pair depicts an abstract representation
of the change that happened between inputs. Peng et al. [12] in-
troduced a dense attention module that used multiple upsampling
attention units for feature fusion. They also proposed the use
difference of input pairs in the enhancement unit. Zang et al. [38]
proposed a feature difference convolution neural network that
used shared pretrained weight for feature extraction, and the
decoder module utilized the difference of extracted features.
Zhang et al. [33] proposed DifUnet++ that utilized a difference
pyramid at multiple scales of features with Unet++[41] as a base
model and used learning-based Dupsampling instead of bilinear
upsampling.

Generative adversarial networks are a promising area of re-
search for an image-to-image translation task. Zhao et al. [28]
proposed attention gates generative adversarial adaptation net-
work that used attention gates for spatial constraint with do-
main similarity loss for multiple CD. Chen et al. [29] pro-
posed instance-level change augmentation (IAug) to produce a
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synthetic building change instance dataset. Change detection
network (CDNet) utilized actual and augmented building in-
stances for CD. Liu et al. [31] introduced a super-resolution
based change detection network (SRCDNet) which used ad-
versarial learning for the generation of high-resolution im-
ages. These multiscale images are passed to feature extractors
with attention modules to produce multiscale CD maps. Zhang
et al. [32] proposed a superpixel enhance CD network, which is
based on two parallel siamese networks of superpixel subsam-
pling networks. A deep network utilized extracted superpixels,
and an adaptive superpixels merging module is proposed. Lebe-
dev et al. [30] utilized Pix2Pix, a generative adversarial network,
to produce a change map and also introduced CDD dataset.

Fang et al. [24] proposed densely connected siamese network
SNUNet-CD, which used NestedUNet based siamese network.
Ensemble channel attention module is proposed which aggre-
gates and refines the features from multiple levels of the network.
Foivis et al. [26] proposed fractal Tanimoto similarity metric
and FracTAL ResNet block. Fractal Tanimoto attention layer
is proposed for improvement in scale-dot based self-attention
mechanism. The transformer is an encoder–decoder based net-
work that utilizes multihead self-attention. Chen et al. [27]
proposed a bitemporal image transformer (BiT) that used token-
based context encoding. A transformer decoder is used for the
conversion of taken-based encoding into pixel-based output. Shi
et al. [43] proposed a deep supervised attention metric based
network (DSAMNet), which used siamese network and channel
attention. These schemes are very efficient and show SOTA
performance for different datasets. Shi et al. [43] mention four
standard datasets, namely, CDD dataset by Lebedev et al. [30],
LEVIR-CD dataset by Chen et al. [25], BCDD dataset by Ji
et al. [44], and SYSU dataset by Shi et al. [43]. Most of the
current schemes have used these datasets for experimentation.

From the reviewed literature, we concluded that following are
the major challenges faced by existing architectures.

1) Encoder–decoder based network suffers information loss
due to downsampling of the original resolution.

2) Class imbalance problem may occur due to the insufficient
number of change classes.

3) Distinction between actual and spurious changes is
difficult.

III. PROPOSED SCHEME

A. Motivation

In this work, we have proposed a dense high-resolution
network to mitigate the shortcomings mentioned above in the
existing literature. Two input images (of which the changes are
detected) and the modulus of their difference are concatenated
and treated as input in this work. This input is fed to the BN
to preserve the original resolution and extract high-resolution
features. Apart from the BN modules, the proposed model has
two other significant modules, named MSAM and deconvolution
with subpixel convolution module (DSCM). MSAM models the
long-range dependencies between pixels by using self-attention
maps. DSCM helps to remove the spurious changes effectively to
produce a more accurate image difference using a deconvolution

layer through subpixel convolution. In addition, two different
loss functions are used to tackle the class imbalance problem.
The main contributions of this work are as follows.

1) The proposed DRMNet is a multitasking bitemporal CD
model that can efficiently model the long-range pixel
dependencies for a very high-resolution aerial image using
an MSAM.

2) The DRMNet also incorporates a DSCM to get more
precise change maps by enhancing the quality of feature
representation generated by the BN.

3) In the DRMNet, a modulus difference-based loss function
is used to detect the changes more precisely by the DSCM.

To justify the efficacy of the proposed scheme over the
existing SOTA literature, we use CDD, SYSU, LEVIR-CD,
and BCDD datasets for benchmark evaluation. Experimental
results reveal that the proposed scheme outperforms the current
SOTA methods. An ablation study is also included at the end
to justify the contributions of the various architecture modules
and the impacts of different hyperparameters on the proposed
model.

B. Proposed Network Architecture

The proposed DRMNet model has three primary modules, as
depicted in Fig. 1. The first one is BN, which is an extension
of an existing model named HRNet [45]. The second is the
MSAM to generate self-attention at different scales. The third
one is DSCM, which is used to predict the difference (of two
input images) reconstruction. The proposed DRMNet model
takes two images (i.e., image A and image B, where we have to
detect changes between A and B) and the corresponding image
difference (|A−B|) as input. First, the concatenation of three
images (A, B, and |A−B|) is passed through a sequence of
convolution, batch normalization, and ReLU layers, and then
its output is fed into BN. This module outputs 48 channel
feature matrices of dimension N ×N × 48 where N ×N is
the input image(s) dimension. We selected 48 channels’ output
after initial layers based on the ablation study of different initial
channel configurations as presented in Table VI. The output
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Fig. 1. DRMNet complete architecture. MSAM is a multiscale attention module, and DSCM is a deconvolution with a subpixel convolution module. Here, I1
and I2 are inputs passed to network and produced outputs represented as O1 and O2. The feature’s shape at each stage of the network is represented with blue
color.

TABLE I
CDD DATASET PERFORMANCE COMPARISON

TABLE II
LEVIR-CD DATASET PERFORMANCE COMPARISON

is fed to the MSAM module to identify whether the image is
changed or not, and the inference is tallied with ground truth
to find the corresponding loss. The exact output from the BN
is downsampled, and the downsampled version is fed into the
DSCM. The output of the DSCM is compared with the input
images differences to generate the corresponding loss (L2).

C. Backbone Network Module

This module extracts the high-resolution image features while
preserving the original image resolution. The block diagram of
the BN architecture is depicted in Fig. 2. We used residual block
as the basic unit for this backbone. Residual connections can be

TABLE III
SYSU DATASET PERFORMANCE COMPARISON

TABLE IV
WHU BCDD DATASET PERFORMANCE COMPARISON

Here, * represents results computed on different split for test data and not comparable

TABLE V
ABLATION STUDY FOR LOSS PARAMETER VALUE

TABLE VI
ABLATION STUDY FOR NUMBER OF INITIAL CHANNELS TO BE USED

Parameters are calculated in millions (M)

represented as

R(x) = κ(x) + x. (1)

Here, x is input to block with residual connection, κ is nonlin-
ear mapping, and R is residual block output. We extended an
existing network called HRNet proposed by Wang et al. [45]
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Fig. 2. Backbone module. Here, blue connections represent proposed skip connections between the same resolution stream. The down arrow represents
downsampling, and the up arrow represents upsampling of features.

Fig. 3. Multiscale attention module. Here, SAM is the self-attention module.
Downsample-1, Downsample-2, Downsample-3, and Upsample-1, Upsample-2,
Upsample-3 represent downsampling and upsampling operations at different
scales.

where the high-resolution representations of the input image are
maintained by connecting the high-to-low resolution convolu-
tion streams in parallel and by exchanging the information across
resolutions frequently. Likewise, in this work, we generated mul-
tiple streams of different resolutions (e.g., 1, 1

2 , 1
4 , etc.) from the

input image. These multiresolution streams are fully connected,
as shown in Fig. 2. Features of different resolutions are combined
using the addition operator. We extended the HRNet model by
adding the skip connections between the same resolution stream
for parameter sharing and better gradient flow. This BN module
provides high-resolution feature extraction and multiresolution
information fusion, which are required to identify actual changes
in high-resolution images.

D. Multiscale Attention Module

As described in Fig. 1, the output of the BN is fed into two
different modules in parallel. One is the MSAM, and the other
is the DSCM. In this subsection, MSAM is described with an
illustrative example as given in Fig. 3. The self-attention [46]
is used at multiple lower scales to produce aggregated multi-
scale self-attentive features. This module essentially generates
self-attention maps at different lower scales such as

[
1
4 ,

1
6 ,

1
8

]
of

the original resolution and fuses them as described in Fig. 3.
The input (original resolution) features are downsampled in

Fig. 4. Self-attention module, M represents multiplication operation, and A is
addition operations.

different lower resolutions ( 14 ,
1
6 ,

1
8 ) and passes through the SAM

individually. Then all three SAM responses are upsampled with
respect to their original resolutions and then added to get the
final response. The self-attention is used to find the long-range
dependencies between pixels. The block diagram of SAM has
depicted in Fig. 4. Self-attention captures the global interaction
of the pixels using dot product operation between the linear rep-
resentation of inputs. For the given input I , it can be represented
as

Z = f(θ(I), ψ(I)) ∗ μ(I) + I (2)

where Z is self-attentive output map, f is mapping function
used in self-attention, and θ(.), ψ(.), μ(.) are linear functions.
The linear functions are implemented using 1 × 1 convolutions.
These linear functions produced a linear transformation of input
I which is utilized by mapping function f and distributed over
linear representation generated by μ(.). The function f uses
multiplication and softmax operation and is defined as

f(θ(I), ψ(I)) = softmax(θ(I) ∗ ψ(I)). (3)

Creating a self-attention map in the original resolution is very
memory extensive and not feasible for large image patches. In
this module, we propose to generate a self-attention map at mul-
tiple lower resolutions and later combine the upsampled maps.
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Fig. 5. Deconvolution with sub-pixel convolution module (DSCM). Here,
Conv is the convolutional layer.

Fig. 6. Output visualization of 256× 256 pixels patches for SYSU test
dataset. Here, the white color is the actual change detected by the model, green
color is pseudochange detected by the model, and the pink color is the actual
change missed.

This approach produced better results than self-attention maps
at single resolution and required less computational resources
than self-attention at original resolution. The output of MSAM
(Zfinal) can be represented by the following equations:

Zfinal = Up4x

(
Z 1

4

)
+ Up6x

(
Z 1

6

)
+ Up8x

(
Z 1

8

)
(4)

where Z 1
4
, Z 1

6
, and Z 1

8
are self-attentive maps, generated

at 1
4 th, 16 th, and 1

8 th resolutions of input I . Up4x, Up6x, and
Up8x represent upsampling operation with upsample rates of
4, 6, and 8. It is used to produce the aggregated attentive map
(Zfinal) at original resolution.

E. Deconvolution With Subpixel Convolution Module

This module is a deconvolution (decoder) module, which
takes a subsampled version of image difference features (gener-
ated by the BN module) and reconstructs the image difference
in the original resolution. The resolution scaling (upsampling)
is made through the subpixel convolution process. It has been
experimentally observed that by predicting image difference
from downsampled feature maps, this module can remove the
spurious changes effectively to produce a more accurate image
difference. Thus, the DSCM is one of the novel contributions
of the proposed work. A basic block diagram of this DSCM is
depicted in Fig. 5. The DSCM consists of two convolutions
(with Tanh activation function) layers, one convolution layer

with subpixel convolution, and a sigmoid layer. The subpixel
convolution [47] is defined as a standard convolution in low-
resolution space followed by a periodic shuffling operation. It
is used as a part of the proposed deconvolution process for the
required upsample process to reconstruct the image difference
in the original resolution. Architecturally, this pipeline (BN
module, downsampler and followed by DSCM as deconvolution
process) forms an encoding–decoding like architecture which
helps to remove the spurious changes (due to image acquisi-
tion, spatial de-synchronization, etc.) from the image difference
(i.e., the change map). Subpixel convolution is a well-known
technique which transforms the input of size H ×W × C
to (H × d)× (W × d)× C

d2 with H,W, and C being height,
width, and channels of input and d is the upsampling factor.
We have used the sigmoid activation function because it gives
output in the range of [0, 1]. This module can be mathematically
formulated as

O2 = σ

(
PS

(
w3

(
tanh

×
(
w2

(
tanh

(
w1

(
OF

1

2

)
+ b1

)
+ b2

)
+ b3

))
.

(5)

Here, PS is pixel shuffle convolution, OF
1
2 is downsampled

output of backbone, wi is weight of convolution kernel, and
bi is bias of convolution.

The output of this DSCM is compared to the modulus of input
pair difference using the loss function (L2), which is calculated
as mean square error (mse). This loss function trains the BN
module for better feature generation. The features generated
from the BN module are downsampled and fed to DSCM to
predict the change map by removing the spurious contents from
the input features. To get the loss, these predicted change maps
(O2) are compared with the image differences (using theL2 loss
function).

F. Loss Function

In Fig. 1, it can be observed that two loss functions are used
in the proposed model. First, loss function (L1) is calculated
between O1 and ground truth (G). In this case, we have used
a combined loss function as it has been used in SNUNet [24].
The authors have argued that there exists a sample imbalance
effect as the number of unchanged pixels is often far more than
the number of changed pixels. To reduce the sample imbalance
effect, a combination of weighted entropy lossLce and dice loss
Ld has been used. Lce and Ld can be represented as per the
following equations:

L1 = Lce + Ld (6)

Lce = −
N∑
1

c× log(S(m)c) (7)

Ld = 1− 2×O × S(m)

O + S(m)
. (8)
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Fig. 7. 256× 256 pixel patches output visualization for CDD test dataset. (a) Image 1. (b) Image 2. (c) Ground truth. (d) FC-EF output. (e) SNUNet output.
(f) Our output. (g) Heat map.

Fig. 8. 256× 256 pixel patches output visualization for SYSU test dataset. (a) Image 1. (b) Image 2. (c) Ground truth. (d) FC-EF output. (e) SNUNet output.
(f) Our output. (g) Heat map.
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Fig. 9. 256× 256 pixel patches output visualization for LEVIR test dataset. (a) Image 2. (b) Image 2. (c) Ground truth. (d) FC-EF output. (e) SNUNet output.
(f) Our output. (g) Heat map.

Fig. 10. 256× 256 pixel patches output visualization for WHU test dataset. (a) Image 1. (b) Image 2. (c) Ground truth. (d) FC-EF output. (e) SNUNet output.
(f) Our output. (g) Heat map.
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Here, S(.) is the softmax function, c is a class vector, m is the
model’s output before the softmax layer, and O is the ground
truth.

The second loss function (L2) is calculated as mse betweenO2

and |I1 − I2|. The overall loss function is calculated as follows:

Loss(I1, I2, G,O1, O2)=L1(G,O1)

+ α× L2(|I1 − I2|, O2). (9)

Here, Lce, Ld, α, and Lmse are weighted cross-entropy loss,
dice loss, loss weight constant (variable with value between [0,
1]), and mse loss.L1 is calculated with the predicted change map
using the output of MSAM (O1) with the actual ground truth,
andL2 loss is calculated between the predicted image difference
using the output of DSCM (O2) and the ground truth. We find
the optimal value of α using exhaustive experiments as listed in
Table V. From this, we found that the α value 0.9 produces the
optimal performance.

IV. DATASETS

We have used the Google dataset CDD proposed by Lebdev
et al. [30], LEVIR-CD dataset introduced by Chen et al. [25],
WHU BCDD [44] dataset, and SYSU [43] dataset. CDD dataset
consists of 16 000 images of 256× 256 pixels containing RGB
data with training, validation, and test set sizes of 10 000,
3000, and 3000, respectively. LEVIR-CD dataset contains 637
bitemporal images of size 1024× 1024 pixels with RGB bands.
We have generated 256× 256 size patches from the LEVIR-CD
dataset for our experiments. WHU BCDD dataset consists of a
training image of size 15354× 21243 pixels and a testing image
with size 15354× 11265 pixels. Earlier, a single image of size
15354× 32507 was provided, and the test image was generated
randomly. We cropped 256× 256 size patches from the training
image to train the model. SYSU dataset consists of 20 000 aerial
images for CD with the train set, validation set, and test set
divided into 12 000, 4000, and 4000 images.

CDD dataset contains changes of buildings, roads, etc. SYSU
dataset contains changes of building, road, sea construction,
vegetation, construction, etc. LEVIR-CD and WHU BCDD
datasets focus on building CD.

V. EXPERIMENTS

A. Training and Hyperparameters

We have used an initial learning rate of 0.001 and a batch size
of 10 for the training of our network. We used the Nvidia P100
graphics card with 32 GB of graphics memory. We selected
batch size based on this available graphics memory. We used
data augmentations of horizontal and vertical flipping with 50%
probability and random rotation to increase their variability. For
each dataset, the model is trained for 300 epochs with early
stopping when it cannot optimize further. Input pairs and ground
truths are normalized before passing to the network. During
inference, we used test time augmentation of horizontal and
vertical flipping and 90◦ rotations. Final maps are produced
using the average of all augmented outputs.

B. Comparative Analysis

We used precision (Pr), recall (Rc), F1 score (F1), intersec-
tion over union (IoU), and overall accuracy (OA) as performance
metrics for quantitative comparison of outputs. These metrics are
used in recently published works for comparative study. These
are calculated using true positive (tp), false positive (fp), true
negative (tn), and false negative (fn) values as per following
equations:

Pr =
tp

tp + fp
(10)

Rc =
tp

tp + fn
(11)

F1 = 2× Pr ×Rc

Pr +Rc
(12)

OA =
tp + tn

tp + fp + tn + fn
(13)

IoU =
tp

tp + fp + fn
. (14)

Numerical comparisons against the SOTA methods on different
datasets are presented in Tables I–IV with the best result high-
lighted in the red color. As it can be observed in Table I, for the
CDD dataset, our model achieved 99.57% OA with F1 score of
98.20 which are 0.44% and 1.66%, respectively, higher than the
SOTA result [13]. The corresponding subjective (visual) results
are presented in Fig. 7. As per Table II and Fig. 12, it is observed
that our model achieved F1 score of 91.97% which is 0.14%
higher than the SOTA result [26] for LEVIR-CD dataset. From
Table III and Fig. 8, it is observed that against the SYSU dataset,
we achieved 91.23% OA and 80.53% F1 score which are 1.27%
and 1.61% higher, respectively, than the SOTA result [43]. For
the BCDD dataset, we reported our result on a separate test image
provided in dataset. Earlier approaches have reported results on
the random test split. These results are not comparable with
our output. For comparison against the BCDD dataset, we have
trained SNUNet [24] and generated results on the test image. Our
results are presented in Table IV where not comparable results
are shown with * mark and visual comparison shown in Fig. 10.

In Table V, detailed experiment results are presented for
finding the optimal value of α. We trained our final model
on the LEVIR-CD dataset. The experiment started with an
initial value of 0.5 for α and achieved F1 score of 91.09%
and IoU of 83.56%. We repeated this experiment with an in-
crease of 0.1 in the α value till the final value of 1.0. After
analyzing the result produced, we found that 0.9 is the optimal
value.

C. Visual Analysis

Visual test results are shown in Fig. 6 using RGB composite
(ground truth in red and blue bands and prediction in green band)
images to demonstrate the accurate prediction capability of the
proposed model. We can conclude from these figures that our
model produced results very similar to actual ground truth. It
missed a small number of actual changes with few detection of
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Fig. 11. Ablation study visualization with 256× 256 pixel patches. Here, B is base network, D is DSCM, S is SAM, M is MSAM, R is residual connections,
and Da is data augmentation at test time. (a) Image 1. (b) Image 2. (c) Groundtruth. (d) B + M + D + R + Da. (e) B + M + D + R. (f) B + M + D. (g) B + M.
(h) B + S. (i) B.

pseudochanges. The visual output comparison of the proposed
work, FC-EF [11], SNUNet [24], and ground truth is presented in
Figs. 7–10. The competitive methods are chosen based on their
recent SOTA performance. For example, SNUNet [24] is the
recently published one of the SOTA work. FC-EF [11] is chosen
as it is one of the foundation works for DL-based CD. It is [11]
used as a baseline to show how the proposed model improved the
performance over the base performance. In Fig. 7, CDD dataset
is used with changes of buildings and roads. While FC-EF [11]
network could not make difference between building and road
changes, SNUNet [24] generated better results. Our network
produced more precise results compared to these. Fig. 8 contains
outputs produced on the SYSU dataset with multiple change
types. For this dataset, the proposed method is relatively better
than others. The output comparison on the LEVIR-CD dataset
with building change instances is shown in Fig. 9. The output
of FC-EF [11] missed many building change instances and
SNUNet [24] detected some false changes. Our proposed work
output is close to the actual ground truth and missed minimal
changes. We used another building change dataset, WHU-CD,
and its visual outputs are shown in Fig. 10. For this dataset,
FC-EF [11] detected several false changes and SNUNet [24]
also detected some false changes. Our proposed work detected
lesser false changes.

VI. ABLATION STUDY

We conducted extensive experiments to find the optimal fu-
sion strategy for the inputs, the optimal number of initial chan-
nels, the number of resolution levels in MSAM, and architecture
components. We conducted all experiments on the LEVIR-CD
test dataset.

TABLE VII
ABLATION STUDY ON FUSION METHODS

TABLE VIII
ABLATION STUDY ON ATTENTION MODULE

Here, SAM is a self-attention module. MSAM-2 is the multiscale at-
tention module with two resolutions of self-attention maps. MSAM-3
is a multiscale attention module with three resolutions of self-attention
maps. MSAM-4 is a multiscale attention module with four resolutions
of self-attention maps. Parameters are calculated in thousands (K), and
FLOPS are counted in millions (M).

A. Ablation for Fusion Strategy

We started with a base model similar to HRNet [45]. It is
observed in the literature that handling multitemporal inputs are
an important task for CD. For an optimum strategy to combine
the input pair, a comprehensive set of experiments has been con-
ducted as tabulated in Table VII. We tried early fusion of input
pairs, a medium fusion of input pairs, no fusion of input pairs,
and early fusion with the modulus of the input pair difference.
The input pair is concatenated in early fusion and passed to
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Fig. 12. 1024× 1024 pixel output visualization for LEVIR test images. (a) Image 1. (b) Image 2. (c) Ground truth. (d) Our Output.

TABLE IX
ABLATION STUDY

Here, DA is data augmentation at test time, DAE1 is data augmentation at test time with an overlapped evaluation with stride 128 pixels, and DAE1 is
data augmentation at test time with an overlapped evaluation with a stride of 64 pixels.

the network for feature extraction. In medium fusion, the input
pair is given simultaneously to the base model till the middle of
it. After that, features from both streams are combined using a
concatenation operation. No fusion strategy used concatenated
input features till the final class convolution layer. In early
fusion with the modulus of the input pair difference approach,
concatenated features of input pairs and the modulus of input
pair difference are used. The experiment shows that early fusion
with the difference approach gives the best results.

B. Ablation for Initial Channels

The selection of an optimal value for the initial number
of channels of BN is essential as it affects the computational

requirement of the model. We find the number of initial channels
for the base model through detailed experiments as shown in
Table VI. We tried three different combinations of 32, 48, and
64 as initial channels. From the experiment, it is found that the
initial channel of 48 achieves the best results as it produces F1
score similar to the 64 channels but with lesser computational
cost.

C. Ablation for Attention Mechanism

In Table VIII, we presented F1 score produced by attention
modules with different resolution inputs. We used input size of
1× 48× 256× 256 for calculation of computational complex-
ity of attention modules. We started with SAM with input of 1

4 th
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of the original resolution and extended it to multiscale SAM. To
find the optimal number of different resolution inputs to be used,
we started with MSAM-2 where input resolutions of 1

4 th and
1
6 th are utilized. In MSAM-3, input resolutions of 1

4 th, 1
6 th,

and 1
8 th are used. MSAM-4 took 1

16 th resolution input addi-
tionally. From the experiments, we have found that MSAM with
three resolution features are giving better results quantitatively
and with respect to the computational complexity.

D. Ablation for Architecture Component

This study is conducted to showcase the importance of each
component in the proposed work. The visual comparison of the
ablation study for various components of the proposed model is
shown in Fig. 11. The rest of the ablation experiments (as shown
in Table IX) are done with the base model with the initial opti-
mum channel number obtained by Table VI and early fusion with
the difference strategy. This model achieved F1 score of 89.72%.
After adding the SAM, it increased by 0.47%. We improved the
SAM to MSAM with the base model, and this increases the F1
score to 90.38% and by 0.66%. We added residual connections in
the base model, and this increases the F1 score to 90.04% and by
0.32% from the base model. To further improve the performance,
we have added the DSCM. First, we combined the DSCM and
MSAM with the base and achieved F1 score of 90.61% which
is 0.89% higher than the base model. Further inclusion of skip
connection has improved it to 91.46% which is 1.74% higher
than the base model. After applying test time augmentation, this
further improved to 91.77 %. In addition, overlapping strides are
used in output as utilized in [26]. Output strides of 128 pixels
resulted in the F1 score of 91.88, and with stride 64, it reached
91.97%. This study shows that skip connection in the base
model improved the model’s performance. The combination of
DSCM and MSAM also significantly enhances the base model’s
result.

VII. CONCLUSION

In this article, we presented a novel architecture DRMNet,
a multitasking DL model composed of a BN, an MSAM, and
a subpixel convolution based deconvolution module. The pro-
posed model can predict change map and image difference in
parallel and uses two loss functions, hybrid loss, and MSE
loss. Initial feature fusion strategy with modules of features
difference is applied in our network, and it has outperformed
the recent best published works. A detailed study is presented
for justifying the proposed loss functions. An ablation study
is also presented to highlight the contributions of the different
modules of the proposed architecture. A comprehensive set of
experiments reveal that the proposed model has achieved the
SOTA results for CDD, SYSU, and LEVIR-CD datasets. We
also have set benchmark results for the BCDD dataset for future
comparison.
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